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Abstract: As a particular kind of detection technology under weak magnetization, metal magnetic
memory testing is very likely to be affected by external factors in the detecting process, which
may lead to incorrect results. In order to minimize the negative influence of interrupting signals
and improve the detection accuracy, this paper adopted the enhanced metal magnetic memory
testing method to preliminarily increase the signal-to-noise ratio (SNR) of the detection signal
and then compares the denoising effects of wavelet threshold denoising method, empirical mode
decomposition (EMD) denoising method, EMD-wavelet threshold denoising method, ensemble
EMD (EEMD), complementary EEMD (CEEMD), variational mode decomposition (VMD), local
mean decomposition (LMD) and empirical wavelet transform (EWT) on the detection signal and the
gradient signal respectively. The results show that the enhanced metal magnetic memory testing
method can significantly increase the SNR of the obtained signal and cannot improve the SNR of a
gradient signal which is generated from the obtained signal. The different denoising methods can
further boost the SNR and improve the detection accuracy of the obtained signal and the gradient
signal. Among the eight signal processing methods, wavelet threshold, EMD and its improved
methods are more applicable in the denoising of enhanced metal magnetic memory testing signals.
The Wavelet threshold denoising, EMD-wavelet threshold denoising and EEMD denoising all have
good denoising effects, and the denoising results to the same signal are analogous.

Keywords: enhanced metal magnetic memory testing; signal processing; wavelet threshold denoising;
EMD-wavelet threshold denoising; EEMD denoising

1. Introduction

Ferromagnetic materials will inevitably result in early damage, such as stress con-
centration, microplastic deformation and micro-cracks when they are used. With the
accumulation and expansion of early damage, macroscopic volume defects will eventu-
ally cause structural failure. To ensure structural safety, it is very important to detect
and evaluate the damage to the material [1]. In 1994, Russian scholar Professor Dubov
was the first person to propose the metal magnetic memory testing method, which was
known as a new non-destructive testing technique of the 21st century [2]. As a magnetic
testing technology under weak magnetization, the metal magnetic memory testing signal
is weak, and the testing results are susceptible to external disturbing factors. Enhanced
metal magnetic memory testing improves the sensitivity and accuracy of detection by
applying an appropriate intensity of directional magnetic field to the specimen to minimize
interference [3,4]. However, the obtained signal contains a lot of random noise, and conse-
quently, useful information cannot be directly extracted from the signal and the gradient
signal. Therefore, to denoise the enhanced metal magnetic memory testing signal and to
eliminate the bad effects of the noise on the signal, especially the signal gradient, by using
appropriate signal processing methods has great significance for identifying defect feature
signals and eigenvalues precisely.

Wang et al. [5], Jian et al. [6] and Zhu et al. [7] applied wavelet transform and adaptive
wavelet threshold to denoise the metal magnetic memory testing signal, respectively, which
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greatly boosted the SNR of the obtained signal [8,9]. EMD is an adaptive decomposition
method that does not include the complicated process of selecting basis functions. It can
boost the recognition rate of defects [10–12]. Nevertheless, the endpoint effect and modal
mixing of EMD will influence the decomposition accuracy. Based on it, Wu and Huang
proposed an improved method of adding noise—EEMD, which can effectively suppress
modal mixing [13]. EEMD can be used to remove the noise in the wire rope or pipeline
defect detection signal, but the auxiliary white noise added in the decomposition process
cannot be eliminated completely [14–16]. CEEMD eliminates the influence of residual
auxiliary noise in EEMD by adding paired noise, but it is difficult to align IMF components
when ensemble averaging, and the error still exists [17–19]. In addition, VMD, LMD, and
EWT are also applied to signal denoising; Ju et al. researched the defect signal extraction
algorithm of steel pipeline based on improved VMD [20], Chen et al. performed fault
diagnosis of rolling bearing with LMD [21], and Lu et al. denoised microseismic noise
based on EWT and Meyer adaptive threshold [22].

Nevertheless, for the noise reduction of magnetic memory detection signals, wavelet
threshold denoising and empirical mode decomposition are still the most commonly used.
In order to improve the quality of signal denoising, the EMD denoising and wavelet
threshold denoising are combined in this paper.

