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Abstract: What is presented in this research is an intelligent system for detecting the volume percent-
age of three-phase fluids passing through oil pipes. The structure of the detection system consists of
an X-ray tube, a Pyrex galss pipe, and two sodium iodide detectors. A three-phase fluid of water,
gas, and oil has been simulated inside the pipe in two flow regimes, annular and stratified. Different
volume percentages from 10 to 80% are considered for each phase. After producing and emitting
X-rays from the source and passing through the pipe containing a three-phase fluid, the intensity
of photons is recorded by two detectors. The simulation is introduced by a Monte Carlo N-Particle
(MCNP) code. After the implementation of all flow regimes in different volume percentages, the
signals recorded by the detectors were recorded and labeled. Three frequency characteristics and five
wavelet transform characteristics were extracted from the received signals of each detector, which
were collected in a total of 16 characteristics from each test. The feature selection system based on
the particle swarm optimization (PSO) algorithm was applied to determine the best combination of
extracted features. The result was the introduction of seven features as the best features to determine
volume percentages. The introduced characteristics were considered as the input of a Multilayer
Perceptron (MLP) neural network, whose structure had seven input neurons (selected characteris-
tics) and two output neurons (volume percentage of gas and water). The highest error obtained in
determining volume percentages was equal to 0.13 as MSE, a low error compared with previous
works. Using the PSO algorithm to select the most optimal features, the current research’s accuracy
in determining volume percentages has significantly increased.

Keywords: volume fraction; PSO; MLP neural network; feature extraction; wavelet; frequency

domain; artificial intelligence

1. Introduction

Among the topics that have led to many studies by researchers, determining the
volume percentage of flows that pass-through oil and gas transmission lines have attracted
enormous interest. Photon attenuation techniques, capacitive tomography, resistance to-
mography, X-rays, and so on are a few of the various noninvasive methods that may be
used to assess these characteristics. Recent years have seen many studies utilizing the
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photon attenuation approach to identify these factors [1-14]. Using the MCNP algorithm,
the authors of reference [1] analyzed three distinct flow regimes: stratified, homogeneous,
and annular, in varying volume fractions. The researchers employed two radioisotope
sources and three Nal detectors in the investigation to calculate volume fractions and
classify flow regimes. To determine the different flow regimes, a neural network was
developed. Three different networks were developed to calculate the volume fractions of
oil-water—gas three-phase flow. Another research recommended a different methodology
for calculating volume fractions inside a hierarchical framework. A Nal detector located ad-
jacent to a cesium-137 source recorded the spectrum of energy emitted by the backscattered
gamma rays in this setup. In [2], an MLP neural network was utilized to accurately estimate
volume fractions with an error of 6.47 percent. Feature extraction from detected signals
has been the focus of many studies in recent years. Researchers such as Sattari et al. [3]
have conducted extensive studies to incorporate the most useful features in the temporal
domain. An experimental setup including a cesium-137 source, two Nal detectors, and a
Pyrex glass was used to determine flow type and volume fractions. After data collection,
time-domain characteristics were extracted to aid in data interpretation. An MLP neural
network was then used to identify the flow regime type and estimate volume percentages
accurately. A single detector was utilized to calculate volume fractions and classify flow
regimes in the study [4], which relied on time-domain characteristics and a GMDH neural
network. Roshani et al. used the dual-energy approach to investigate three-phase flows.
They used 241Am and 137Cs sources with Nal detectors for their detection system and
trained the neural network using data from two detectors that captured counts of 241Am
and 137Cs and were able to estimate volume percentages with an MRE% of less than
5.68 [5]. Several characteristics in the time [6] and frequency [7] domains were presented by
Hanus et al. to identify the kind of flow regimes in two-phase flows, and the most useful
features for doing so were then determined. Subsequent studies attempted to identify
the flow regimes represented by these features and other neural networks [8]. Hosseini
et al. used the fast Fourier transform (FFT) to transform signals from the time domain
to the frequency domain, from which time domain features were retrieved. This set of
features allowed them to recognize all flow regimes and forecast volume percentages in
two-phase flows with pleasant accuracy [9]. X-ray tubes have several benefits, including
being portable, easy to move about, emitting high-intensity radiation, having an on/off
switch (crucial for the safety of the persons using the machines), and consistently emitting
radiation. Because of the mentioned advantages, X-ray tubes are now often used in place
of radioisotopes [15-18]. X-ray densitometry was presented in [15], where two-phase
flow characteristics were measured with an X-ray tube and multiple detectors. The study
utilized one X-ray tube and one Nal detector [16], and the stratified and annular flows were
modeled. The accuracy of the suggested technique demonstrated the feasibility of using
X-ray tubes and ANN to identify multiphase flow parameters. Volume percentages and
types of flow regimes in three-phase flows could be measured using the structure presented
in the research [17], which consists of an X-ray tube and two detectors. Both detectors
recorded photon energy spectra that were analyzed as the GMDH neural network’s inputs
for calculating the above parameters. Except for one instance, the flow regime was accu-
rately identified, and predictions for volume percentages had a root-mean-square error
(RMSE) of less than 3.1. Three-phase flow volume fractions could be calculated using the
approach provided in reference [18], which involves modeling two flow regimes, stratified
and annular, at varying volume fractions. An X-ray tube and a sodium iodide detector
form the basis of the design under consideration. The used neural network was GMDH
type, and its prediction error was less than 6.69%. This study employs X-ray tubes, two Nal
detectors, frequency-domain, wavelet features extraction techniques, PSO-based feature
selection, and a multilayer perceptron (MLP) neural network to improve the precision of
measuring volume fractions in oil-water—gas three-phase flows. The proposed manner can
be seen in Figure 1. The following is a summary of recent research’s major contributions:
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1. Extraction of frequency and wavelet properties for three-phase fluid volume percent-
ages;

