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Abstract: Voltage sag detection is utilized to capture the sag occurrence moment and calculate the sag
depth of power grid voltage in real time, so as to generate reference voltage for controlling voltage
interactive equipment such as dynamic voltage restorers (DVRs). However, the traditional voltage
sag detection methods based on synchronously rotating frames (SRFs) are unable to acquire high-
precision sag information under nonideal grid conditions such as unbalance or harmonic interference.
In order to enhance the immunity of the sag detection, a method based on a selective harmonic
extraction algorithm (SHEA) is proposed in this paper. Firstly, the state-space model of SHEA is
established using discrete orthogonal basis to decouple and separate the signal of target frequency
and the signal of interference frequency. The controllability, stability and convergence of SHEA are
analyzed theoretically and serve as the criteria for parameter tuning. Moreover, a gain compensator
(GC) is used to improve the low and middle frequency gains of the voltage sag detection method
based on SHEA so that the dynamic response speed for sag judgment can be optimized quantitatively.
The simulation results indicate that the proposed voltage sag detection method has good dynamic and
steady-state performance under nonideal power grid conditions such as unbalanced sag, frequency
drift, phase variation and harmonic interference.

Keywords: voltage sag detection algorithm; dynamic voltage restorer; nonideal grid conditions;
modeling and optimization

1. Introduction

Sensitive electronic equipment like computer system (CS), adjustable speed driver
(ASD), and programmable logic controller (PLC) have been prevalent in industry, commerce
and other fields as a result of the development of information and intelligent technology,
which puts forward higher demand for the quality of power supply [1,2]. Voltage sags,
unbalance, transients, harmonics, fluctuations and interruptions are the essential power
quality issues [3]. To solve these problems of power quality, power equipment based on
power electronics has been developed such as active power filter (APF), dynamic voltage
restorer (DVR), uninterruptable power supply (UPS) [4]. Voltage sag has emerged as one of
the most serious problems deteriorating power quality [5,6], which can result in critical load
disruption and data loss with significant financial damage. Among the power equipment,
DVR has gradually become one of the most cost-effective solutions to address voltage sag
due to its high operational efficiency and low overall cost [7,8]. As user-side voltage-based
interactive equipment in a conventional three-phase and three-wire (3ph-3w) power grid,
DVR converts energy in the energy storage system (ESS) into the upstream of the sensitive
load via a series-coupled transformer (SCT) via a three-phase voltage source converter
(VSC), so as to compensate and mitigate voltage sag on the user side. In Figure 1, the
detailed schematic [9] of DVR is presented.
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Figure 1. Schematic of DVR. 

Rapid and precise voltage sag detection is a necessary prerequisite for DVR to 
achieve accurate compensation [3,8,10]. For one thing, if the judgment speed of sag is slug-
gish, sensitive equipment can easily exceed its lower voltage tolerance limit and result in 
crash. For another thing, false positive events would trigger the DVR into compensation 
mode when no real voltage sag has occurred. Therefore, it is necessary to make a compro-
mise between sensitivity and robustness. Moreover, if the calculated information such as 
sag depth is inaccurate, the sensitive load will not receive high-quality voltage provided 
by DVR. Currently, several techniques have been thoroughly researched for detecting 
voltage sag [11,12], including peak value, missing voltage, the root mean square (RMS), 
discrete Fourier transform (DFT), wavelet transform (WT), least error squares (LES), syn-
chronously rotating frame (SRF), etc. 