Firstly, this paper analyzes the effect of the enhanced metal magnetic memory testing
method on improving the SNRs of obtained signal and the gradient signal. Secondly, this
paper uses eight signal processing methods to denoise the obtained signal and analyzes the
denoising effects of those signal processing methods on the enhanced metal magnetic mem-
ory testing signal. Through the analysis of the denoising results, the most suitable signal
processing method for the enhanced metal magnetic memory testing signal is determined.

2. Experimental Design and Signal Sampling

As shown in Figure 1, the subject of the experiment is a Q235 specimen with a length
of 200 mm, a width of 40 mm, and a thickness of 3 mm. A rectangular defect with a length
of 10 mm, a width of 1 mm, and a depth of 3 mm was present in the center of the specimen.
The testing system consists of an excitation device, motion actuator and signal acquisition
device. Place the specimen on a stainless steel lifting table, using the U-shaped yoke to
magnetize the defect area of the specimen, and the state of the specimen is unsaturated
magnetic when the current of the excitation power supply is 0.7A. The magnetic signal of
the surface of the specimen is measured by the CH-3600 three-dimensional Gaussian meter.
In the process of measurement, the three-axis CNC displacement platform is used to control
the movement of the detection probe. The magnetic signal is collected within a scanning
area, and this 20 mm × 20 mm area is less than 1 mm from the central surface. There
are 40 sampling paths in total. The spacing between paths is 0.5 mm, and each path has
1200 sampling points. The specimen is demagnetized before the experiment to eliminate
the influence of mechanical processing on the magnetic signal.

Figure 2 shows the normal component Hx, tangential component Hy, and horizontal
component Hz of the metal magnetic memory testing signal and their gradient values
in the geomagnetic field. It can be easily seen that the metal magnetic memory testing
signal is weak and contains a lot of interference information. Therefore, it is impossible
to determine the exact positions of the peak-to-valley value Hx and the maximum value
of Hy. Because of the loud noise, it is impossible to receive the defect information in the
gradient signal value.
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Figure 1. Enhanced metal magnetic memory testing system and specimen diagram. (a) Q235
specimen. (b) Enhanced metal magnetic memory testing system.
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Figure 2. Metal magnetic memory testing signal and magnetic gradient signal. (a) Normal component
signal. (b) Tangential component signal. (c) Horizontal component signal. (d) Gradient value of the
normal component signal. (e) Gradient value of the tangential component testing signal. (f) Gradient
value of the horizontal component testing signal.

In order to improve the detection accuracy, the enhanced metal magnetic memory
testing method, which applies a certain intensity of external excitation magnetic field to
the specimen, is adopted. The obtained signal components and their gradient signals are
shown in Figure 3.
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Figure 3. Enhanced metal magnetic memory testing signal and magnetic gradient signal. (a) Normal
component signal. (b) Tangential component signal. (c) Horizontal component signal. (d) Gradient
value of the normal component signal. (e) Gradient value of the tangential component signal.
(f) Gradient value of the horizontal component signal.

It can be seen from Figure 3 that after adopting the external magnetic field properly, the
amplitude of each component of the collected magnetic field signal increases, and the signal
curve is relatively gentle, which can reflect the defect information better. The curve of Hx
passes through the zero point in the center of the defect, and there are peak-to-valley values
on the left and right edges of the defect. The Hy and Hz have maximum values at the defect
center. The normal component gradient signal Hxx and the tangential component gradient
signal Hyy have roughly demonstrated the top-to-bottom values and extreme values of
the defect edge information. These all indicate that the enhanced metal magnetic memory
testing method can improve the sensitivity and detection accuracy of defect detection to a
certain extent.

However, since the collected signal still contains noise signals, the gradient calculation
further amplifies the influence of the noise signal. Thus, the exact position of the extreme
point cannot be obtained in the Hxx and Hyy signal curves. In addition, the information
related to the defect in the gradient signal of the horizontal component Hzz is still drowned
by noise. Therefore, it is necessary to use appropriate signal processing methods to denoise
the collected signals so as to better obtain the eigenvalues that can characterize the defects
from each component of the magnetic signal and its gradient value.

