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Abstract: A path following control strategy for a four-wheel-independent-drive electrical vehicle
(4WID-EV) based on backstepping and model predictive control is presented, which can ensure the
accuracy of path following and maintain vehicle stability simultaneously. Firstly, a 2-DOF vehicle
dynamic model and a path following error model are built and the desired yaw rate is obtained
through backstepping. Then, a model predictive controller is adopted to track the desired yaw rate
and obtain the optimal front wheel steering and external yaw moment. Meanwhile, an optimal torque
distribution algorithm is carried out to allocate it to each tire. Finally, the effectiveness and superiority
of the strategy is validated via CarSim–Simulink joint simulation. Results show that the strategy has
higher following accuracy, smaller sideslip angle, and better yaw rate tracking.

Keywords: direct yaw control; active front steering; model predictive control; backstepping; 4WID
electrical vehicle

1. Introduction

Autonomous vehicles [1], also known as unmanned vehicles, or intelligent vehicles
are a major part of outdoor mobile robots in transportation. With sensing, signal processing,
communicating and computer technologies, autonomous vehicles can identify the vehicle’s
situation and status by combining vision, radar, GPS, lidar, odometer, magnetic compass,
and ultrasonic and on-board sensors. Then, it makes an analysis and judgment [2] according
to the information from the road, vehicle position, traffic, and obstacles. Finally, the main
controller receives the control request and controls the vehicle’s steering and speed.

In recent decades, much research has been undertaken on a type of autonomous vehicle
powered by four in-wheel-motors: the four-wheel-independent-drive electrical vehicle
(4WID-EV). The advantage of 4WID-EV [3,4] is that its driving torque can be controlled
independently. Path following can usually be designed based on a kinematic or dynamic
model. Path following algorithms based on kinematics include pure pursuit, Stanley, and
rear wheel feedback. In these algorithms, the steering angle is calculated via controlling
the errors of heading angle and lateral offset. However, these algorithms are only suitable
for the driving conditions that ignore vehicle dynamics. In recent years, some improved
algorithms based on a kinematic model combing fuzzy control, adaptive control, or particle
swarm optimization are proposed [5,6]. However, the reliability and robustness of the
controller will be reduced if we consider complex driving conditions. Therefore, we need to
introduce algorithms based on dynamic models. The control algorithms based on vehicle
dynamic models mainly include linear quadratic regulator (LQR), sliding mode control,
model predictive control (MPC), and active disturbance rejection control. Simulations
with LQR combined with feedforward control or adaptive preview control [7,8] show
the efficiency and reliability of the proposed controllers. An automatic path-tracking
controller of a four-wheel steering vehicle was designed on basis of the sliding mode control
theory [9,10]. A controller based on nonsingular terminal sliding and active disturbance
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rejection control performs well in different driving conditions [11]. Several studies have
applied MPC into accurate path following. For instance, a learning-based nonlinear MPC
algorithm, which was based on a simple vehicle model and a learned disturbance model,
was introduced to achieve efficient path tracking in dangerous off-road terrains through
learning [12]. However, these studies are focused on conventional vehicles. For path
following of 4WID-EV, the hierarchical control structure is often adopted, which includes
two controllers, i.e., upper and lower controllers. The upper controller is commonly used to
obtain the steering angle and additional yaw moment. There are different control strategies
applied to the upper controller, especially the model-based control method, including
LQR, MPC, SMC, Hamilton energy function, and linear matrix inequality (LMI). In [13],
an adaptive LQR controller for 4WIS-4WID EV is proposed, which automatically adjusts
the weight matrices Q and R adapting to vehicle speed, adhesion coefficient, and phase
plane. Taking the actuator saturation into account, Chen et al. [14] present a simultaneous
path following and lateral stability control method for a 4WD-4WS autonomous electric
vehicle. The designed upper controller based on the Hamilton energy function achieves the
stability control of the vehicle. In the study by Liang et al. [15], a yaw rate tracking-based
path following controller for 4WIS-4WID EV was designed using linear matrix inequality
theory. Then, the generalized tracking forces are calculated by the upper controller. It
is worth mentioning that various MPC theories have been adopted by researchers on
path following for 4WID-EV. In [16–19], these control strategies associated with MPC are
presented, including the sliding mode prediction control strategy, the robust MPC with
the finite time horizon, the MPC with two sliding surfaces, and MPC combined with SMC.
Among various control techniques, MPC has numerous benefits, such as consideration of
complex control goals, simple control policy for complex systems, and the optimal solution
obtained in receding horizon. Therefore, the MPC control strategy is adopted in our study.
As for the lower controller, there are three different torque distribution methods, including
the average distribution, tire-dynamic-load distribution, and optimal distribution [20].

