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Abstract: The present work is in the framework of water resource control and optimization. Specifi-
cally, an advanced process control system was designed and implemented in a hydroelectric power
plant for water management. Two reservoirs (connected through a regulation gate) and a set of tur-
bines for energy production constitute the main elements of the process. In-depth data analysis was
carried out to determine the control variables and the major issues related to the previous conduction
of the plant. A tailored modelization process was conducted, and satisfactory fitting performances
were obtained with linear models. In particular, first-principles equations were combined with
data-based techniques. The achievement of a reliable model of the plant and the availability of
reliable forecasts of the measured disturbance variables—e.g., the hydroelectric power production
plan—motivated the choice of a control approach based on model predictive control techniques. A
tailored methodology was proposed to account for model uncertainties, and an ad hoc model mis-
match compensation strategy was designed. Virtual environment simulations based on meaningful
scenarios confirmed the validity of the proposed approach for reducing water waste while meeting
the water demand for electric energy production. The control system was commissioned for the real
plant, obtaining significant performance and a remarkable service factor.

Keywords: model predictive control; reservoir; hydroelectric power plant; modelization; forecast;
advanced process control; regulation gate manipulation; water resources management; process
control; process optimization

1. Introduction

In hydroelectric power plants, maximizing the efficiency of water exploitation is
a major challenge for a profitable energy production. This challenge is part of the more
general context aimed at minimizing water waste [1–3]. Over the past decades, hydropower
equipment has been optimized to achieve high performance, availability, and flexibility;
these improvements contribute to the energy transition [4–7]. Hydroelectric power plants
may include different sub-processes, e.g., water collection reservoirs, regulation gates,
intakes, rivers, sand traps, turbines, floodgates. Digitalization is playing a key role in
improving the efficiency of hydropower plants at different levels of the control/automation
hierarchy [8]. In this context, advanced process control (APC) systems [9], optimization
algorithms [10], and Industry 4.0 [11] can represent strategic solutions. In order to design
APC systems and optimization algorithms for non-standard processes and to apply Industry
4.0 principles, suitable cross-fertilization procedures are needed so as to adapt the smart
solutions to the considered case studies [12,13]. Adapting APC, high-level optimization,
and Industry 4.0 solutions developed in industrial plants to the field of hydropower requires
a methodological approach that takes into account the different hardware and software
architectures. APC systems can represent software solutions for improving the conduction
of hydropower plants and standardizing control operations in the field. In this way, plant
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operators can play a role at the supervisory level. The benefits offered by APC systems
increase as the complexity of the process increases. The complexity of the process includes
several aspects, such as the number of variables involved, the types of relationship between
the different variables, and the need for predictive approaches [8,14,15]. Industry 4.0
principles can represent strategic drivers of data exchange between the different levels of
the automation hierarchy, while optimization algorithms at high levels of automation are
able to take into account overall plant benefits—for example, considering the market prices
of electric energy [10]. In the literature, many engineers, researchers, and practitioners have
tackled optimization, estimation, and control challenges for hydroelectric power plants.

High-level optimization problems were tackled in [10,16–22]. In [10], a review of opti-
mization algorithms in solving hydro-generation scheduling problems is presented; long-,
mid-, and short-term hydro scheduling problems are analyzed, and the target of optimizing
the power generation schedule of the accessible hydropower units is presented. Different solu-
tions are detailed, e.g., metaheuristic optimization methods. In [16], the generation scheduling
problem, i.e., the unit commitment problem, is investigated through the optimization of the
amount of energy that must be provided by each turbine generator. Different versions of
the coral reefs optimization algorithm are exploited. In [17], the implementation of reservoir
conduction rules using inter-basin water transfer is proposed, and an optimization model
based on network flow and particle swarm optimization is adopted for the maximization of
the hydroelectric benefits. In [18], the problem of long-term maximization of hydroelectric en-
ergy generation from complex multipurpose reservoir systems is solved. The maximization of
energy production is the main objective, and genetic algorithms are exploited for the solution
of the formulated optimization problems in different scenarios. In [19], a model for a reservoir
system is proposed in order to design optimized strategies for the minimization of raw water
production cost, the maximization of electrical energy production, and to prevent flood situa-
tions. In [20], the authors focus on joint operation and dynamic control of flooding to limit
the water level for cascade reservoirs. An effective tradeoff between the flood control and
hydropower generation is provided. In [21], a salp swarm algorithm is used to optimize the
joint operation of multiple hydropower reservoirs. Multiple strategies combining sine–cosine
operators, opposition-based learning mechanisms, and elitism strategies are applied, and the
proposed approach is tested through simulations. In [22], optimal operation of reservoirs
for power generation plants is proposed. The formulation and implementation of optimal
operation schemes are improved by combining the advantages of conventional and optimal
operation and using the concept of a warning water level in the operational rules. Calculation
under different operating conditions is used to test the developed procedures on a simulated
hydropower station.

APC systems for the energy generation devices of hydropower plants are proposed
in [23–26]. In [23], a method for controlling the real power delivered by a hydroelectric
power plant to a local electrical grid is proposed, based on advanced control techniques,
where internal model control and feedforward strategies are combined. Furthermore, a
control loop for the frequency correction is added, a tuning method for the controller is
proposed, and the designed controller is tested through simulations. In [24], the problem of
load distribution between hydraulic units is tackled. The nonlinearity of the hydro turbine
characteristics, individual peculiarities of the generation units, and process constraints are
taken into account. A field experiment is executed to test the proposed algorithms. In [25],
the hydraulic turbine’s governing system control problem is analyzed; a nonlinear model
is proposed, and Takagi–Sugeno fuzzy linearization and mixed H2/H∞ robust control
theory are applied to design the controller. The developed APC system is tested through
simulations. In [26], modeling and simulation of hydropower plants is assessed in order
to test different structures and algorithms for power, frequency, and voltage control. The
dynamic and stationary behavior of the hydro units is analyzed in order to implement
digital control algorithms.