2. Introducing effective features by means of the feature selection system based on the
PSO algorithm;

3. A notable improvement in accuracy in calculating volume percentages;

4. Choosing the beneficial properties to use as the neural network’s inputs will reduce
the number of computations that must be performed on the system.

Setup simulation
using MCNP-X code

©

Volume Methodical

percentage Feature

calculation WO rkﬂ ow extraction

®

Signal Recording

@

Feature
selection

Figure 1. Methodical workflow of the proposed manner.

2. Materials and Methods
2.1. Radiation-Based System

In this study, the MCNP-X algorithm was used to simulate a detection system made up
of an X-ray tube, a Pyrex glass pipe, and two Nal detectors. A pair of detectors, one directly
at the source and the other at an angle of 15 degrees from it, were set 20 cm away from
the pipe. Different volumes have been simulated in a Pyrex glass. In Figure 2, the basic
layout of the proposed system can be seen. From 10 to 80%, with a 10% step, the two most
prevalent flow regimes are modeled, as seen in Figure 3. A total of 72 simulations were
performed; thirty-six different volume fractions were implemented for each flow pattern.
An ordinary X-ray tube was put to work in this investigation. The electron source and the
tungsten/rubidium target are housed in X-ray tubes, serving as the cathode and anode,
respectively. The complete simulation of an X-ray tube using the MCNPX code is time-
consuming since it involves the reaction of an electron emitted from the cathode with the
anode, which results in X-ray radiation. This investigation reconsidered a cathode-anode
assembly for an X-ray tube with an added photon source due to the lower computational
requirements of the MCNPX algorithm for tracking photons than electrons. Hernandez
et al.’s open-source software program TASMIC was used in this study [19]. It is worth
noting that several studies, both theoretical and MCNP, have been undertaken into the
generation of X-ray spectra. Hernandez et al. generated an X-ray spectrum for various tube
voltages using the MCNPX program. The input of the MCNPX file was encoded with the
obtained X-ray spectrum using the TASMIC package at 150 kV as the tube voltage using the
SI and SP selections in the SDEF card to determine the source’s energy. The aforementioned
photon source was placed within a cylindrical shielding device for an X-ray tube. The
output window is an open area on the shield’s outer layer that allows the X-ray photons
that have been created in a favorable environment to emit. For this examination, low-energy
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photons were blocked by positioning a 2.5 mm thick aluminum filter in front of the X-ray
tube’s output window. The recorded X-ray spectra in the detectors are shown in Figure 4.

Detectors

X-ray beam

[ X

Anode

Cathode

Pyrex glass pipe

Figure 2. Proposed detection system structure.