However, most literature about path following focuses on guaranteeing tracking
accuracy. In path following, especially when the vehicle passes at high speed through a
bend with large curvature, it is prone to sideslipping. Thus, we must design a control
strategy that takes into account both tracking accuracy and lateral stability. In this paper,
we also adopt the control strategy of hierarchical structure. In the upper controller, to
achieve the high accuracy path following and maintain the vehicle lateral stability, the
path following problem is transformed into the yaw rate tracking problem utilizing the
backstepping method and combing the 2-DOF bicycle model with the path following
error model. Then, the MPC controller is developed to generate the steering angle and
additional yaw moment. In the lower controller, the optimal torque distributor is developed
to distribute external yaw moment to each tire.

The remainder of this paper is structured as follows. A 2-degree-of-freedom (DOF)
vehicle dynamic model and a path following error model are presented in Section 2. In
Section 3, the desired yaw rate is obtained via backstepping. In Section 4, the MPC and the
optimal torque allocation algorithm are designed. The proposed controller and algorithm
are evaluated via a joint simulation of Carsim and Matlab-/Simulink in Section 5.

2. System Modeling
2.1. The 2-DOF Model

A 2-DOF bicycle model [21] is adopted (Figure 1) for simulation and controller design.
The model is simplified under three assumptions:

(1) Small steering angle;
(2) Constant longitudinal speed;
(3) Ignores the influence of the shift of the longitudinal axle load.

The dynamic equations for the bicycle model are expressed as

Iz
.
r = l f Fy f − lrFyr + ∆Mz (1)
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mvx

( .
β + r

)
= Fy f + Fyr (2)

where Iz is the moment of inertia through the center of gravity (CG) about the yaw axis, r is
the yaw rate, l f and lr are the distances from CG to the front and rear axles, respectively,
∆Mz. is an exteral yaw moment used to achieve the desired yaw rate, β is the vehicle
sideslip angle, m is the total mass of the vehicle, vx and vy are the x- and y-axis velocities,
respectively; Fyr and Fy f are the traction forces on the rear and front wheels in parallel to
the x-axis of the vehicle body, respectively.
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Figure 1. The 2-DOF vehicle model.

∆Mz can be given as follows:

∆Mz =
2

∑
i=1

Fxi

[
(−1)ils cos δ f + asinδ f

]
+

4

∑
i=3

(−1)ilsFxi (3)

where ls is the half of the wheelbase, δ f is the front steering angle, and Fxi is the longitudinal
tire force of tire i.

Fy f and Fyr are related with the front and rear tire sideslip angles, α f and αr, respectively:

Fy f = C f α f (4)

Fyr = Crαr (5)

where Cr and C f are the rear and front tire cornering stiffness, respectively. α f and αr can
be further given as

α f = δ f −
l f r
vx
− β (6)

αr =
lrr
vx
− β. (7)

Substituting Equations (4)–(7) into Equations (1) and (2), we have:

mvx

.

β = C f

(
δ f −

l f r
vx
− β

)
+ Cr

(
lrr
vx
− β

)
−mvxr (8)

Iz
.
r = l f C f

(
δ f −

l f r
vx
− β

)
− lrCr

(
lrr
vx
− β

)
+ Mz. (9)
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Let x = [β r]T be a state variable, and u = [δf Mz]T and y be the input and output,
respectively. Therefore, the state equation can be represented as follows:{ .

x = Acx + Bcu
y = Ccx

(10)

where

Ac =

−C f +Cr
mvx

lrCr−l f C f

mv2
x
− 1

lrCr−l f C f
Iz

−
l2

f C f +l2
r Cr

vx Iz

, Bc =

[ C f
mvx

0
l f C f

Iz
1
Iz

]
, Cc =

[
1 0
0 1

]
. (11)

2.2. Path following Model

The path following error model [22] is shown in Figure 2, where the dashed line is
the desired path for autonomous vehicles and the solid line is the reference path. In the
Serret–Frenet coordinate system [23], the dynamic model of path following error for an
4WID-EV is expressed as follows{ ·

e = vxsinψ + vycosψ
·
ψ =

·
ψa −

·
ψd = r− ρ(σ)vx

(12)

where e is lateral deviation distance from the CG of a vehicle to the closest point on the
ideal path, ψ is the error between the actual heading angle of the vehicle and the tangential
direction of the ideal path, and ρ is the curvature of the ideal path.
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Figure 2. The path following error model.

The path following aims to make e and ψ stabilize asymptotically with optimal inputs
δ f and ∆Mz produced by MPC. Definitely, vehicle stability must be guaranteed. In other
words, the sideslip angle β and yaw rate ψa shall track the desired value correctly.

Remark 1. On the Serret–Frenet frame [22], the lateral error can be expressed as

.
e =

√
v2

x + v2
ysin(ψ + β). (13)

Noticeably, β shall not be ignored when the vehicle travels at high speed.

3. Desired Yaw Rate

The desired yaw rate can be determined using the backstepping method [22,24]:
Step 1: Define a new error variable z1 = sinhκe.
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where κ is a positive real number. The first Lyapunov function is shown as

V1h =
1
2

z2
1. (14)

The derivative of Equation (14) is

.
V1h = z1

.
z1, (15)

i.e.,
.