The high-level optimization algorithms reported in previous studies do not govern
the management of the real-time operation of the plants, while the aforementioned APC
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systems are focused on the control of the energy generation devices. APC systems focused
on reservoirs’ and tanks’ level/volume control are proposed in [27–36] instead. Estimation
and control problems are assessed in [27] for water-level control in reservoirs through flood-
gate manipulation. A nonlinear model predictive control (MPC) with an extended Kalman
filter is the solution proposed by the authors, which is tested through simulations. In [28], a
system of three interconnected tanks is modeled through Takagi–Sugeno fuzzy models, and
a systematic control design procedure is proposed in order to include constraints on the
input/output in the formulation. A bank of linear controllers is designed, and linear matrix
inequalities are exploited. The proposed procedure is tested through simulations. In [29],
a predictive functional control approach is proposed for a three-tank system showing
the potential of a predictive controller equipped with an anti-wind-up method through
simulations. In [30], an MPC approach is proposed for controlling river systems with water
reservoirs, where the main control objective is avoiding the risk of flooding; simulation
results are provided for the testing of the designed controller. In [31], five distributed
MPC schemes using a hydropower plant benchmark are compared, and specific simulation
results are provided; the main objective of the controllers is the coordination of several
subsystems over a large geographical area in order to produce the demanded energy while
satisfying constraints on water levels and flows. In [32], generalized predictive control is
applied to a multivariable model of a pumped-storage hydroelectric power station. The
response of the system with constrained predictive control is compared with the existing
proportional–integral controller through simulations, showing the benefits provided by
MPC. In [33], a predictive control strategy is presented for a process represented by two
liquid tanks with a flow control valve. Modelization, control, and disturbance rejection
topics are analyzed through simulations. An approach to optimal hydraulic-level tracking
based on an inverse optimal controller is proposed in [34], devised with the purpose of
regulating power generation rates in a specific hydropower infrastructure. In addition, a
neural network is implemented to aid the system in the prediction and management of
external perturbations, and the proposed approach is tested through simulations using
data collected from the plant throughout a whole year of operation as a tracking reference.
A multi-objective MPC approach is presented in [35] for real-time operation of a multi-
reservoir system. The approach incorporates the non-dominated sorting genetic algorithm
II (NSGA-II), multi-criteria decision-making, and the receding horizon principle to solve
a multi-objective reservoir operation problem in real time. The control objectives are to
minimize the storage deviations in the reservoirs, to minimize flood risks at a vulnerable
downstream location, and to maximize hydropower generation. Tailored simulations are
used for the testing of the designed control system. In [36], a six-dimensional nonlinear
hydropower system controlled by a nonlinear predictive control method is proposed; a
performance index with a terminal penalty function is selected, and numerical experiments
are used to test the developed control strategy.

The present paper proposes an APC system aimed at water management for reservoirs
in a hydroelectric power plant. Two reservoirs (connected through a regulation gate) and a
set of turbines for energy production constitute the main elements of the process. This paper
aims to provide holistic knobs and solutions for the assessment of the previously cited
aspects of APC systems for hydropower plants. The present paper extends the contents
reported in [37], providing additional details and insights on the different phases of the
developed project. To the best of the authors’ knowledge, in the literature on APC systems
in hydropower plants focused on reservoirs’ level/volume control, the following aspects
have not been explored in depth:

• The procedures for a qualified plant inspection before starting an APC project have
not been thoroughly detailed in the literature. The selection, acquisition, storage,
and analysis of data play a fundamental role in the plant inspection, together with a
detailed study of the plant’s devices.
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• A detailed feasibility study on the application of MPC for controlling hydropower
plants is not present in the literature. Modelization and forecasting need to be assessed
in this phase, together with tailored strategies for model mismatch compensation.

• A procedure that defines the MPC constraints, reference trajectories, and tuning
parameters in real time based on current and predicted process conditions is not
present in the literature on hydropower plants.

• An APC system that takes into account bad data detection, local control loop mal-
functions, and lack of efficiency flags in real time is not present in the literature on
hydropower plants.

• Smart alarm assessment for hydroelectric power plants is not present in the litera-
ture. Smart alarms can represent useful tools during plant conduction, highlighting
inefficiency and/or predicting potential problems.

In addition, to the best of the authors’ knowledge, projects on hydropower plants that
include implementation of real processes that are designed as lasting control applications
and not as temporary tests are not widespread. The field application of an APC system
designed and tested through virtual environment simulations requires significant reliability
and robustness in order to bridge the gap between simulations and field application.

The remainder of this paper is organized as follows: The Section 2 reports the process
description, the control specifications, and the data analysis and modelization methods.
In addition, the APC design, the field implementation, and the computational framework
are described. The Section 3 focuses on data analysis, modelization, forecasting, virtual
environment simulations, and field results. Finally, some conclusions and insights for
future work are reported.

2. Materials and Methods
2.1. Process Description, Control Specifications, and Project Definition

The studied process is represented by a hydroelectric power plant located in the Alto
Adige region (Italy). Figure 1 shows the geographic characterization of the overall plant.
Two artificial water collection reservoirs characterize the process: an upstream reservoir
and a downstream reservoir. The downstream reservoir is located in a valley. At the outlet
of the downstream reservoir, a tunnel (see Figure 1) takes the water towards a penstock
that leads to the power plant (see Figure 2). The electric energy is generated by the rotation
of the involved turbines. The water flow between the two reservoirs is controlled through
a regulation gate, named the Beikircher gate (see Figure 1). The regulation gate, activated
by a butterfly valve, controls the water flow of a pipeline connecting the two reservoirs.
The overall process is schematically reported in Figure 3.

Figure 1. Top view of the plant area.
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Figure 2. Hydroelectric power plant.

Figure 3. Schematic representation of the process.

The power plant is characterized by a double group of Francis-type turbines capable
of providing an overall efficient power of 22 MW and an average annual electric energy
production of 86.81 GWh. In the water catchment area, different rivers are present (see
Figure 1). As shown in Figure 3, the reservoirs are characterized by two inlet water flows
and one outlet water flow. The reservoirs’ level and inlet/outlet water flow rates are
measured by suitable sensors. The water flows entering the upstream reservoir consist of
the main stream of a river from the intake structure and a set of subsidiary intakes (see
Figure 3). Through two side-by-side deicing tanks and two subsequent sand traps, the
incoming water from the intake structures flows into the upstream reservoir. The maximum
derivable flow rate from the intake structure with clean grids is equal to about 9 m3/s. On
the other hand, the subsidiary intakes can provide a maximum flow rate equal to 1.4 m3/s.
The two inlet water flows of the upstream reservoir are measured by a level transducer
located near the reservoir inlet.

The upstream reservoir was constructed on the right bank of a river and has a max-
imum length of 280 m and a maximum width of 150 m, with a usable capacity of about
135,500 m3. The bottom level of the reservoir is at 1216 m above sea level (asl), while
the overflow level is 1223.60 m asl. The minimum level detectable by the level sensor is
1216.80 m asl; below this level, the operation of the upstream reservoir has to be considered
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run-of-river. The maximum detectable level is equal to about 1221.85 m. At the outlet
of the upstream reservoir, the Beikircher gate regulates the water flow, which enters a
tunnel. The length of the tunnel that connects the upstream and downstream reservoirs
is equal to 5534 m. The butterfly valve of the regulation gate is controlled by a built-in
programmable logic controller (PLC). A hydraulic control unit, placed in a structure near
the valve, operates the gate. The flow rate setpoint can be manipulated between 0 and
8 m3/s. According to the plant’s needs, the maximum value is typically limited to 7 m3/s.
The downstream reservoir was constructed on the right bank of the associated river and has
a maximum length of 165 m and a maximum width of 80 m, with a usable capacity of about
52,500 m3. The downstream reservoir’s capacity is lower than the upstream reservoir’s
capacity. The downstream reservoir (see Figure 3), similarly to the upstream reservoir,
is characterized by two inlet flows and a single outlet flow. The downstream reservoir’s
inlet flows are the water flow from the upstream reservoir (regulated by the Beikircher
gate) and the intake structure. The intake structure is represented by the water flowing in
a gravel reservoir and in a sand trap (see Figure 3). The bottom level of the reservoir is
at 1197.20 m asl, while the overflow level is 1203.50 m asl. The minimum level detectable
by the level sensor is 1197.40 m asl; below this level, the operation of the downstream
reservoir has to be considered run-of-river. The maximum detectable level is equal to about
1202.77 m. At the outlet of the downstream reservoir, the water is conveyed towards the
power plant through a tunnel and a penstock. The tunnel is characterized by a length equal
to about 7000 m, while the penstock, which consists of a metal pipe, has a length of about
500 m. A jump equal to about 270 m is observed. After passing through the power plant
and transferring energy to the turbines, the water flows into a free surface drainage channel,
intercepted by two flat gates. The water released by the downstream reservoir is subjected
to a flow rate setpoint regulation. The regulation and the flow rate measurement are located
not at the outlet of the downstream reservoir, but a few meters downstream. The flow rate
regulation is based on the electric energy production plan of the power plant. The electric
energy production plan is known a priori with significant confidence. The production plan
is sent daily to the managers of the plant and determines how much energy the plant will
have to produce hourly during the day. The provided electric power (MW) measurements,
together with the related setpoints, are available for the turbines.