B Gas phase
B Water phase

B Oil phase

Annular Stratified

Figure 3. Simulated flow regimes.
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Figure 4. The signals recorded by the (a) first and (b) second detectors correspond to simulated flow
regimes in different volume percentages.

2.2. Feature Extraction
2.2.1. Frequency Domain

Data reduction, data elimination, training process simplification, and generalization
are all possible outcomes of feature extraction, which is conducted on the raw data collected
during measurement. Because of this, a better understanding of the data will be formed. In
cases when there is an abundance of data but not enough storage space, feature extraction
techniques are used to reduce the dimensions while keeping the data’s attributes intact. It
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is challenging to analyze massive amounts of data, and the created detection system may
not work with the data at hand, or it may only work with a subset of the data. Several
feature extraction methods exist to minimize the dimensionality of data, such as feature
extraction in the time domain, frequency domain, time-frequency domain, wavelet, and
even some novel approaches.

For this study, the received signals are converted into the frequency domain using the
FTT (Equation (1) [20]) to perform feature extraction in the frequency domain. After that,
the signals’ first, second, and third dominating frequencies were extracted.

Y() = Y x())ald V6D (1)
J=1

In this case, X is the Fourier transform of Y(k), and w, = e(=27)/1 ig one of n roots of
unity. Figure 5 displays the frequency domain representations of the received signals for
the aforementioned flow regimes.
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Figure 5. Transmitted signals to the frequency domain of (a) the first detector and (b) the
second detector.
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2.2.2. Wavelet

In order to investigate data with properties that vary with scale, discrete wavelet
transforms (DWT) are helpful. Changes in signal frequency, duration, or pattern may be
present. The fundamental goal in creating wavelet transforms is to solve problems that the
Fourier transform could not provide a solution for it. A wavelet, as opposed to a sine wave,
is a fast-decomposing oscillation. The ability to represent data at several scales makes
wavelets useful. Various wavelets may be used in various contexts. As stated in [21,22], the
DWT is calculated by applying a low-pass filter to the signal with an impulse response of g
and then convolving the resulting filters.

yln) = (xx )] = Y, x[klg[n K]

In addition, a second high-pass filter (h) works in tandem to further break down the
signal. Figure 6 provides a detailed depiction of a signal’s degeneration. The approach
yields both details coefficients (as would be the case with a high-pass filter) and approx-
imations (as would be the case with a low-pass filter). At the conclusion of the filter is a
two-stage downsampler. The downsampled output of the low-pass filter provides approxi-
mation (a), while the high-pass filter’s low-pass samplers give detail (d). At each successive
level, the approximation component may be broken down further into its constituent
parts. At this time, the analysis in this research has progressed into the fourth stage. For
a given mother wavelet (t), the wavelet operation selects a unique set of child wavelet
coefficients. The mother wavelet is scaled and shifted by powers of two in the discrete
wavelet transform [21,22]:
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Figure 6. Detail and approximation signals extracted by wavelet transform.

Scale is indicated by j, and shift by k. The wavelet coefficients obtained from x(t) may
be regarded as the projection of x(f) onto a wavelet, given that x(f) represents a 2N-length
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signal. The following conditions must be met for a member of the aforementioned discrete
wavelet family to be considered a child wavelet [21,22]:

Yik = /j:o x(f)\/lj'l’(t_;y)df 4)

Then, j is a constant, and 7j is derived only in terms of a function of k. Sampled
at points 1, 2j, 2j,..., 2N, 7j is calculated by convolving x(t) with the mother wavelet

signal, h(t) = ﬁlp (;—f) Discrete wavelet coefficients at the jth level are specified here.

Therefore, for a given mother wavelet ¢(t), a perfect match between the detail coefficients
of the filter bank and a wavelet coefficient of a discrete collection of child wavelets is
guaranteed by appropriately selecting h[n] and g[n] ¢(t). The average a4 and d1-d4
features were calculated from the studied signals and used in the subsequent steps. As
already indicated, this research makes use of two detectors, each of which has eight
features retrieved from it, including wavelet and frequency domain features, and these
characteristics have been used in previous research. However, the big gap in the literature
is that no suitable method has been provided to determine the most optimal ones. In this
research, we have attempted to introduce the most optimal combination using a PSO-based
characteristic selection method [23-26].