V1h = κz1coshκe
[

vxsinψ

ψ
(ψ− α1h + α1h) + vxβcosψ

]
(16)

where ψ is a virtual control variable, α1h = −k1z1 and z2h = ψ− α1h. Then, Equation (16)
can be rewritten as

.
V1h = −κk1z2

1coshκe
vxsinψ

ψ
+ κz1coshκe

vxsinψ

ψ
z2h + κz1coshκevxβcosψ (17)

If z2h = 0, the derivative of V1h is negative. When β goes to zero, then z1 = sinhκe
approaches zero. Then e goes to zero.

Step 2: Define the second Lyapunov function

V2h = V1h +
1
2

p1z2
2h (18)

where p1 = 1/k2
1. The derivative of V2h can be expressed as

.
V2h = −κk1z2

1coshκe· vxsinψ
ψ + kz1coshκe·vxβcosψ

+ κ
k2

1
z2h

[
r− ρvx + k1coshκe·vx

sinψ
ψ z2h + k1coshκe·vxβcosψ

] (19)

Define α2h = −k2z2hcoshκe, where k2 is a constant and is larger than or equal to k1vx.
The derivative of V2h can be given as

.
V2h = −κk1z2

1coshκe· vxsinψ
ψ + kz1coshκe·vxβcosψ + κ

k2
1
z2h[r− ρvx

+ k1coshκe·vx
sinψ

ψ z2h + k1coshκe·vxβcosψ− α2h + α2h

] (20)

If we rearrange Equation (20), the derivative of V2h can be expressed as follows:

.
V2h = −κk1z2

1coshκe· vxsinψ
ψ + kz1coshκe·vxβcosψ− k2

k2
1
kcoshκe·z2

2h

[
1− k1vx

k2

sinψ
ψ

]
+ 1

k2
1
κz2h[r− ρvx + k1coshκe·vxβcos− α2h]

(21)

Step 3: Define z3h = r− ρvx − α2h; if z3h = 0, Equation (20) can be simplified as:

.
V2h = −κk1z2

1coshκe· vxsinψ
ψ + kz1coshκe·vxβcosψ− k2

k2
1
kcoshκe

·z2
2h

[
1− k1vx

k2

sinψ
ψ

]
+ 1

k1
κz2hcoshκe·vxβcosψ ≤ 0

(22)

In Equation (21), when β, z2h and α1h converge to zero, ψ will go to zero.
Let z3h = 0, we can obtain the desired yaw rate

.
V2h = −κk1z2

1coshκe· vxsinψ
ψ + kz1coshκe·vxβcosψ− k2

k2
1
kcoshκe

·z2
2h

[
1− k1vx

k2

sinψ
ψ

]
+ 1

k1
κz2hcoshκe·vxβcosψ ≤ 0

(23)
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Substituting α2h = −k2z2hcoshκe, z2h = ψ − α1h, α1h = −k1z1 and z1 = sinhκe to
Equation (10), we can express r as

r = ρvx − k2(ψ + k1sinhκe)coshκe. (24)

When ke is very small, sinhκe and coshκe will be approximately equal to ke and 1,
respectively. Equation (24) can be given as

r = ρvx − k2ψ− k2k1κe = ρvx − k2k1κ

(
e +

1
k1κ

ψ

)
(25)

The desired yaw rate is not independent, i.e., it depends on the current vehicle state
and the path following error.

Remark 2. Noticeably, Equation (24) is derived using the vehicle kinematic model. In vehicle
dynamics [25], the yaw rate and sideslip angle shall satisfy the following relationship

|r| ≤ 0.85µg
vx

|β| ≤ 0.02µg
(26)

where µ is the tire–road friction coefficient and g is the gravitational acceleration.

Remark 3. The main reason for not using the standard backstepping method is that it will cause
large output overshoot and complex control law expression [26].

4. Controller Design

The overall structure of 4WID-EV for path following is shown in Figure 3. Our control
strategy is aimed to improve path-tracing accuracy while maintaining vehicle stability.
Therefore, we need to determine the expected yaw rate and sideslip angle at each moment.
First, we obtain the desired yaw rate from backstepping by utilizing vx, ϕ, ρ, and e. Due to
the small sideslip angle, the desired sideslip angle is assumed to be 0. MPC is designed
to minimize the yaw rate error and sideslip angle error and to optimize the external yaw
moment and steering angle. The optimal torque distribution block is applied to distribute
the external yaw moment and generate four optimal tire forces.
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4.1. Design of MPC

Using Euler’s approximation, we can obtain the discrete state space equations from
Equation (10) as follows:

x(k + 1) = Akx(k) + Bku(k)

y(k + 1) = Ckx(k)
(27)
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where