3. Signal Processing Methods
3.1. Wavelet Threshold Denoising

Wavelet threshold denoising consists of three stages. In Stage One, according to
the characteristics of the obtained signal, the appropriate wavelet basis function and
decomposition level are selected to decompose the obtained signal. In Stage Two, threshold
processing is performed on the wavelet coefficients of each scale obtained by decomposition
to remove high-frequency noise. In Stage Three, the processed signals of each scale are
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reconstructed to obtain the denoised signal. The selection of wavelet basis function and
decomposition level plays a vital role in the whole process.

According to the wavelet basis functions Daubechies, Symlets, and Coiflets used in
the literature [6,8,16,23], db2~db10, sym2~sym10 and coif1~coif5 wavelet basis are used to
denoise the signal with wavelet soft threshold denoising. Adaptive threshold selection is
done on the principle of Stein’s Unbiased Risk Estimate, and with decomposition levels
ranging from 4 to 6, the effectiveness of denoising is calculated.

The SNR is utilized to evaluate denoising effectiveness. The larger the SNR is, the
better the denoising effectiveness is. The calculation method is shown in Formula (1):

SNR = 10lg

1
N

N
∑

n=1
s2(n)

1
N

N
∑

n=1
[s(n)− ŝ(n)]2

(1)

where s(n) is the original signal, ŝ(n) is the denoised signal, and N is the data length.
Figure 4 shows the denoising effect with different wavelet base functions and at

different decomposition levels. It is clear that the signal-denoising effect varies with the
different functions and levels.
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Figure 4. Denoising effect of different wavelet basis functions under different decomposition levels.
(a) Denoising effect of dbN. (b) Denoising effect of symN. (c) Denoising effect of coifN.

The three wavelet basis functions all have the best denoising effect when the decom-
position level is 5. With the increase of vanishing moment, the SNR first climbs and then
becomes stable. The normal component Hx has the highest SNR of 51.3965 in the 5-level
decomposition of sym9, the tangential component Hy has the highest SNR of 51.2075 in the
5-level decomposition of coif5, and the horizontal component Hz has the highest SNR of
46.4024 in the 5-level decomposition of db10.

At the highest SNR, the wavelet basis function and the number of decomposition
layers are used to denoise the signal, respectively. The results of each component of the
magnetic signal and its gradient value after denoising are shown in Figure 5. It can be seen
that the high-frequency noise and instantaneous pulse in the original signal can be removed
through wavelet threshold denoising, and the curves of different component signals and
their gradient signals become flat, especially the characteristics of gradient signal which are
related to defects where the minimum value of Hxx is connected with the defect center, and
the peak-to-valley value of Hyy is connected with the left and right boundaries of the defect.
However, in the process of the wavelet transform, the selection of wavelet basis functions
and decomposition scales has a great influence on the wavelet denoising effect. When the
detection signal changes, the best wavelet basis function and decomposition level must
be reselected.



Processes 2023, 11, 302 6 of 14

Processes 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

At the highest SNR, the wavelet basis function and the number of decomposition 
layers are used to denoise the signal, respectively. The results of each component of the 
magnetic signal and its gradient value after denoising are shown in Figure 5. It can be seen 
that the high-frequency noise and instantaneous pulse in the original signal can be re-
moved through wavelet threshold denoising, and the curves of different component sig-
nals and their gradient signals become flat, especially the characteristics of gradient signal 
which are related to defects where the minimum value of xxH  is connected with the de-

fect center, and the peak-to-valley value of yyH  is connected with the left and right 
boundaries of the defect. However, in the process of the wavelet transform, the selection 
of wavelet basis functions and decomposition scales has a great influence on the wavelet 
denoising effect. When the detection signal changes, the best wavelet basis function and 
decomposition level must be reselected. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Comparison of wavelet threshold denoising effects. (a) Comparison of normal component 
signals. (b) Comparison of tangential component signals. (c) Comparison of horizontal component 
signals. (d) Comparison of gradient values of normal component signal. (e) Comparison of gradient 
values of tangential component signal. (f) Comparison of gradient values of horizontal component 
signal. 