Based on tailored plant inspections and plant operators’/managers’ interviews/reports,
different considerations were made for the process in order to plan the project phases. A list
of the manipulated variables (MVs), controlled variables (CVs), and measured disturbance
variables (DVs) was obtained [38]. The flow rate setpoint (m3/s) of the regulation gate
represents the only MV for the APC system. The CVs are represented by the volume (m3) of
the upstream and downstream reservoirs, while the measured DVs are represented by the
remaining water inlet/outlet flow rates (m3/s) reported in Figure 3: the upstream reservoir
intake, the subsidiary intakes, the downstream reservoir sand trap, and the outlet flow
rate from the downstream reservoir. Measured DVs are manipulated by other controllers
or related to the natural flow of rivers. All of the reported MVs and DVs were measured,
while the CVs were not directly measured. CVs’ indirect measurement computation was
performed using the measurements of the reservoirs’ level.

The previous conduction of the plant was represented by manual and semiautomatic
control logics. This conduction was based on empirical laws and experience with the
process. The main control specifications were as follows:

• Constrained control of the reservoirs’ volume (level). This type of control is usually
referred to as zone control [39].

• Avoid water overflow on the reservoirs: the upstream reservoir has a lower priority
than the downstream one, since the downstream reservoir is closer to the town.

• Avoid water shortages in the reservoirs: the downstream reservoir has a higher priority,
since a lack of water in downstream reservoir could cause a violation of the electric
energy production plan of the hydroelectric power plant.



Processes 2023, 11, 300 7 of 26

• Compliance with the physical constraints and with the technical operative constraints
of the Beikircher regulation gate.

The zone control strategy, resulting from the first specification, is intended for the
constrained control of the reservoirs’ volume (level), respecting the priorities previously
reported in [39]. The constraints can help in avoiding water overflow and water shortages,
ensuring the safe conduction of the plant. An efficient zone control is not always achievable
in the process under study, because only an MV may be available—for example, the inlet
flow rates of the upstream reservoir are not manipulable. The electric energy production
plan of the hydroelectric power plant must be respected, because a violation (in excess or
in deficit) usually causes an economic penalty for the plant [21]. As explained below, the
physical constraints are mainly focused on the Torricelli law [23–25] and on the effective
capacity of the plant devices. The technical operative constraints of the Beikircher regulation
gate are intended to avoid (if possible) too-frequent control moves in order to minimize
the wear damage. In this context, an automatic APC system for real-time control must
guarantee an optimal solution for the flow rate setpoint of the regulation gate (MV) under
all process conditions. Furthermore, smart alarms highlighting abnormal plant conditions
could improve the plant’s conduction. In this way, plant operators can play roles at
a supervisory level. The control specifications and the proposed control strategy are
summarized in Figure 4, while Figure 5 reports the main project phases described below.
The accurate definition of the inputs and outputs to be obtained in each project phase
represents a critical step.

Figure 4. Schematic representation of the control specifications and of the proposed control solution.

Figure 5. Schematic representation of the project management phases.

2.2. Data Selection, Acquisition, and Storage

The selection of the process variables to be acquired and stored, together with the
definition of the hardware and software architectures to be exploited in real time, was a
key phase that required special effort. The plant data were acquired in the field through
the PLCs. First, an accurate data selection phase was performed. All MV and measured
DV values were selected, together with the reservoirs’ level. Also included in the selected
data were variables involved in the lower-level control loops—for example, the process
variables of the regulation gate and the downstream reservoir outlet flow rate—and the
available process variables of the power plant—for example, the electric power of the
turbines. Furthermore, a procedure for the supply of the electric energy production plan
was defined.
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In order to acquire and store the selected data, a suitable architecture was designed
(Figure 6). The selected data were acquired from the plant through the PLCs (PLCs, Figure 6).
Furthermore, the high-level supervisory systems provided the electric energy production
plan in advance (High-Level Supervisory Systems, Figure 6). A PC server was installed
in the plant, and it was connected to the plant’s net infrastructure. On the PC server, a
supervisory control and data acquisition (SCADA) system was installed and a database
was created (PC Server (SCADA and Database), Figure 6). The data selection, acquisition, and
storage procedures were implemented on the PC server. Furthermore, a PC client (Client
Control Room, Figure 6) was installed in the control room of the plant in order to provide
selected signal information to the plant’s operators, engineers, and managers. Tailored
data visualization methods were designed in order to make the provided information
user-friendly.

Figure 6. Designed architecture for data acquisition and storage.

2.3. Data Analysis

Following data selection, acquisition, and storage, data analysis was performed [40–42].
The data analysis sub-phases were difficult to define in the present work. The data analysis
phase was divided into three main sub-phases:

• Analysis and processing of process variables and setpoints;
• Performance evaluation of local control loops;
• Assessment related to the electric energy production plan data and the compliance

with the electric energy production plan.

The sub-phase consisting in the analysis and processing of process variables and
setpoints involved the measurement of the process variables by sensors and the setpoints
commanded on the local controllers. The sensors’ acquisition/measurement and the PLCs’
communication errors/malfunctions were investigated, and the missing data were replaced
on the database by the results of tailored regressions. Suitable data preprocessing techniques
(e.g., validity limits and spike and freezing checks) were applied in order to detect the
bad data, which were discarded. The validity limits and spike and freezing thresholds
were tuned based on the sensors’ data sheets and the historical data. Furthermore, mobile
window filters were used to improve the robustness of the selected measurements. The
applied mobile window filters had the following form:

m f (k) =
m(k) + · · ·+ m(k− N + 1)

N
(1)

where k is the discrete-time instant, N is the number of samples of the window, m(·) represents
the sensor measurements, and m f (k) is the filtered measurement at instant k.