Ak =

1 +−
C f + Cr

mvx
T
( lrCr − l f C f

mv2
x

− 1
)

T

lrCr − l f C f

Iz
T 1 +−

l2
f C f + l2

r Cr

vx Iz
T

Bk =


C f

mvx
T 0

l f C f

Iz
T 1

Iz
T

 (28)

and T is the sampling period.
We reconstruct the state vector ξ(k|t) = [x(k) u(k− 1)]T , so the new state space

representation is:
ξ(k + 1) = Ãkξ(k) + B̃k∆u(k)

η(k) = C̃kξ(k)
(29)

where Ãk =

[
Ak Bk

0m×n Im

]
, B̃k =

[
Bk
Im

]
, C̃k =

[
Ck 0

]
, n and m are the dimensions of the

state vector and the control vector, respectively.
After derivation, the predictive output vector can be represented as

Y = Ψξ(k) + Θ∆U (30)

where

Y =



η(k + 1)
η(k + 2)
· · ·

η(k + Nc)

· · ·
η(k + Np)


Ψ =



∼
C1
∼
Ak

∼
C1
∼
A

2

2
· · ·

∼
C1
∼
A

N1

k
· · ·

∼
C1
∼
A

Nr

n


, Θ =



∼
Ck
∼
Ak 0 0 0

∼
Ck AkBk

∼
Ck
∼
Bk 0 0

· · · · · ·
. . . · · ·

∼
Ck
∼
A

Nc−1

k
∼
Bk

∼
Ck
∼
A

Nc−2

k
∼
Bk · · ·

∼
Ck
∼
Bk

∼
Ck
∼
A

Nc

k
∼
Bk

∼
Ck
∼
A

Nc−1

k
∼
Bk · · ·

∼
Ck
∼
Ak
∼
Bk

...
...

. . .
...

∼
Ck
∼
A

Np−1

k
∼
Bk

∼
Ck
∼
A

Np−2

k
∼
Bk · · ·

∼
Ck
∼
A

Np Nc−1

k
∼
Bk


(31)

∆U =
[

∆u(k) ∆u(k + 1) · · · ∆u(k + Nc)
]T ; Np and Nc represent the output

prediction horizon and the control horizon, respectively.
From Equation (30), it is clear that states and outputs in the predictive horizon can be

calculated with the current state ξ(k) and control increment ∆U in the control horizon: the
implementation of the predictive function in MPC.

We define the reference output vector Yref(k) =
[
ηref(k + 1), · · · , ηref

(
k + Np

)]T , so
the cost function can be described as:

J(k) =
Np

∑
i=1
‖η(k + i|t)− ηre f (k + i|t)‖2

Q +
Nc−1

∑
i=1
‖∆U(k + i|t)‖2

R + ρε2 (32)

where Q and R are weighting matrices, ρ is a weight coefficient, and ε is a slack variable.
Noticeably, the variable to be solved is the control increment. We need to translate it

into a standard quadratic programming problem associated with control increment. The
cost function can be transformed to the following optimal problem:

J(ξ(t), u(t− 1), ∆u(t)) = [∆U(t)T , ε]
T

Ht[∆U(t)T , ε] + Gt[∆U(t)T , ε] (33)

s.t. ∆Umin ≤ ∆Ut ≤ ∆Umax

Umin ≤ Au∆Ut + Ut ≤ Umax
(34)
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where Ht =

[
ΘT

t QΘt + R 0
0 ρ

]
, Gt =

[
2eT

t QΘt 0
]
, Au =



1 0 · · · . . . 0
1 1 0 . . . 0

1 1 1
. . . 0

...
...

. . . . . . 0
1 1 . . . 1 1

⊗ Im,⊗ de-

notes Kronecker product, et is the tracking error in prediction horizon, Umax and Umin are
the maximum values of input and output; ∆Umin and ∆Umax are the minimum and maxi-
mum input increment, respectively.

By solving the optimal problem using Matlab function, i.e., quadprog, in each control
period, we can obtain the sequence of control increment:

∆U∗t = [∆u∗t , ∆u∗t+1, . . . , ∆u∗t+Nc−1 ]
T . (35)

We only take the first element of ∆U∗t at time t as the incremental control:

u(t) = u(t− 1) + ∆u∗t . (36)

4.2. Optimal External Yaw Moment Distribution

The external yaw moment obtained from MPC will be distributed to four respective
tires. There are three commonly used strategies [20,27], including the average distribu-
tion strategy, tire-dynamic-load-based distribution strategy, and the optimal distribution
strategy that is adopted here.

The output torque of a motor can control the longitudinal tire force on each tire:

Fxi =
Txi
ri

. (37)

where ri is the rolling radius of the wheel.
We combine Equations (3) and (37) and assume that δ f is very small. Consequently, Fx

and Mz can be expressed as follows:

Fx = Fx1 + Fx2 + Fx3 + Fx4 (38)

Mz =
d
2
(−Fx1 + Fx2 − Fx3 + Fx4). (39)

We change Tx and Mz into the following matrix form:

ω = Hξ. (40)

where ω = [Fx Mz]
T , ξ = [Tx1 Tx2 Tx3 Tx4]

T , and H =

[
1 1 1 1

− d
2r

d
2r −

d
2r

d
2r

]
.