3.2. EMD Denoising 
EMD can deal with non-stationary and nonlinear signals well. According to the time 

scale characteristics of the signal, EMD performs signal decomposition. This can avoid 
pre-setting the basis function and is much better than other time domain analysis meth-
ods. The signal decomposed by EMD contains several intrinsic mode functions (IMF) and 
a trend term, which can be recorded as: 

( ) ( ) ( )
1
IMF

K

k
k

s n n r n
=

= +∑  (2) 

Figure 5. Comparison of wavelet threshold denoising effects. (a) Comparison of normal component
signals. (b) Comparison of tangential component signals. (c) Comparison of horizontal compo-
nent signals. (d) Comparison of gradient values of normal component signal. (e) Comparison of
gradient values of tangential component signal. (f) Comparison of gradient values of horizontal
component signal.

3.2. EMD Denoising

EMD can deal with non-stationary and nonlinear signals well. According to the time
scale characteristics of the signal, EMD performs signal decomposition. This can avoid
pre-setting the basis function and is much better than other time domain analysis methods.
The signal decomposed by EMD contains several intrinsic mode functions (IMF) and a
trend term, which can be recorded as:

s(n) =
K

∑
k=1

IMFk(n) + r(n) (2)

where s(n) is the original signal; IMFk(n) is the k-th IMF component; K is the K-th IMF com-
ponent obtained by decomposition; and r(n) is the remaining trend term of decomposition.

Figure 6 shows the EMD decomposition diagram of each component of the enhanced
metal magnetic memory testing signal. The original signal Hx is decomposed into 9 IMF
components and 1 trend term. Among them, IMF 1, IMF 2 and IMF 3 have high frequency
and small amplitude, which are judged as high-frequency random noise in the detection
process. The IMF 4 component has low frequency and small amplitude, which is judged
as lift-off noise or low-frequency noise generated by the detection probe. Therefore, in
the EMD denoising process, the IMF 1–IMF 4 components are removed. Then the remain-
ing IMF components and trend term are reconstructed to obtain the normal component
signal Hx. Similarly, the high-frequency noise components IMF 1, IMF 2, and the low-
frequency noise component IMF 3 of Hy are eliminated, and then the remaining signals
are reconstructed to obtain the tangential component signal; the high-frequency noise
components IMF 1~IMF 3 and low-frequency noise components IMF 4 and IMF 5 of Hz are
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eliminated, and then the remaining components are reconstructed to obtain the horizontal
component signal.
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Figure 7 shows the signal components and their gradient values obtained by EMD
denoising. It can be seen that the EMD denoising takes away the random noise and strong
pulse interference in the processed signal. The defect characteristics of the gradient value
of different component signals are obvious, and the left and right boundary positions of
the defect can be determined accordingly.
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Figure 7. Comparative diagram of EMD denoising effect. (a) Comparison of normal component
signals. (b) Comparison of tangential component signals. (c) Comparison of horizontal compo-
nent signals. (d) Comparison of gradient values of normal component signal. (e) Comparison of
gradient values of tangential component signal. (f) Comparison of gradient values of horizontal
component signal.



Processes 2023, 11, 302 8 of 14

3.3. EMD-Wavelet Threshold Denoising

Through the above analysis, it can be proven that the wavelet threshold denoising
method and EMD denoising method can both greatly improve the SNR of obtained signal.
Consequently, the EMD denoising and wavelet threshold denoising are combined. The
combined EMD-wavelet threshold denoising method is employed to process the enhanced
metal magnetic memory signal, and then the denoising result of the combined method is
analyzed. The general process is shown in Figure 8, and the steps are as follows.

1. Decompose signals into several IMF components and a trend term by EMD;
2. Calculate the correlation coefficient R of each order IMFs respectively, and the calcula-

tion method is shown in Formula (3). If the order of the first local minimum value of
R is j, then IMFj+1 is the transitional component of noise and useful signal;

3. The high-frequency signal before IMFj+1 is processed by the soft threshold and then
reconstructed the signal with the other IMF components and trend item;

4. With the same number of decomposition layers and the same scale as mentioned
earlier in this paper, the reconstructed signal is processed by wavelet threshold to
obtain the denoised signal.