The local control loops’ performance evaluation sub-phase consisted of an assessment
of the performances of the local controllers of the Beikircher regulation gate and of the
downstream reservoir outlet water flow. Some experimental tests were performed consist-
ing of suitable step moves on the gate setpoint, evaluating the rise time, the overshoot, and
the settling time. Furthermore, deviation conditions between the setpoints and process
variables were investigated [43–45]. In order to motivate the potential abnormal behaviors
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of the local controllers—and especially of the regulation gate controller—the Torricelli
law [23–25] was exploited:

QBeik_MAX(k) = Scond·
√

2·g·∆h(k) (2)

where k is the discrete-time instant, QBeik_MAX (m3/s) is the maximum reachable value by
the regulation gate’s flow rate, Scond (m2) is the pipeline section, g (m/s2) is the acceleration
of gravity (constant), and ∆h (m) is the height of the water level above the reservoir outlet
conduct. Equation (2) is derived from the Bernoulli equation [23–25]. Table 1 reports the
values of the parameters involved in Equation (2) for the regulation gate’s flow rate. The
involved pipeline connects the upstream reservoir to the regulation gate, so the water
height has to be considered with respect to the level of the upstream reservoir outlet. The
minimum level detectable by the upstream reservoir’s level sensor was taken into account,
i.e., 1216.80 m (see Table 1). If the upstream reservoir’s level (hC in Table 1) is greater than
or equal to about 1218.35 m asl, a flow rate of up to 8 m3/s can be required on the regulation
gate. If the upstream reservoir’s level is greater than or equal to about 1218 m, a maximum
flow rate of up to 7 m3/s can be required on the regulation gate. On the other hand, if the
upstream reservoir’s level is lower than the computed thresholds, the physically reachable
flow rate setpoint on the regulation gate decreases (see Table 1). For these reasons, as
explained in Section 2.7, Equation (2) was also used for real-time modifications of the MV
upper constraints.

Table 1. Parameters for the application of the Torricelli law to the regulation gate’s flow rate.

Parameter Value

Scond 1.45 (m2)
g 9.81 (m/s2)

∆h hC − 1216.80 (m)

The electric energy production plan data were evaluated in order to verify the im-
plemented data-exchange procedure between the SCADA and the high-level supervisory
systems (see Figure 6). Furthermore, an in-depth verification of the compliance of the
defined electric energy production plan was performed.

The previously mentioned data analysis procedures were customized in order to be
implemented in the real-time APC system. A module was designed, named Bad Detection,
Data Conditioning, and DV Prediction module which, among its functions, includes an ad
hoc bad data detection algorithm together with an algorithm that performs data filtering
on mobile windows. Furthermore, the local control loops are checked for malfunction
and compliance with the electric energy production plan is verified within this module.
An overall data analysis reliability flag results from the aforementioned checks. This flag is
exploited by the APC system (see Section 2.7); in this way, bad data detection, local control
loop malfunctions, and f inefficient conditions are included in the real-time implementation
of the APC system.

To the best of the authors’ knowledge, the proposed methods for data selection,
acquisition, storage, and analysis represent an innovation in the literature on APC systems
for hydropower plants. Not using accurate methods of data selection, acquisition, storage,
and analysis may represent a missing key prerequisite for designing a robust APC system.

2.4. Modelization

In order to design an MPC solution for the process under consideration, the mod-
elization is a fundamental requirement, because MPC techniques strictly depend on the
goodness of the obtained process model. A linear modelization approach, based on first-
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principles equations [21,24,46,47] and empirical data-based time delay identification [48],
was adopted. The resulting continuous-time model was as follows:

d
dt

wC(t) = Qingr_C(t) + Qprese_sus(t)−QBeik(t) (3)

d
dt

wV(t) = Qdissab(t) + QBeik(t− 43)−Qgall_Sar(t− 3) (4)

where t is the continuous time variable (min), wC (m3) and wV (m3) are the upstream and
downstream reservoirs’ water volumes, respectively, and QBeik (m3/s) is the regulation gate
flow rate setpoint. Qingr_C (m3/s) is the upstream reservoir’s intake flow rate, Qprese_sus

(m3/s) is the upstream reservoir’s subsidiary intakes’ flow rate, Qdissab (m3/s) is the
downstream reservoir’s sand trap inlet flow rate, and Qgall_Sar (m3/s) is the downstream
reservoir’s outlet flow rate (see Figure 3). In Equations (3) and (4), note the sign of each
term—the inlet flow rates have a positive sign, while the outlet ones have a negative sign.
Furthermore, note that the flow rate of the regulation gate has an immediate effect on the
upstream reservoir, while its action on the downstream reservoir is delayed (delay equal
to 43 min). Finally, it should be noted that due to the regulation and flow rate sensors’
location, a delay (3 min) is also present in the outlet flow rate of the downstream reservoir
(see Section 2.1). For this reason, the resulting process model is a MIMO process with time
delays on the inputs (i.e., MVs and DVs). The empirical data-based time-delay identification
phase was executed by performing suitable step test procedures on the regulation gate’s
flow rate setpoint (MVs) and from data analysis on the downstream reservoir’s outlet
flow rate (DVs) [48]. Equations (3) and (4) consider the regulation gate setpoint. In fact,
the dynamics of the lower-level controller were negligible with respect to the adopted
controller’s sampling time (equal to 60 s).

The reservoirs’ water volume dynamic behavior was modeled through Equations (3)
and (4). Since the reservoirs’ field data are level measurements, an ad hoc volume-level
conversion was investigated and implemented. Equations (3) and (4), enriched with the
aspects reported in Section 2.6, were recast in order to obtain a continuous-time state-space
model. The state-space description provides the dynamics as a set of coupled first-order
differential equations in a set of internal variables (state variables), together with a set of
algebraic equations that combine the state variables into physical output variables [49].
Subsequently, a discretization procedure was performed, using a zero-order hold and a
sample time equal to 60 s, and time delays were included in the process dynamics [49,50].
In this way, the following discrete-time state-space model was obtained:

x(k + 1) = Ax(k) + Buu(k) + Bdd(k)y(k) = Cx(k) + v(k) (5)

where k is the discrete-time instant, x is the state vector, u is the MV vector (scalar), d is the
DV vector that acts on the state, y is the output vector, v is an unmeasured DV vector which
acts on the output, and A, Bu, Bd, and C are matrices of suitable dimensions [39,49,50]. d,
i.e., the state DVs vector, includes the measured DVs reported in Equations (3) and (4),
along with the additional fictitious DVs added for model mismatch compensation (see
Section 2.6). v, i.e., the output DV vector, includes the unmeasured disturbances added for
model mismatch compensation (see Section 2.6).

In Equations (3) and (4), the upstream and downstream reservoirs’ volume is consid-
ered. In order to exploit the reservoirs’ level feedback, a volume-level relationship was
formulated. Poor information on the shape and geometry of the reservoirs was available,
so an estimation of the volume-level relationships was obtained. Based on known volume-
level pairs, different mathematical laws were tested and compared, e.g., nonlinear, linear,
and piecewise linear laws. The best results were obtained using the following piecewise
linear law:

wx = w1 + (hx − h1)·(w2 − w1)/(h2 − h1) (6)
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where hx (m) is the level value to be converted into the volume wx (m3), while (w1, h1)
and (w2, h2) are known volume-level pairs. The volume-level pairs were provided by the
plant managers and covered the entire operating range of the reservoirs.