According to the friction circle theory, the following relationship between tire force
and vertical load can be used:

F2
xi + F2

yi ≤ µ2
i F2

zi (41)

where µi is longitudinal rolling friction coefficient and Fzi denotes the vertical load on
each tire.

Thus, the constraint condition of Fxi is expressed as:

0 ≤ Fxi ≤
√

µ2
i F2

zi − F2
yi . (42)

Define tire load rate Φi [20,28]

Φi =
F2

xi + F2
yi

u2
i F2

zi
. (43)
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In Equation (43), the longitudinal force Fyi is much smaller than lateral force Fxi and
thus can be omitted. Therefore, Equation (43) can be simplified as

Φi ≈
F2

xi
u2

i F2
zi

. (44)

We combine Equations (38), (39), and (44) and define the following objective function:

min J =
4

∑
i=1

(
Fxi

uiFzi

)2
= ξTWξξ (45)

where Wξ is the nonsingular weight matrix and Wξ = diag(
(

1
ui Fzi

)2
).

The objective function satisfies the following constraints:{
ω = Hξ

ξmin ≤ ξ ≤ ξmax
(46)

Combining Equation (45) with Equation (46) and introducing a weight coefficient σ,
we can obtain the weighted least squares problem:

f = arg min
ξmin≤ξ≤ξmax

(
‖Wξ ξ ‖2

2 +σ ‖Ww(Hξ −ω) ‖2
2

)
. (47)

Equation (47) can be further simplified as follows:

f = arg min
ξmin≤ξ≤ξmax

= ‖
(

σ
1
2 WwH
Wξ

)
ξ −

(
σ

1
2 Wwω

0

)
‖2

2 . (48)

The above optimization problems, i.e., the optimal external yaw moment distribution,
can be solved using the active set method.

5. Simulation and Discussion

The new control strategy was established in Simulink and the high-fidelity vehicle
model was provided by Carsim. To investigate the path following performance of the con-
trol strategy, we executed a double lane change maneuver in simulation. In this maneuver,
the reference path composed of the lateral reference position Yre f and reference yaw angle
ϕre f can be expressed as follows [29]:

Yre f=
21.95

2
(1 + tanh(z1))−

5.7
2
(1 + tanh(z2))

ϕre f= arctan
4.86

4.05cosh2(z1)
− 6.84

21.95cosh2(z2)

(49)

where z1 = 2.4
250 (X− 27.19)− 1.2, z2 = 2.4

21.95 (X− 56.46)− 1.2.
Before the simulation, we need to set the vehicle parameters in Carsim (Table 1). In

the simulation, the E-class Suv vehicle model is chosen, because it can be easily modi-
fied to 4WID-EV. Furthermore, the gains in the desired yaw generation are set as follows:
k1 = 3

vx
, k2 = 30/k1, k = 1.3. To assess the performance of the MPC controller, we compare

it with the traditional LQR controller. The simulation block diagram of MPC is shown
in Figure 4. The weighted matrix used in LQR is set as follows: Q = diag([100.0; 0.01]),
R = diag

([
10.0; 0.10−7]). Meanwhile, the parameters adopted in MPC are chosen

as Np = 60, Nc = 30, Umin = [−0.01;−5], Umax = [0.01; 5], ∆Umax = [0.44; 250],
∆Umin = [−0.44;−250], Q = diag([25.0; 0.1]), R = diag

([
1.0; 0.10−7]), ρ = 103.
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Table 1. Vehicle parameters in the simulation.

Symbol Parameter Value Unit

m Total vehicle mass 1590 kg
l f Distance from front axle to CG 1.05 m
lr Distance from rear axle to CG 1.61 m
ls Half of the wheelbase 0.75 m
Iz Moment of inertia at vertical axis 2059.2 kg·m2

C f Cornering stiffness of front tire 66,000 N/rad
Cr Cornering stiffness of rear tire 66,000 N/rad
r Radius of wheel 0.347 m
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Two cases were implemented in the simulation. One case is used to test the effective-
ness of the new controller brought by backstepping. The other case is used to verify the
superiority and improvement of the controller. The total simulation time is 10 s.

5.1. Case One

In this case, the vehicle moves on a road at a low speed (40 km/h) with a high tire-road
friction coefficient (0.9), i.e., dry asphalt surface. The LQR and MPC controllers are used to
make the vehicle track a path of double-lane-change. The simulated lateral and heading
errors are shown in Figure 5a,b. To test the path following accuracy of the two controllers,
we introduce the maximum error and root mean square error [30] as follows:

emax = max(|e|)

eRMSE =
√

∑ e2

N ,
(50)

where N is the sample number. The maximum lateral errors of LQR and MPC are 0.0174
and 0.011 m, respectively, and their root mean square errors are 3.13× 10−4 and 7.73× 10−5,
respectively. Thus, the two errors of MPC are both less than those of LQR, indicating the
MPC controller is better.