2.3. Feature Selection

Checking out the PSO algorithm is strongly recommended for those studying swarm
intelligence [27]. The PSO method has quickly become the gold standard for solving feature
selection issues due to its efficiency and ease of use. This approach mimics the communal
living habits of fish and birds seen in the environment. The algorithm will need input from
everyone in the population to find a solution to the issue. A whole population, indicated
by the word “particle,” is uniformly dispersed over the optimized function’s search space.
Each particle’s location is evaluated in relation to the objective.

Then, a future direction is chosen by combining knowledge of the current position, the
previous ideal location, and the most promising accessible particles. All particle locations
will be adjusted before the program continues. This process may be repeated as many as
necessary to obtain the desired result. A group of particles striving for the best possible
value of a function is analogous to a flock of birds flying around in search of food. The
core idea of this method may be expressed as follows: at each given moment, particles
relocate to the best accessible place in the search space, taking into account their past
observations and the positions of their neighbors. PSO begins with a completely random
beginning population, as do other evolutionary algorithms. The first population consists of
N randomly selected particles. Vectorial notation is used to describe both particle locations
and velocities. Once the value of the cost function has been determined, the particles
begin exploring the problem space in quest of a better resting place. Each particle needs
a dual-memory system to enable searching. There is just one place to keep track of the
best possible present and historical locations for each particle. The particles utilize this
data to determine what they should do next. The particles’ velocities and positions are
fine-tuned during each iteration to obtain the best possible global and global-average
solutions. At each iteration, the particles’ velocities and positions are fine-tuned to achieve
the most significant possible absolute and local solutions [28]. Each particle in PSO stands
in for a specific answer. Particle I is sought after with the help of two vectors at each
iteration: its position, vector X, is X! = [X!,XL,..., X!, ] and its velocity, vector V, is V! =
[V}, Vh,..., V5] The best positions (or solutions) of both the individual particle (denoted
by pbesti = [pbestil, pbesti2,..., pbestiD]) and the population as a whole (denoted by gbest
= [gbestl, gbest2,..., gbestD]) are used to update the positions and velocities of the particles
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as they move. Using the following formulae, the velocity and location of the ith particle are
adjusted in accordance with pbest and gbest at the subsequent iteration, t + 1.

VI = w x Vi + 1 x 1y x (pbestly — XI;) 4+ o x rp x (gbest!; — X;) (5)

1 1
X=Xl + Vi ©)

where t and w stand for the iteration weight and number, respectively, the acceleration
constants are ¢; and ¢, (the cognitive and social parameters, respectively), and r and 7
are evenly distributed and lie between [0, 1]. Defining the cost function is one of the first
steps in developing optimization systems. In this research, the mean square error (MSE)
of a neural network consisting of one hidden layer and 10 neurons is used as the cost
function of the PSO system. The first step involves feeding the network a non-sequential
subset of the data’s characteristics. Then, the conventional optimization approach is used
to progressively improve the inputs toward ideal values in an effort to minimize the cost
function. The PSO system initially tries to foretell the target using a characteristic using an
iterative process, then increases the number of inputs as needed and eventually implements
the system for all modes with varying inputs.

2.4. MLP Neural Network

A neuron is a type of computer unit found in the brain; these units include dendrites
that serve as an extension for information transmission. When a neuron’s processing steps
are complete, the axon will send the data to the rest of the nervous system. Even if the
processes indicated occur in the physiological and biochemical realms, the mathematical
modeling performed by the researchers has changed the nature of the issue. Many scientists
are interested in using artificial neural networks and other mathematically astute scientific
techniques in various scientific disciplines [29-53].