R =

N
∑

n=1
[s(n)− s(n)]

[
IMFk(n)− IMFk(n)

]
√

N
∑

n=1
[s(n)− s(n)]2

√
N
∑

n=1

[
IMFk(n)− IMFk(n)

]2 (3)

where IMFk(n) is the k-th IMF component, and IMFk(n) is the mean of the k-th
IMF component.
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Table 1 lists the calculated IMF component correlation coefficients of each component
signal. In this table, IMF 4, IMF 4 and IMF 3 are the transition components of Hx, Hy, and
Hz after EMD decomposition.
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Table 1. Cross-correlation coefficient of IMF components of each magnetic field component signal.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9

Hx 0.0172 −0.0048 −0.0192 0.0072 0.3519 0.4450 −0.1817 −0.0871 0.6599
Hy 0.0099 0.0131 −0.0020 0.3681 0.8336 0.0678 0.6418 — —
Hz 0.0943 0.0366 0.0968 −0.0191 −0.0107 0.4830 0.6406 0.8038 0.7388

Figure 9 shows the magnetic signal and gradient value after the EMD-wavelet thresh-
old denoising. It can be seen that EMD-wavelet threshold denoising eliminates the un-
wanted noise while retaining the useful signal relatively well. The gradient curve is
generally flat, and the defect characteristics are obvious.
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Figure 9. Comparison of EMD-wavelet threshold denoising effects. (a) Comparison of normal
component signals. (b) Comparison of tangential component signals. (c) Comparison of horizontal
component signals. (d) Comparison of gradient values of normal component signal. (e) Comparison
of gradient values of tangential component signal. (f) Comparison of gradient values of horizontal
component signal.

3.4. Other Denoising Methods

In addition to wavelet threshold denoising and EMD denoising, the common signal
denoising methods also include EEMD, CEEMD, LMD, VMD, EWT and so on. EEMD adds
evenly distributed white noise several times during decomposition to cover up the noise in
the original signal, which results in a more accurate envelope to avoid modal mixing. The
more the ensemble number for EEMD, the better the denoising effect. However, the added
white noise will remain after the average processing, and the noise cannot be ignored after
reconstruction. CEEMD is improved from EEMD. The added auxiliary noise of CEEMD is a
pair of positive and negative white noise with opposite numbers, and there is no redundant
auxiliary noise after reconstruction.

LMD can also solve the endpoint effect and mode mixing problem of EMD. According
to the envelope characteristics of the signal, adaptive decomposition is carried out. The
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decomposed components are product functions, PF, and each product function is obtained
by multiplying the envelope function by the pure frequency modulation function.

The VMD method Is a non-recursive variational mode signal decomposition method.
Its overall framework is a variational problem, which mainly includes the construction and
solution of the variational problem. The variational problem is to find the minimum value
of the sum of the bandwidth of the center frequency of each modal component, where
the intrinsic modal component is defined as the component modal function of amplitude
modulation and frequency modulation.

The EWT method combines the adaptive decomposition concept of the EMD method
and the tight support framework of the wavelet transform. EWT divides the Fourier
spectrum of the signal into continuous intervals, then constructs wavelet filter banks in
each interval for filtering, and finally obtains a set of amplitude and frequency-modulated
components by signal reconstruction.

The obtained signals are denoised by the above denoising methods, and the results
are shown in Figure 10.
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In Figure 10a,c,e are the denoising effects of the magnetic component signals, and
Figure 10b,d,f shows the denoising effects of the gradient signals of magnetic component
signals. For the component signals Hx, Hy, and Hz, the denoising results at the peak and
the endpoint are greatly different. The denoising effects of LMD, VMD and EWT are not as
good as EEMD and CEEMD. The feature value of the defect cannot be obtained, and the
location of the defect cannot be judged. The denoising effect of the gradient signal is not as
good as that of the component signal, especially the denoising effect of LMD and EWT is
not good, which still contains great noise. Figure 10 shows that EEMD and CEEMD are
more suitable for denoising enhanced magnetic memory testing signals.