2.5. Forecasting of the Measured DVs

An MPC solution needs accurate CV predictions. On the other hand, CV predictions
depend on the predictions of the measured DVs. Thus, the predictions of the measured
DVs represent an additional significant aspect and are difficult to address for MPC pur-
poses [40,50–52]. Using Equations (3) and (4), the measured DVs were reported, where
Qingr_C (m3/s) is the upstream reservoir’s intake flow rate, Qprese_sus (m3/s) is the upstream
reservoir’s subsidiary intakes flow rate, Qdissab (m3/s) is the downstream reservoir’s sand
trap inlet flow rate, and Qgall_Sar (m3/s) is the downstream reservoir’s outlet flow rate (see
Figure 3). Future values of the flow rates Qingr_C, Qprese_sus, and Qdissab are unknown. Even
though their flow rates are relatively constant or slowly vary for most of the time, there
are nevertheless periods where significant variations are observed—for example, due to
unexpected and unpredictable maneuvers on the pipelines (see Section 3). In these periods,
the DVs’ behavior significantly affected the model performances in term of future predic-
tions. For this reason, Equation (1) was used to filter the values, testing and comparing
different lengths of the window. The tuning phase was a critical step. Effective values
were obtained in each operating condition to be considered over the whole MPC prediction
horizon Hp (see Section 2.7). With regard to the downstream reservoir’s outlet flow rate,
i.e., Qgall_Sar (m3/s), a correlation analysis with the total provided electric power (MW)
was executed using the stored historical data. This analysis was motivated by the fact that
the water flow to be sent to the power plant depends on the electric energy to be produced;
as previously explained, the electric energy production plan is known in advance. The
following relationship was obtained:

Qgall_Sar
∼= Ptot/2.1 (7)

where Ptot (MW) is the total power. Exploiting Equation (7) and the electric energy produc-
tion plan, reliable predictions of Qgall_Sar (measured DV) were obtained.

The computation of the measured DV predictions was performed using the Bad
Detection, Data Conditioning, and DVs Prediction module (see Sections 2.3 and 2.7).

2.6. Model Mismatch Compensation

The model described in Section 2.4 takes into account the inlet and/or outlet flows
that resulted from the plant inspection. The flows considered were the measured flows
used in the previous conduction of the process. From the early stages of the validation
phase of the model described in Section 2.4 with field data, a significant model mismatch
was encountered in many situations. This constituted an unexpected difficulty. A moderate
model mismatch could be justified by the accuracy of the flow and level sensors and the
possible presence of leaks. Furthermore, the presence of rainfall and inaccuracies in the
volume-level conversion (and vice versa) were further causes of possible model mismatch,
but an accurate data analysis made it clear that additional and more significant causes of
uncertainty were present in some periods. The extent of the model mismatch was accounted
for by the presence of unknown and unmeasured inflows and/or outflows. Uncertainties
must be evaluated and taken into account to ensure acceptable control performance. In
order to include a real-time model mismatch compensation and smoothing method, the
combination of two strategies was formulated. First, Equations (3) and (4) were modified
as follows:

d
dt

wC(t) = QingrC (t) + Qpresesus(t)−QBeik(t) + Qloss, wC (t) (8)

d
dt

wV(t) = Qdissab(t) + QBeik(t− 43)−Qgall_Sar(t− 3) + Qloss, wV (t) (9)
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where Qloss, wC (m3/s) and Qloss, wV (m3/s) represent the DVs related to the fictitious flow
rates. With respect to the MVs and to the measured DVs’ flow rates, Qloss, wC and Qloss, wV
can be characterized by positive or negative signs. Furthermore, as an additional strategy,
a v vector was added to the final discrete-time state-space model (see Equation (5)). The
computation of the DVs added for model mismatch compensation was performed using
the Bad Detection, Data Conditioning, and DVs Prediction module (see Sections 2.3 and 2.7).
Qloss, wC and Qloss, wV were observed and computed by evaluating the reservoirs’ outlet
behavior. For example, Qloss, wC was computed through setting the flow rate setpoint of
the regulation gate to zero and evaluating the effective volume decrease of the upstream
reservoir. Values computed for Qloss, wC and Qloss, wV were considered to be constant over
the whole MPC prediction horizon Hp (see Section 2.7). The v vector values were computed
taking into account data for the last 50 min (included the current instant). The update was
performed at most every 50 min. For each output, if the difference between the one-step-
ahead estimation at the current instant and the measurement was greater than a threshold,
only the last measurement was taken into account.

The overall process model was validated based on typical metrics (e.g., goodness-of-fit
statistics) and on MPC purposes. The availability of forecasts on water requests by the
hydroelectric plant and the goodness of fit of the obtained linear process model motivated
the choice of an MPC approach (see Section 3 for the modelization results).

To the best of the authors’ knowledge, the proposed methods for model mismatch
compensation represent an innovation in the literature on APC systems for hydropower
plants. A non-adaptive model mismatch compensation strategy could cause delayed
correction in the presence of fast, unmeasured disturbance actions.

2.7. APC Design

As reported in Figure 5, the APC design phase was executed after the data analysis
and modelization steps. Thanks to the modelization and forecasting results (see Section 3),
MPC was selected as the control strategy [39,50–52]. The main difficulty faced in the APC
design phase was the need to propose a solution that could handle all process conditions.
According to the process dynamic behavior and control specifications, a sampling time
equal to one minute was defined for the APC system.

Figure 7 reports the schematic representation of the APC system’s architecture. At
each control instant k, plant data and parameters (Figure 7, plant data and parameters) were
provided by the SCADA and Database module (see Figure 6 for further details on this
module). Furthermore, the SCADA and Database module provides an initial APC status
flag (Figure 7, APC status) that defines the permission for the APC system to set the MV
setpoint for the process. In other words, this flag defines whether the APC system can
really be used to operate the plant. For example, if a watchdog communication error is
detected in the communication between the SCADA system and the PLCs (see Figure 6),
the APC system’s conduction is disabled. Plant data and parameters and APC status were
processed using the previously defined Bad Detection, Data Conditioning, and DVs Prediction
module (see Sections 2.3 and 2.6). This module provides smart alarms to the plant (see
below). Furthermore, this module performs the checks and the operations described in
Sections 2.3 and 2.6, computing an overall data analysis reliability flag (see Section 2.3). This
flag influences the final APC status flag, which is provided by the module together with
the conditioned plant data and the prediction of the DVs (see Figure 7). For example,
if a bad condition is detected on a plant measurement, the APC status flag is used to
inhibit the APC system’s actions. Some of the outputs computed by the Bad Detection,
Data Conditioning, and DVs Prediction module were provided to the MPC Parameters Selector
module. This module, based on the current and predicted process conditions, defines the
MPC constraints, reference trajectories, and tuning parameters in real time (see below).
The outputs computed by the MPC Parameters Selector module are provided to the MPC
module (see Figure 7). The MPC module, based on a receding horizon strategy (see below),
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computes the MV value to be applied to the plant (Figure 7, u(k)). Furthermore, smart
alarms are also provided by the MPC module (see below).

Figure 7. Schematic representation of the APC system’s architecture.