The simulated yaw rate and sideslip angle are shown in Figure 5c,d. Clearly, there is
little difference between these two controllers. To maintain the vehicle stability, the yaw
rate shall be less than 0.75 rad/s according to Equation (26) and the sideslip angle less than
0.035 rad [31]. As shown in Figure 5c,d, they are both maintained in reasonable ranges,
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suggesting the vehicle is stable throughout the path following. In addition, a small shock
occurred at the beginning, but was converged quickly.

The results of path following simulation are presented in Figure 5e. Clearly, both
controllers track the desired path perfectly, but the performance of the MPC controller is
better, which indicates the effectiveness of the new control strategy.

Figure 5f shows the steering wheel angle in simulation. A small shock occurred at the
beginning but converged to zero at the end of the double lane change maneuver. Moreover,
the steering wheel output is smooth throughout the maneuver.

Figure 5g shows the simulation result of external yaw moment. The external yaw
moment of LQR shows a small shock at the beginning (Figure 5g), which does not occur
with MPC. The external yaw moment of MPC is smoother during the simulation. The
external yaw moment using MPC and LQR varies from−211.6 to 90.4 N·m and from−242.2
to 215.5, respectively, in the process of the double-lane-change maneuver (Figure 5g). From
the energy-saving perspective, MPC is more efficient than LQR. The allocations of external
longitudinal tire force are shown in Figure 5h, where superscripts L and M represent LQR
and MPC, respectively. Clearly, the data are maintained in reasonable ranges using the
new optimal allocation method. For the tire force allocation, it is reasonable that the tire
force of outer-right wheel is maximum, and that of front-left wheel is minimal (Figure 5h).
The external yaw moment is generated by differential tire forces, which indicates the
effectiveness of the optimal tire force allocation strategy.

The simulation results suggest that both methods can maintain vehicle stability and
MPC is superior to LQR in path following accuracy and energy-saving when the vehicle
travels at low speed on a high tire–road friction coefficient road.
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5.2. Case Two

This case is mainly aimed to assess the behaviors of the new control scheme under
extreme conditions. In this case, we make the vehicle drive at high speed (20 m/s) on a
road with low tire–road friction coefficient (0.5), i.e., on a wet asphalt surface.

The maximum positive lateral errors of LQR and MPC are 0.4964 and 0.2820 m, re-
spectively, and their maximum negative lateral errors are 0.5419 and 0.5157 m, respectively
(Figure 6a). Moreover, the maximum heading angles of LQR and MPC are 3.6 and 2.2 de-
grees, respectively (Figure 6b). Therefore, the accuracy of the MPC controller is superior
over that of the LQR controller.
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Figure 6c,d demonstrates the simulation results of yaw rate and sideslip angle in this
case. To maintain the vehicle stability during the path following, we shall limit the slip angle
and yaw rate within [−5, 5]◦ and [−0.22, 0.22], respectively, according to Equation (26).
The yaw rates of MPC and LQR vary from −0.15 to 0.19 rad/s and from −0.22 to 0.22
rad/s, respectively (Figure 6c), which are in the reasonable region and a little larger than the
maximum yaw rate, respectively. As for the sideslip angle, it is maintained in the reasonable
region for two controllers. Noticeably, both yaw rate and sideslip angle show transient
abrupt change with LQR between 2 and 4 s, which is because of some requirements for the
control input. In fact, the vehicle is turning from one lane to another. In comparison, there
is only a small abrupt change between 2 and 4 s for MPC. In addition, the yaw rate and
sideslip angle in Case 2 are significantly larger than those in Case 1. In conclusion, MPC
much outperforms LQR in terms of yaw rate and sideslip angle at high speed.

Figure 6e shows the path following results. A double lane change object was completed.
Noticeably, the backstepping method can effectively reduce the bound of the lateral offset.
The details of hyperbolic projection can be found in [23]. As shown in Figure 6e, the
maximum lateral error occurs at a longitudinal distance of 90 m and the path following
accuracy of MPC is higher than that of LQR. However, compared with Figure 5e, the path
following accuracy of the two techniques in Case 2 is significantly reduced. The main
reason is that when the vehicle turns sharply with an increase in speed or a decrease
in tire–road friction coefficient, the tires of the vehicle easily enter the nonlinear region,
resulting in an increase in vehicle modeling error.

Figure 6f,g depicts the simulation results of control inputs viz. steering angle and
external longitudinal force. The control inputs for the two techniques are kept in reasonable
ranges. The control inputs for MPC are both smaller than those for LQR. The steering
wheel angle for MPC changes smoothly throughout.