4. Results and Discussion

In order to better compare the signal processing effects of these denoising methods,
calculate the SNR of the denoised signal according to Formula (1). The results are shown
in Table 2.

Table 2. SNR of different signal processing methods.

Normal Tangential Horizontal

Original Signal 34.0709 40.9030 20.6750
Wavelet Threshold Denoising 51.3965 51.2075 46.4024

EMD Denoising 48.5284 50.2865 53.2229
EMD-wavelet Threshold Denoising 50.7740 53.2229 43.6320

EEMD 42.6955 42.4398 63.9530
CEEMD 33.3354 30.7251 54.9326

LMD 34.2921 36.1620 52.2414
VMD 46.1012 47.8602 63.1315
EWT 36.2822 40.5297 45.8342

From Table 2, it can be seen that the denoising effect of wavelet threshold de-noising,
EMD-wavelet threshold denoising and EEMD are excellent in the nine de-noising methods.
For the normal component signal, the wavelet threshold denoising has the largest SNR
at 51.3965; for the tangential component signal, EMD-wavelet threshold denoising has
the largest SNR at 53.2229; for the horizontal component signal, EEMD denoising has
the largest SNR at 63.9530. The comparative analysis of the denoising effects of these
three signal-processing methods is illustrated in Figure 11. The signal curves obtained by
the three processing methods, which can reflect the defect characteristics, are very gentle
but slightly different.

The proposed improved method EMD-Wavelet threshold denoising has improved the
noise reduction effect of tangential component signal to some extent, but the improvement is
not significant. For the normal component signal and the horizontal component signal, the
proposed method is not as good as Wavelet threshold denoising; therefore, the applicability
needs to be improved in future research.

The wavelet threshold denoising method is used to process the signals of 40 paths in
the scanning zone, and then the gradient values of the normal component signal and the
tangential component signal are plotted in Figure 12.
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Figure 11. Comparison of three signal processing methods. (a) Comparison of normal component
signals. (b) Comparison of tangential component signals. (c) Comparison of horizontal compo-
nent signals. (d) Comparison of gradient values of normal component signal. (e) Comparison of
gradient values of tangential component signal. (f) Comparison of gradient values of horizontal
component signal.

It can be seen from Figure 12 that the signal after denoising can generally illustrate the
contour characteristics of the defect. The peak value of the normal component Hx on the
left side indicates the left boundary of the defect, while the valley value on the right side
indicates the right boundary of the defect. The tangential component Hy has a peak at the
center of the defect. The horizontal component Hz has a valley at the upper left and lower
right corners of the defect. It also has a peak at the lower left and upper right corners of
the defect. The normal component gradient Hxx has a valley value in the central region,
indicating the center of the defect. The tangential component gradient Hyy has a peak at the
left boundary of the defect and a valley at the right boundary of the defect. The horizontal
component gradient Hzz has a peak on the upper boundary of the defect and a valley on
the lower boundary of the defect.
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5. Conclusions

The metal magnetic memory testing signal is weak and is most likely to be affected
by interrupting external factors. In order to resolve such problems, this paper adopts the
enhanced metal magnetic memory testing method. Firstly, the SNR of the detected signal
is improved by gradually strengthening the excitation magnetic field intensity. Then the
denoising effects of different signal denoising methods on the detection signal and its
gradient value are compared and analyzed. The findings are as follows.

1. Compared with the traditional metal magnetic memory testing method, the enhanced
metal magnetic memory testing method can increase the possibility of detecting the
signal and enhance the SNR of each component of the detected signal by accurately
strengthening the excitation magnetic field. But the enhanced method cannot enhance
the SNR of each component of the gradient signal significantly;

2. Among numerous signal processing methods, wavelet threshold, EMD and its im-
proved methods are more applicable in the denoising of enhanced metal magnetic
memory testing signals. Taking the signal curve and SNR after denoising into consid-
eration, wavelet threshold denoising, EMD-wavelet threshold denoising and EEMD
denoising all have good denoising effects, and the denoising results to the same signal
are analogous. It is necessary to determine the best denoising method according to
the specific signal.
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