The MLP neural network is one of the most popular models. This network has an
input layer, a hidden layer, and an output layer. It is possible for there to be several hidden
layers. Mathematical operations, known as activation functions, are carried out in the
hidden layers. The nature and degree of non-linearity of the available data determine
the number of these layers, the number of neurons in the hidden layer, and the type of
activation function. The results of neurons in their mathematical form are as follows [54,55]:

m=) L xwitb =12 m 7)
u .

uj = f(Zi:1 Xiwij + b) j=L2.m ®)

output = Z{lzl(unwn) +b 9)

where x stands for inputs. Weight “W,” bias “b,” and activation function “f” all stand for
different things in this formula. The number of neurons in the hidden layers is denoted by
j, where i is the input value. Over- and under-training could be avoided by splitting the
available data into training, validation, and testing sets. Most information required to train
a neural network consists of examples and patterns. The phrase “validation data” is often
used to refer to a subset of the dataset that is utilized to check the efficacy of the training
procedure. In order to guarantee a precise performance, the test data are applied to the
neural network as a last step in the training process. If a neural network correctly works
against the mentioned dataset, it will be robust to operate in actual conditions. In this study,
50 samples were used for training, eleven for validating, and eleven for testing. The research
presented here utilized the MATLAB 2018b software to accomplish the tasks of extracting
the aforementioned features, implementing i PSO method, and designing the MLP neural
network. In MATLAB software, there are many different toolboxes that can be used for
training neural networks. However, in the process of designing this network, for more
freedom of action, no pre-designed toolboxes were used, and all steps of neural network
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training were programmed. It is essential to mention that the preset function of newff,
which is accessible within MATLAB software, was utilized in order to train the network.

3. Results

The use of the PSO method has many applications in many fields of science [54-59].
As mentioned in the previous steps, eight features are extracted from the received signals
from two detectors, and 16 are available. These characteristics have been applied to the PSO
algorithm to determine the best combination of these characteristics. First, one characteristic
is applied as an input to the PSO algorithm to determine how many characteristics are
sufficient to determine volume percentages. Then the number of inputs increases in order,
and in each case, the PSO algorithm is used to introduce the best combination. Finally, it
was found that by choosing seven characteristics out of 16, the value of the cost function
reaches the lowest value. Figure 7 clearly shows the value of the cost function in relation to
the number of inputs. By examining the best case of selecting seven characteristics out of 16,
it was found that the characteristics of Mean{a4}, Mean{d4}, Mean{d2}, Mean{d1} extracted
from the first detector and Mean{d4}, Mean{d3}, and Mean{d2} extracted from the second
detector were selected as the best combination. As it is known, the frequency characteristics
have failed in competition with the wavelet transform characteristics, and only the wavelet
transform characteristics have been chosen to determine the volume percentages. These
features were defined as the inputs of an MLP neural network. By implementing different
MLP neural networks that differed in the number of hidden layers, the number of hidden
neurons, and the type of activation function, it was found that a structure with three hidden
layers, where the number of neurons in the hidden layers is 20, ten and five was able
to predict the volume percentages with very high accuracy. It should be noted that the
implemented structure has seven neurons in the input layer and two neurons in the output
layer, which was able to predict the volume percentage of gas and water. Additionally, the
activation function in the hidden layers was “Tansig”, and in the input and output layers,
it was a linear function. The number of epochs in neural network implementation was 450.
The designed network structure can be seen in Figure 8.

80 C @ T T T T T T T T T T ]
60 1
(e
.S
o
g 40 = d
L: Number of features=7
8 Cost function=14.36
© N
20 r
O | | | | | | |

1 23 45 6 7 8 910111213141516
Number of feature

Figure 7. The value of the cost function is calculated by the PSO algorithm in terms of the number
of features.



Processes 2023, 11, 236 11 of 16

HIDDEN LAYER 1

INPUT HIDDEN LAYER 2

Mean{a4} (detector 1)

Mean{da} (detector 1)

\w' ///\\\\\);
N1 ) \\ o

‘}7/"[’,",\ \‘\‘\ \_,A\‘," 7 OUTPUT
) o SR N O
Mean{ds} (detector 1) wﬁ"/ﬂ;{{/@‘@{f{\\\@z{ &8 »@ %\‘3’,/
SRR AN AN
KRNSO e
%‘:ﬁ"é\’%’&@’é”"& >‘£:‘?¢‘;\‘) >“,\'\:¢‘:01“{// @ i .—> Gas Volume Fraction
Mean{di} (detector 1) @%:«‘;\.\)\%%é@ < :;":Q}:\g} @Q}g}é\ggfé\ @ ’.(
BRI\ NHQOMSK O XK .
/::.@%‘/@".0 K ;‘9}‘ /’%@(\,’:“\{ } Water Volume Fraction

"9»,0‘; "\. ‘, /"'\ £/ A
’!‘v@"&’( "\?Q KA AR Ns RSN
Mean{d4} (detector 2) e \%’%&‘?&“" @\‘l;;‘{’/}’f%’?“:{“\w"ﬁ&“\; @
N DN
’s:«“\\@ﬁ,;,,;&&\

VI i
//’ //;,w‘ \\\

)'(" A 92
4”A é »“ K5

X\

V

Mean {d3} (detector 2) ==

Mean{d2} (detector 2)

Figure 8. The implemented neural network structure to determine the volumetric percentages of gas
and water.