6. Conclusions

The path following problem for 4WID-EV was addressed by considering the optimal
tire force allocation. A control strategy based on backstepping and MPC was designed. The
backstepping was used to generate the desired yaw rate, which is related to both vehicle
state and path following errors. The MPC can acquire the steering angle and external yaw
moment and keep lateral vehicle stability. Finally, the external yaw moment was assigned
to each tire utilizing the optimal allocation method. The performance of the new controller
was validated using a double lane change maneuver on the Simulink–CarSim platform.
Simulations show the performance of MPC is improved greatly compared with the LQR
controller, and the path following accuracy is weakened with an increase in speed and a
decrease in tire–road friction coefficient. Nevertheless, during the controller design based
on backstepping and MPC, the influences of unknown disturbance and model parameter
uncertainties are ignored, which are left for our next study.

Author Contributions: Formal analysis, C.W. and S.C.; Investigation, C.W. and R.H.; Methodology,
C.W.; Project administration, C.W.; Resources, R.H.; Software, S.C.; Supervision, R.H.; Validation, Z.J.;
Visualization, Z.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by University Natural Science Research Project of Anhui Province,
grant number KJ2020A0507 and KJ2020A0506 and Anhui Provincial Quality Engineering Project
grant number 2020jyxm1375.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 5728 15 of 16

References
1. Faisal, A.; Kamruzzaman, M.; Yigitcanlar, T.; Currie, G. Understanding autonomous vehicles. J. Transp. Land Use 2019, 12, 45–72.

[CrossRef]
2. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control. Robot.

Auton. Syst. 2018, 1, 187–210. [CrossRef]
3. Zheng, H.; Yang, S. A trajectory tracking control strategy of 4WIS/4WID electric vehicle with adaptation of driving conditions.

Appl. Sci. 2019, 9, 168. [CrossRef]
4. Tian, J.; Wang, Q.; Ding, J.; Wang, Y.; Ma, Z. Integrated control with DYC and DSS for 4WID electric vehicles. IEEE Access 2019,

7, 124077–124086. [CrossRef]
5. Park, M.-W.; Lee, S.-W.; Han, W.-Y. Development of lateral control system for autonomous vehicle based on adaptive pure pursuit

algorithm. In Proceedings of the 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Seoul,
Korea, 22–25 October 2014; pp. 1443–1447.

6. Snider, J.M. Tech. Report CMU-RITR-09-08: Automatic Steering Methods for Autonomous Automobile Path Tracking; Robotics Institute:
Pittsburgh, PA, USA, 2009.

7. Li, H.; Li, P.; Yang, L.; Zou, J.; Li, Q. Safety research on stabilization of autonomous vehicles based on improved-LQR control. AIP
Adv. 2022, 12, 015313. [CrossRef]

8. Qiu, B.; Wei, L.; Wang, X.; Li, L.; Zhou, D.; Wang, Z. Path tracking of autonomous vehicle based on adaptive preview trajectory
planning with the consideration of vehicle stability. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022. [CrossRef]

9. Hiraoka, T.; Nishihara, O.; Kumamoto, H. Automatic path-tracking controller of a four-wheel steering vehicle. Veh. Syst. Dyn.
2009, 47, 1205–1227. [CrossRef]

10. Xia, Q.; Chen, L.; Xu, X.; Cai, Y.; Chen, T. Coordination control method of autonomous ground electric vehicle for simultaneous
trajectory tracking and yaw stability control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022. [CrossRef]

11. Wu, Y.; Wang, L.; Zhang, J.; Li, F. Path following control of autonomous ground vehicle based on nonsingular terminal sliding
mode and active disturbance rejection control. IEEE Trans. Veh. Technol. 2019, 68, 6379–6390. [CrossRef]

12. Ostafew, C.J.; Schoellig, A.P.; Barfoot, T.D.; Collier, J. Learning-based nonlinear model predictive control to improve vision-based
mobile robot path tracking. J. Field Robot. 2016, 33, 133–152. [CrossRef]

13. Chen, X.; Han, Y.; Hang, P. Researches on 4WIS-4WID stability with LQR coordinated 4WS and DYC. In Advances in Dynamics of
Vehicles on Roads and Tracks; Springer: Cham, Switzerland, 2020.