Peak voltage detection [11] searches for the peak value of sinusoidal waveform in no 
more than half of the grid cycle (20 ms) to determine the occurrence of voltage sag. The 
procedure is straightforward to implement but is susceptible to harmonics, noise, and 
phase jump. The time-domain method known as missing voltage [13] can also quickly 
identify voltage sag according to the difference between the actual and desired instanta-
neous voltages. However, this method still suffers from poor immunity, making it impos-
sible to obtain complete sag characteristic information. In contrast, RMS detection [14] has 
strong anti-disturbance ability but poor frequency adaptability and moderate detection 
speed of at least half a grid cycle. A voltage detection method based on least error squares 
(LES) is proposed in [15] that can effectively suppress specific harmonics and has good 
dynamic performance within a few sampling periods. However, this method will amplify 
the unconsidered high-frequency harmonics, thus affecting the precision of detection. A 
rapid method of detecting a sag event based on a numerical matrix is proposed in [16]. 
The method is also sensitive to unknown harmonics such as neglected high-frequency 
noise. Under nonideal grid conditions, this method can easily cause false judgment of sag 
events, which will result in frequent startup and malfunction of DVR. The authors of [17] 
utilized a rectifier to quickly capture the occurrence time of voltage sag, which requires 
repeated experiments to tune various control parameters before fitting the response value 
of the detection algorithm to 0.9 p.u.; that is, different application scenarios require differ-
ent parameters. In addition, the detection algorithm has the probability of false detection 
and miss detection that cannot be ignored. WT is an increasingly popular time-frequency 
localization analysis method [18,19] that is extremely sensitive to signal jump and can 
quickly identify the start and end moments of voltage sag. Even so, the method needs 
proper selection of wavelet prototype, which depends on the user’s experience and exist-
ing achievements [20]. The authors [21,22] proposed a detection method based on har-
monic footprint that characterizes the voltage sag transient behavior with Exp2, the two-
term exponential model using only seven data points (samples). To improve reliability, a 
recurrent neural network (RNN) is used with 680 recordings as a selected training set. The 
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Rapid and precise voltage sag detection is a necessary prerequisite for DVR to achieve
accurate compensation [3,8,10]. For one thing, if the judgment speed of sag is sluggish,
sensitive equipment can easily exceed its lower voltage tolerance limit and result in crash.
For another thing, false positive events would trigger the DVR into compensation mode
when no real voltage sag has occurred. Therefore, it is necessary to make a compromise
between sensitivity and robustness. Moreover, if the calculated information such as sag
depth is inaccurate, the sensitive load will not receive high-quality voltage provided by
DVR. Currently, several techniques have been thoroughly researched for detecting voltage
sag [11,12], including peak value, missing voltage, the root mean square (RMS), discrete
Fourier transform (DFT), wavelet transform (WT), least error squares (LES), synchronously
rotating frame (SRF), etc.

Peak voltage detection [11] searches for the peak value of sinusoidal waveform in no
more than half of the grid cycle (20 ms) to determine the occurrence of voltage sag. The
procedure is straightforward to implement but is susceptible to harmonics, noise, and phase
jump. The time-domain method known as missing voltage [13] can also quickly identify
voltage sag according to the difference between the actual and desired instantaneous
voltages. However, this method still suffers from poor immunity, making it impossible
to obtain complete sag characteristic information. In contrast, RMS detection [14] has
strong anti-disturbance ability but poor frequency adaptability and moderate detection
speed of at least half a grid cycle. A voltage detection method based on least error squares
(LES) is proposed in [15] that can effectively suppress specific harmonics and has good
dynamic performance within a few sampling periods. However, this method will amplify
the unconsidered high-frequency harmonics, thus affecting the precision of detection. A
rapid method of detecting a sag event based on a numerical matrix is proposed in [16].
The method is also sensitive to unknown harmonics such as neglected high-frequency
noise. Under nonideal grid conditions, this method can easily cause false judgment of
sag events, which will result in frequent startup and malfunction of DVR. The authors
of [17] utilized a rectifier to quickly capture the occurrence time of voltage sag, which
requires repeated experiments to tune various control parameters before fitting the response
value of the detection algorithm to 0.9 p.u.; that is, different application scenarios require
different parameters. In addition, the detection algorithm has the probability of false
detection and miss detection that cannot be ignored. WT is an increasingly popular time-
frequency localization analysis method [18,19] that is extremely sensitive to signal jump
and can quickly identify the start and end moments of voltage sag. Even so, the method
needs proper selection of wavelet prototype, which depends on the user’s experience and
existing achievements [20]. The authors [21,22] proposed a detection method based on
harmonic footprint that characterizes the voltage sag transient behavior with Exp2, the
two-term exponential model using only seven data points (samples). To improve reliability,
a recurrent neural network (RNN) is used with 680 recordings as a selected training set. The
detection time can reach within 1 ms. However, the possibility of false detection is minimal
only if RNN is properly prepared; it may also be more suitable for offline scenarios such
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as voltage fault characterization, classification, and big data analysis. Other mathematical
methods such as Kalman filter [23] and S transform [24] are also more suitable for the
offline analysis of power quality because of their intricate calculation and subpar real-time
performance.

Selective harmonic extraction (SHE) is a well-known concept that can extract or
suppress the required fundamental or harmonic component, which can be used for voltage
sag detection in a harmonic distorted power grid. The main implementation method of
SHE is based on finite impulse response (FIR) filter structure, such as sliding recursive
discrete Fourier transform (SDFT), generalized delayed signal cancellation (GDSC) [25],
and generalized discrete Fourier transform (GDFT) [26]. Traditional SDFT [27] uses a
complex resonator and a comb filter to extract the specific harmonic. The major drawback is
the slow dynamic responses, requiring at least one-cycle settling time. Additionally, careful
synchronization between the sampling and fundamental frequency is needed in practical
applications to minimize the leakage effects of DFT, and in case of large frequency deviation,
significant errors in magnitude can be introduced. The traditional SDFT is improved in [28]
by removing the redundant zeros in the comb filter to improve the dynamic response speed.
Specifically, the zeros corresponding to the harmonic numbers (1st, 2nd, 3rd, 4th, 5th, 6th,
etc.) are decreased to corresponding to 1st, 5th, 7th, 11th, 13th, etc. The response time
is reduced from one grid cycle to 1/3 cycle. In addition, variable sampling frequency is
used to realize the grid frequency adaptation of GDFT, which can avoid the non-integer
sampling [29].