A detailed analysis was performed based on the obtained process model and the DVs’
forecasting in order to define a reliable prediction horizon Hp. The selected prediction
horizon was equal to 130 min. No move-blocking strategies [53] were implemented, and the
control horizon Hu was set equal to Hp. The proposed MPC strategy is based on a quadratic
programming (QP) problem. The quadratic cost function to be minimized is as follows:

V(k) =
Hu−1

∑
j=0
‖û(k + j|k)‖2

S(j) +
Hu−1

∑
j=0
‖∆û(k + j|k)‖2

R(j) +
Hp

∑
j=1
‖ŷ(k + j|k)− r(k + j|k)‖2

Q(j) + ρ·ε2(k) (10)

subject to the following linear constraints:

i. lbdu(k) ≤ ∆û(k + j|k) ≤ ubdu(k), j = 0, . . . , Hu − 1
ii. lbu(k) ≤ û(k + j|k) ≤ ubu(k), j = 0, . . . , Hu − 1

iii. lbh,y j(k)− γlbh,y j·ε(k) ≤ ŷj(k + i|k) ≤ ubh,y j(k) + γubh,y j·ε(k),
j = 1, 2; i = Hw j, . . . , Hp

iv. lbs,y j(k)− γlbs,y j·ε(k) ≤ ŷj(k + i|k) ≤ ubs,y j(k) + γubs,y j·ε(k),
j = 1, 2; i = Hw j, . . . , Hpv. ε(k) ≥ 0

(11)

In Equation (10), ‖·‖ represents the Euclidean norm, û and ŷ are the predictions of the
MVs and the CVs, respectively, and ∆û represents the future control moves on the MVs. û
and ŷ are parametrized based on the known information up to the current control instant k
and on ∆û terms [39]. Within the known information up to the current control instant k,
the DV predictions are included. The r terms are the reference trajectories on the CVs. The
MVs’ magnitude and moves are penalized over the control horizon in Equation (10), while
the CVs’ tracking errors are penalized on the prediction horizon. The suitable positive
semidefinite matricesR, S , and Q can weight the described terms. In Equation (11), lbdu,
ubdu, lbu, and ubu define the MVs constraints over the control horizon. The MVs’ constraints
are hard constraints, i.e., they can never be violated. On the other hand, two groups of CVs
constraints were included in the formulation: The first group is represented by the terms
lbh,y and ubh,y in Equation (11). These constraints are initially set as hard constraints, i.e.,
the related γ terms are equal to zero in Equation (11); then, based on the process conditions,
they can be converted to soft constraints (see below). These CV constraints refer to the
reservoir volume constraints associated with the minimum and maximum volumes (i.e.,
water shortage and water overflow). A second group is represented by the lbs,y and ubs,y
terms in Equation (11); these constraints are defined based on the process conditions and are
always soft constraints; these constraints are always tighter with respect to the first group.
Their relaxation is allowed through a slack variable ε. The slack variable ε is included in
the constraints (see Equation (11)) through suitable γ coefficients, while its introduction in
the cost function Equation (10) is performed through a positive coefficient ρ [54].
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In order to meet the specifications reported in Section 2.1, the downstream reservoir
volume (CV) was set with a greater priority with respect to the upstream reservoir volume
(CV); the γ coefficients related to the associated soft constraints in Equation (11) were used
for this purpose. In Equation (11), Hw j represents the first prediction instant where the
associated CV can be constrained; its definition is based on the obtained process model
considering the MV time delays. The decision variables were included in the ∆û and ε
terms. The QP problem was solved through the MATLAB quadprog solver [55]. At each
control instant k, the MPC Parameters Selector module of Figure 7 considers the upper MV
constraints provided by the SCADA system taking into account the Torricelli law (see
Section 2.3) for their potential modification.

At predetermined hours of the day (typically every six hours starting from midnight), the
MPC Parameters Selector module computes a long-range prediction of the reservoirs’ volume
up to the next prediction time instant. When exploiting a defined lower volume threshold for
each reservoir, a potential water shortage indication is given. This indication can be exploited
as smart alarm and for the setup of the MPC problem reported in Equations (10) and (11).
If a water shortage condition is predicted at the current control instant, none of the soft CVs
are considered in Equation (11), and all of the MVs’ weights are zeroed in Equation (10).
However, the lbh,y and ubh,y constraints are maintained in Equation (11). Furthermore, a
reference trajectory is assigned to the reservoirs’ volume—the upstream reservoir’s volume
tracks its hard lower constraint, while the downstream reservoir’s volume tracks its hard upper
constraint. In this way, the best action to fill the downstream reservoir is guaranteed through
the introduction of reference trajectories. If a water shortage condition is not predicted at the
current control instant, the MPC Parameters Selector module evaluates the DVs’ prediction
and, in particular, the prediction of the Qgall_Sar flow rate in order to check whether there
will be electric energy production on the prediction horizon. If no production is detected
and the downstream reservoir volume is lower than a defined threshold (max), the MPC
Parameters Selector module defines a zone control from the MPC formulation as shown in
Equations (10) and (11); the Q matrix weights are zeroed in Equation (10). In Equation (11),
lbh,y and ubh,y are considered to be hard constraints, while lbs,y and ubs,y are not. In this way,
an optimal solution can be sought in order to guarantee the transit of the only needed water
from the upstream reservoir to the downstream reservoir. On the other hand, if production is
detected, the lbs,y and ubs,y soft constraints are added, but the S matrices’ weights are zeroed
in Equation (10) by the MPC Parameters Selector module, in order to avoid minimizing the
regulation gate opening.

If the MPC module finds a solution (whether in cases of water shortage or not), the first
term of the computed control sequence û(k + j− 1|k)—i.e., û(k|k) = u(k)—is sent to the
plant. If the MPC module does not find a solution (i.e., infeasibility), a suitable optimization
flag is computed by the MPC module and provided to the MPC Parameters Selector module
(see Figure 7). The optimization flag reports the cause of the failure—the MPC formulation
needs to be adjusted, and a new MPC problem is solved to find a solution. If the current
volume of the upstream reservoir violates its ubs,y constraint—i.e., an overflow condition is
likely to occur for the upstream reservoir—and the downstream reservoir’s current volume
is no greater than its soft upper constraint, the hard upper constraint of the upstream
reservoir’s volume is set as soft. Furthermore, two conditions are distinguished, depending
on the violation of the soft lower constraint of the downstream reservoir level. If the
violation takes place, the same solution for the water shortage condition is adopted. If the
condition is not verified, the CVs’ constraints are not considered, and the upstream reservoir
volume tracks its soft lower constraint while the downstream reservoir volume tracks its
soft upper constraint. Furthermore, the MVs’ weights are not zeroed in Equation (10). In
this way, the best action to avoid wasted water is guaranteed through the introduction of
suitable reference trajectories.