Mean squared error (MSE) and root-mean-square error (RMSE) were two error mea-
sures that were calculated to show the high accuracy of the designed neural network
(Equations (10) and (11)). The highest calculated MSE and RMSE in the prediction of
volume percentages were equal to 0.13 and 0.36, respectively, which is a very low error
value. Fitting and regression diagrams have been used to graphically show the designed
neural network’s high accuracy. These diagrams are shown for both network outputs and
for all three data sets of training, validation, and testing in Figures 9 and 10. In fitting
figures, the output of the neural network is shown with a purple line, and the target output
is shown with a black dashed line. In the regression diagram, the stars represent the
network’s output, and the line represents the target output. As this figure shows, these two
coincide with each other, which shows the high accuracy of the designed neural network.
The accuracy of the proposed system is compared to earlier studies in Table 1. The high
accuracy achieved in this research is due to the use of valuable features in neural network
training, which is also due to the use of the PSO algorithm as a feature selection system.
The extraction of different features, use of different feature selection algorithms, and im-
plementation of different types of neural networks can be discussed and investigated,
which requires the special attention of researchers in this field. It is also predicted that the
method presented in this research can be effective in improving the performance of many
engineering fields [60-62].

yN (X;(Exp) — X]'(Pred))2

E===
MS >

(10)

£ (X;(Exp) — X;(Pred))?

RMSE =
MS N

(11)

where N is the number of data, “X (Exp)” and “X (Pred)” stands for the experimental and
predicted (ANN) values, respectively.
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Table 1. A comparison of the suggested detection system’s precision with earlier research.
. Type of . .
Ref Extracted Features Feature Selection Neural Maximum Maximum
Method MSE RMSE
Network
[2] No feature extraction Lack of f.eature MLP 2.56 1.6
selection
3] Time features Lack of feature GMDH 1.24 111
selection
[4] Time features Lack of ffeature MLP 0.21 0.46
selection
[9] Frequency features Lack of f.eature MLP 0.67 0.82
selection
[10] Lack of feature extraction Lack of fgature GMDH 7.34 2.71
selection
Full energy peak
(transmission count), photon
counts of Compton edge in Lack of feature
(1] the transmission detector, and selection MLP 1.08 1.04
total count in the scattering
detector
[Current study] Frequency and wavelet PSO-based feature MLP 013 0.36

features selection
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4. Conclusions

Optimizing the system and improving the proficiency of the oil industry can be
attained by determining the volume percentage of each condensate phase that passes
through the oil pipe. As a result, developing and implementing a system to calculate
volume percentages can be helpful in solving the problems of the oil industry. In this
research, we sought to investigate the impact of a PSO-based feature selection system
on increasing the accuracy of predicting volume fractions. The MCNP code was used to
simulate the detection system’s architecture, which included an X-ray tube, a Pyrex glass,
and two Nal detectors. Two flow regimes were simulated in different volume percentages,
and eight characteristics were extracted from the signals received from each detector,
consisting of three frequency characteristics and five wavelet transform characteristics.
The extracted characteristics were applied to the PSO algorithm to determine the best
combination. Seven characteristics were introduced as the best combination by the PSO
algorithm and were considered as the inputs of the MLP neural network. The designed
neural network had two outputs that were responsible for determining the volumetric
percentage of gas and water. Obviously, the volume percentage of the third phase can
be easily calculated by having the volume percentage of the two phases. The maximum
MSE value calculated to determine the volume percentages were equal to 0.13. This high
accuracy is due to the use of suitable features as neural network inputs selected by the
PSO algorithm. In future research, researchers can investigate different characteristics
of received signals, using different feature selection methods, and examining different
neural networks.
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