14. Chen, T.; Chen, L.; Xu, X.; Cai, Y.; Sun, X. Simultaneous path following and lateral stability control of 4WD-4WS autonomous
electric vehicles with actuator saturation. Adv. Eng. Softw. 2019, 128, 46–54. [CrossRef]

15. Liang, Y.; Li, Y.; Zheng, L.; Yu, Y.; Ren, Y. Yaw rate tracking-based path-following control for four-wheel independent driving and
four-wheel independent steering autonomous vehicles considering the coordination with dynamics stability. Proc. Inst. Mech.
Eng. Part D J. Automob. Eng. 2021, 235, 260–272. [CrossRef]

16. Wang, W.; Ma, T.; Yang, C.; Zhang, Y.; Li, Y.; Qie, T. A Path Following Lateral Control Scheme for Four-Wheel Independent Drive
Autonomous Vehicle using Sliding Mode Prediction Control. IEEE Trans. Transp. Electrif. 2022, 8, 3192–3207. [CrossRef]

17. Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path tracking and direct yaw moment coordinated control based on robust MPC with
the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066. [CrossRef]

18. Xie, J.; Xu, X.; Wang, F.; Tang, Z.; Chen, L. Coordinated control based path following of distributed drive autonomous electric
vehicles with yaw-moment control. Control Eng. Pract. 2021, 106, 104659. [CrossRef]

19. Barari, A.; Saraygord Afshari, S.; Liang, X. Coordinated control for path-following of an autonomous four in-wheel motor drive
electric vehicle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 6335–6346. [CrossRef]

20. Zhai, L.; Sun, T.; Wang, J. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel
motor drive electric vehicle. IEEE Trans. Veh. Technol. 2016, 65, 4726–4739. [CrossRef]

21. Margolis, D.L.; Asgari, J. Multipurpose Models of Vehicle Dynamics for Controller Design; SAE International: Warrendale, PA,
USA, 1991.

22. Skjetne, R.; Fossen, T.I. Nonlinear maneuvering and control of ships. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean
Odyssey, Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; pp. 1808–1815.

23. Zhao, Y.; Dong, L. Robust path-following control of a container ship based on Serret–Frenet frame transformation. J. Mar. Sci.
Technol. 2020, 25, 69–80. [CrossRef]

24. Hu, C.; Wang, R.; Yan, F.; Chen, N. Output constraint control on path following of four-wheel independently actuated autonomous
ground vehicles. IEEE Trans. Veh. Technol. 2015, 65, 4033–4043. [CrossRef]

25. Lin, J.; Zou, T.; Zhang, F.; Zhang, Y. Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Fuzzy Sliding Mode
Control. Energies 2022, 15, 1280. [CrossRef]

26. Li, Z.; Sun, J.; Oh, S. Design, analysis and experimental validation of a robust nonlinear path following controller for marine
surface vessels. Automatica 2009, 45, 1649–1658. [CrossRef]

27. Zhang, X.; Wei, K.; Yuan, X.; Tang, Y. Optimal torque distribution for the stability improvement of a four-wheel distributed-driven
electric vehicle using coordinated control. J. Comput. Nonlinear Dyn. 2016, 11, 051017. [CrossRef]

28. De Novellis, L.; Sorniotti, A.; Gruber, P. Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials.
IEEE Trans. Veh. Technol. 2013, 63, 1593–1602. [CrossRef]

http://doi.org/10.5198/jtlu.2019.1405
http://doi.org/10.1146/annurev-control-060117-105157
http://doi.org/10.3390/app9010168
http://doi.org/10.1109/ACCESS.2019.2937904
http://doi.org/10.1063/5.0078950
http://doi.org/10.1177/09544070221094112
http://doi.org/10.1080/00423110802545919
http://doi.org/10.1177/09544070221087485
http://doi.org/10.1109/TVT.2019.2916982
http://doi.org/10.1002/rob.21587
http://doi.org/10.1016/j.advengsoft.2018.07.004
http://doi.org/10.1177/0954407020938490
http://doi.org/10.1109/TTE.2022.3170059
http://doi.org/10.1109/TVT.2020.2981619
http://doi.org/10.1016/j.conengprac.2020.104659
http://doi.org/10.1177/09544062211064797
http://doi.org/10.1109/TVT.2016.2526663
http://doi.org/10.1007/s00773-019-00631-6
http://doi.org/10.1109/TVT.2015.2472975
http://doi.org/10.3390/en15041280
http://doi.org/10.1016/j.automatica.2009.03.010
http://doi.org/10.1115/1.4033004
http://doi.org/10.1109/TVT.2013.2289371


Energies 2022, 15, 5728 16 of 16

29. Falcone, P.; Eric Tseng, H.; Borrelli, F.; Asgari, J.; Hrovat, D. MPC-based yaw and lateral stabilisation via active front steering and
braking. Veh. Syst. Dyn. 2008, 46, 611–628. [CrossRef]

30. Wang, W.; Zhang, Y.; Yang, C.; Qie, T.; Ma, M. Adaptive Model Predictive Control-Based Path Following Control for Four-Wheel
Independent Drive Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]

31. Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin, Germany, 2011.

http://doi.org/10.1080/00423110802018297
http://doi.org/10.1109/TITS.2021.3128268

	Introduction 
	System Modeling 
	The 2-DOF Model 
	Path following Model 

	Desired Yaw Rate 
	Controller Design 
	Design of MPC 
	Optimal External Yaw Moment Distribution 

	Simulation and Discussion 
	Case One 
	Case Two 

	Conclusions 
	References