If the second MPC attempt fails or the previous conditions are not satisfied, a heuristic
law is applied to adjust the MPC formulation in order to find a solution. The heuristic law
takes into account the current downstream reservoir volume and computes the desired
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MV target. This computation is performed by the MPC Parameters Selector module, which
suitably processes the constraints of the MV, taking into account the desired target. A range
(min, max) is defined for the downstream reservoir volume, represented by a lower and an
upper threshold. If the downstream reservoir’s volume is greater than a defined threshold
(max), a zero value is desired for the MV; the MPC Parameters Selector module suitably
processes the constraints of the MV, taking into account the desired target. Otherwise, if the
lower threshold is violated, the MV target must be equal to the allowed maximum value.
Finally, if the downstream reservoir’s volume is within the defined range, the following
equation is used:

utarget(k) = ubu(k)·
(

1− wV(k)−min
max−min

)
(12)

where min and max are the defined thresholds, ubu is the upper constraint of the MV (see
Equation (11)), and wV(k) is the current downstream reservoir volume obtained thanks to
the volume-level relationship reported in Equation (6).

Through the aforementioned procedural steps, the APC system can properly handle
the feasibility issues associated with the MPC optimization problem. Moreover, if the
optimizer does not find a solution on the first or second attempt, the proposed heuristic
law allows the APC system to efficiently control the process.

A set of smart alarms was designed in order to improve the reliability of the proposed
APC system. Smart alarms were computed and sent by the Bad Detection, Data Conditioning,
and DVs Prediction module and by the MPC module. Smart alarms computed by the Bad
Detection, Data Conditioning, and DVs Prediction module refer to the aspects reported in
Section 2.3—for example, a smart alarm on the detected missed compliance with respect to
the electric energy production plan. Examples of smart alarms sent by the MPC module
refer to the different checks described above, e.g., water overflow or shortage prediction.

To the best of the authors’ knowledge, the proposed APC system, which takes into
account bad data detection, local control loop malfunctions, and lack of efficiency flags used
in real time, represents an innovation in the literature on hydropower plants. Additional
novelties are represented by the proposed MPC Parameters Selector module reported in
Figure 7 and by the designed smart alarms.

2.8. Computational Framework and Field Implementation

The computational framework exploited for all of the project phases—excluding the
commissioning phase—was represented by a laptop computer with the following specifi-
cations: Intel(R) Core(TM) i8-3840QM CPU with 3 GHz HDD. A MATLAB environment
was used for data analysis, modelization, DV forecasting, and virtual environment simula-
tions [55]. The MATLAB Identification Toolbox, MATLAB Control System Toolbox, and
MATLAB Optimization Toolbox were exploited for process identification and controller
synthesis. The MATLAB functions for scatterplots were also exploited. Furthermore, a
MATLAB environment was also used for the project maintenance in order to analyze
the APC system’s performance and its key performance indicators (KPIs) [55]. For the
commissioning phase (i.e., field implementation), the architecture reported in Figure 6,
enriched with the schematic representation of Figure 7, was exploited.

3. Results and Discussion

The project phases reported in Figure 5 were implemented in order to target the APC
system commissioning at the real plant. The commissioning was executed in December
2019, and different upgrades of the controller were carried out during the project main-
tenance. The APC system obtained Industry 4.0 compliance certification, thanks to the
architecture reported in Figure 6 and the functional aspects depicted in Figure 7. Figure 8
depicts some pages of the graphical user interface (GUI) of the APC system. In the first
panel, a schematic representation of the plant is reported, together with the available pro-
cess measurements; note the regulation gate between the two reservoirs. In the second
panel, the APC system’s main variables are reported, together with their current values



Processes 2023, 11, 300 16 of 26

and the related constraints/parameters. Moreover, the flags that define the initial APC
status flag (Figure 7, APC status) can be noted; these flags refer to the overall status of the
APC application and to the Beikircher regulation gate (see the top-left side of Figure 8).
Furthermore, the electric energy production plan (red line) and the produced electric energy
are shown in a customized display.

Figure 8. Results: panels of the GUI of the APC system.

3.1. Data Analysis Results

As explained in Section 2.3, data analysis represents one of the key phases of the
present work. Significant data analysis results were obtained; in the following, three
remarkable examples of the data analysis results are reported. Analyzing the upstream
reservoir’s intake flow rate process variable (Qingr_C (m3/s)), unexpected behaviors were
observed. Figure 9 reports an example of this behavior (one day of data). For forecasting
purposes, the filtering procedures reported in Sections 2.3 and 2.6 were used, and a filtered
process variable was obtained using a window of N = 20 samples, i.e., 20 min (see
the red line in Figure 9). Analyzing the performance of the previous conduction of the
plant, represented by manual and semiautomatic control logics, abnormal behaviors of
the regulation gate’s flow rate control loop were observed. In Figure 10, two plots are
reported (one day of data): the first plot represents the flow rate setpoint (blue) and the
process variable (green) of the regulation gate, while the upstream reservoir level (red) is
depicted in the second plot. As can be noted, sometimes the control loop of the regulation
gate does not present reliable tracking performances. In fact, persistent deviation between
the setpoint and the process variable can be observed. Analyzing the upstream reservoir
level (red line) in Figure 10, and based on the theoretical analysis of the Torricelli law
reported in the previous sections, the cause of the abnormal behavior of the control loop
was deduced. Under the previous conduction, the Torricelli law was not used for real-time
conditioning of the MV upper constraint. This affected the performances of the control
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loop of the regulation gate, and it was not an optimal condition for running an APC system
at a higher control hierarchy level.

Figure 9. Data analysis results: upstream reservoir intake process variable and filtered process variable.

Figure 10. Data analysis results: Beikircher regulation gate control loop variables and upstream
reservoir level.

Analyzing the compliance of the real electric energy production with respect to the
electric energy production plan, some abnormal conditions were observed through data
analysis. One day of data are reported in Figure 11; the setpoint (red line) and the process
variable (blue line) of the electric power production are depicted, together with the planned
electric power (green line). As can be noted, the electric energy production plan is not
respected, because an anticipation of about 80 min is observed. As detailed in the previous
sections, reliable forecasting of the electric energy production is a fundamental requirement
for the APC system and for avoiding penalties. A smart alarm was introduced in the
APC system for the non-compliance with the electric energy production plan, and the data
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analysis reliability flag (see Sections 2.3 and 2.7) was exploited for the inhibition of the APC
system in this critical condition.

Figure 11. Data analysis results: electric energy production plan and real production.

3.2. Modelization, Forecasting of Measured DVs, and Model Mismatch Compensation Results

As previously described, the selection of the MPC strategy was a consequence of the
fact that the modelization, measured DV forecasting, and model mismatch compensation
results were remarkable. A significant example of the measured DVs’ forecasting perfor-
mances is reported in Figure 12, where the reliability of Equation (7) is illustrated, i.e.,
the achieved relationship between the downstream reservoir’s outlet flow rate and the
electric energy power. Two months of data are reported in two different plots: power–flow
rate pairs are represented in blue, while a yellow line depicts the obtained linear law. The
known terms of the linear law were neglected.

Figure 12. Measured DVs’ forecasting results: electric power production plan and downstream
reservoir outlet flow rate (two months of data).
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An example of the cause of the introduction of the time delays in Equation (4) is
reported in Figure 13, where a step test experiment is presented. The figure shows the
delayed effect of the gate opening (QBeik term in Equation (4)) on the downstream reservoir
level. The downstream reservoir level is shown in the first plot, while the second plot
reports the downstream reservoir’s inlet–outlet flow rates: the green line is the flow rate
at the Beikircher gate (QBeik), the light blue is the intake from the sand trap (Qdissab), and
the black and red lines represent the scheduled water flow request from the hydroelectric
plant and its effective flow rate value (Qgall_Sar), respectively. In the selected period, only
the inlet flow rate controlled by the regulation gate was varied, while the others were
largely constant. The variation was performed at about 10:41, causing a slope change on
the downstream reservoir level after about 43 min, at 11:24.

Figure 13. Modelization results: time delay between the Beikircher regulation gate’s flow rate and
the downstream reservoir level.

Figures 14 and 15 show the motivation behind the adopted model mismatch compen-
sation strategy. Here, the model performances on the upstream and downstream reservoirs’
levels are depicted for two different days. Blue lines represent the process variables, while
orange lines represent the model results. The first plot of the figures represents the model’s
performances without model mismatch compensation; as can be noted, the model diverges.
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In the second plot, a model mismatch compensation strategy is added. The v vector term’s
computation (see Section 2.6) is reported through a dark yellow line, and the benefits of the
modification can be observed. Finally, Figure 16 reports an example of the performance
of the upstream reservoir level model. The blue line indicates the field process variable,
while the red line represents the model’s performance exploiting the available data on
input–output flow rates. The one-hour-ahead prediction (exploiting the measured DVs’
forecasting) computed at 15:18 on the selected day is depicted by an orange line; as can be
observed, the behaviors of the orange and red lines are similar.

Figure 14. Model mismatch compensation results: upstream reservoir level with and without model
mismatch compensation.

Figure 15. Model mismatch compensation results: downstream reservoir level with and without
model mismatch compensation.
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Figure 16. Modelization results: upstream reservoir level (blue line), predicted level with available
data on input–output flow rates (red line), and one-hour-ahead prediction (orange line).

3.3. Virtual Environment Simulation Results

Before the installation of the APC system at the real plant, tailored virtual environment
simulations were performed in order to test the developed controller. Figure 17 reports an
example of one-day simulation results. A model mismatch between the simulated plant
and the internal model of the controller was added in order to effectively test all of the
proposed APC system, including the model mismatch compensation aspect. In the first plot
of Figure 17, the measured disturbances are reported. The upstream reservoir’s subsidiary
intakes are reported in green, the upstream reservoir’s intake is depicted in light blue,
and the downstream reservoir’s sand trap is represented by a blue line. Furthermore, the
current data of the downstream reservoir’s outlet flow rate are represented in red, and the
values assumed for it by the conversion of the production plan are depicted by a black
line. The second and the third plots of Figure 17 refer to the upstream and downstream
reservoirs, respectively. Black lines represent the hard constraints, cyan lines represent the
soft constraints, and light blue lines represent the real level, while orange lines represent
the modeled level. When infeasibility is detected, the orange lines are replaced by red lines
with a greater width. The dark yellow line represents the values computed for the v term
of Equation (5), while the purple horizontal lines represent the water shortage prediction
indication. The Beikircher regulation gate’s flow rate setpoint (MV) is represented by a
purple line.

During the simulated day, two electric energy production periods are present (see
the black and red lines in the first plot of Figure 17). In the first part of the simulation, no
water shortage condition was predicted and no production requests were predicted; the
soft constraints were not present in the MPC formulation (note the absence of cyan lines
in the first part of the reservoirs plots in Figure 17). The controller did not perform any
move on the MV, leaving it at 0 m3/s and guaranteeing an acceptable behavior at the level
of the two reservoirs. At about 05:50, the production request started on the prediction
horizon. In this condition, without any indication of water shortage, soft constraints were
present in the MPC formulation (note the presence of cyan lines in the middle part of the
reservoir plots in Figure 17). The controller started to move the MV when, at about 08:00, it
predicted a violation of the downstream reservoir level’s soft constraint. The alternation
of non-productive and productive periods repeated between 12:00 and 16:00. From about
16:45 to about 20:00, a water shortage condition was detected. According to the rules
reported in Section 2.7, the MPC formulation was adapted in order to send as much water
as possible to the downstream reservoir. Furthermore, at about 17:00, the infeasibility
condition was verified and the heuristic law ensured reliable behavior of the controller.
When the water shortage condition disappeared, the MPC formulation was updated and
the MV was moved to 0 m3/s in order to avoid a useless anticipated transit of the water
from the upstream reservoir to the downstream reservoir.
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Figure 17. Virtual environment results: measured disturbances, upstream reservoir, and downstream reservoir.

3.4. Field Results

Using the developed field architecture, the field results were suitably stored in order
to allow an accurate evaluation of the APC system’s performance. An example of the field
performance of the developed APC system is reported in Figure 18. In the first plot, the
electric energy production plan is depicted (green line), together with the setpoint (red line)
and the process variable (blue line). The upstream and downstream reservoirs’ levels are
depicted by blue lines in the second and third plots, together with their lower and upper
soft constraints (red lines). Finally, the Beikircher regulation gate’s flow rate setpoint and
process variable are reported in Figure 18 (red line and blue line, respectively), together
with the upper and lower hard constraints (red lines).
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Figure 18. Field results: electric energy production, upstream reservoir, downstream reservoir, and
Beikircher regulation gate.
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Two production periods were present on the considered day, and the electric energy
production plan was always respected. The upstream reservoir’s level was always within
the defined constraints, while the downstream reservoir’s level violated its lower constraint
under two conditions of the day. However, the maximum observed violation was less
than 2% of the difference between the upper and the lower constraints, i.e., a negligible
violation. It should be noted that the regulation gate’s flow rate setpoint was not increased
in advance in the first production period, because the APC system predicted that the water
volume already present in the downstream reservoir was adequate; on the other hand, in
the second production period, the regulation gate’s setpoint was increased in advance due
to the lower starting point of the downstream reservoir level.

4. Conclusions

An APC system based on an MPC strategy for hydroelectric power plants is proposed
in the present paper. A hydroelectric power plant located in Italy was selected as a case
study. Two reservoirs (connected through a regulation gate) and a set of turbines for
energy production constituted the main elements of the process. Insights into the project
phases—i.e., data analysis, modelization, controller design, and field implementation—
were provided. In particular, an assessment on data selection, acquisition, storage and
analysis was presented, together with a feasibility study on MPC applications for con-
trolling hydropower plants. Furthermore, two modules were introduced in the classic
MPC architecture in order to enhance the soundness and the reliability of the proposed
solution. These modules cover different functions, e.g., real-time bad data detection and
real-time definition of the controller parameters based on the current and predicted process
conditions, together with the computation of smart alarms. The proposed APC system
represents a reliable control tool, as proven by the high performances and the remarkable
service factor obtained on the real plant. The service factor is the percentage of time for
which the APC system is fully in service. The service factor after about three years from
commissioning is higher than 90%. The results of this KPI prove the robustness of the
proposed solution in terms of performances in real-time control.

Future works will focus on the further improvement of the modelization and controller
synthesis phases. Furthermore, the studies will be aimed at obtaining high-level supervisors
in order to further enhance the plant’s benefits.
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