Aside from the aforementioned techniques, a number of voltage sag detection meth-
ods [10,30] based on synchronously rotating frame (SRF) have gained widespread industrial
recognition for its excellent adaptability and simple implementation based on phase-locked
loop (PLL) embedded in DVR. According to the literature [3], in order to suppress the
impact of harmonics and negative-sequence fundamental components on the calculation
of voltage sag depth, a low-pass filter (LPF) needs to be added after Park transformation.
However, the bandwidth and harmonic suppression capability of LPF are incompatible
with each other [31]. Low-bandwidth LPF, is only appropriate for equipment such as
active power filter (APF) that does not require rapid detection, rather than DVR applica-
tion. The LPF with high cut-off frequency [32] can improve detection speed; however, the
anti-disturbance ability of the algorithm will be significantly reduced. The multi-point
difference concept was used in [33,34] to eliminate the influence of specific harmonics
and thereby reduce the delay effect compared with LPF; however, the anti-interference
ability of the difference method is poor, especially in the cases of frequency drift, phase
jump, etc. A method of calculating grid voltage RMS based on SRF is proposed in [35]
that can realize the convergence of voltage amplitude within half a grid cycle. The method
has a strong robustness but an ordinary speed. Besides, the method will also produce
a steady-state double-frequency ripple in the face of frequency drift that will affect the
accuracy. Thanks to the frequency-adaptive bandpass characteristic [36], dual second-
order generalized integrator (DSOGI) can be inserted before Park transformation to detect
fundamental positive-sequence voltage when grid frequency drifts, but it has to make
a compromise between dynamic performance and the ability to filter out low-frequency
disturbance [37]. The authors of [38] introduced a multiple second-order generalized in-
tegrator (MSOGI) approach that accomplishes the decoupling of fundamental frequency
and harmonic frequency. Although the immunity of detection is improved, its dynamic
response performance is still subpar. Introduced MAF [39] or cascaded DSC [40] after
Park transformation can realize notch suppression at each harmonic frequency. Like the
aforementioned DFT, it is difficult for such two methods to achieve zero steady-state error
of voltage calculation even after taking frequency adaptation into account [29], and the
response time is lengthy.

In this paper, a novel selective harmonic extraction algorithm (SHEA) combined
with SRF is proposed to realize the accurate detection of voltage sag under nonideal
grid conditions such as unbalance and harmonic disturbances. The proposed SHEA is
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not based on FIR structure like DFT, GDFT, etc.; instead, a discrete state-space model is
established to flexibly suppress harmonic components and avoid the accuracy problems
caused by non-integer sampling related to grid frequency drift. The significant frequency
drift adaptation, meanwhile, is realized by a phase-locked loop (PLL). The proposed
technique has excellent robustness and can be intended for low-frequency harmonics that
have a significant impact on sag state estimation. In addition, it should be noted that strong
anti-interference performance sacrifices the convergence speed. To address this issue, a
gain compensator (GC) for SHEA is designed to enhance the dynamic performance of
detection from the standpoint of low and medium frequency gain.

The rest of this paper is organized as follows. Section 2 elaborates the performance
demands of voltage sag detection methods under nonideal grid conditions. In Section 3,
the proposed SHEA based on the state-space model and the performance of the algorithm
are analyzed theoretically, and the criteria for parameter selection are given. The dynamic
response speed of the voltage sag detection method based on SHEA is optimized utilizing
GC in Section 4. Section 5 shows the simulation results. Finally, the conclusions are given
in Section 6.

2. Voltage Sag and Traditional Detection Methods Based on SRF

The three primary factors that contribute to voltage sag in a three-phase and three-
wire (3ph-3w) power system are short-circuit fault, induction motor starting, and lightning
strike [41]. Short-circuit fault is by far the most significant factor. According to features,
voltage sags caused by short-circuit faults can be separated into 7 categories (A to G) [42],
as illustrated in Figure 2 [43]. Sag types D, F, and G is the derived type propagated by
various types of transformers, whereas sag types A, B, C, and E stands for three-phase
symmetrical short circuit, single-phase short circuit, phase-to-phase short circuit, and
two-phase grounding short circuit, respectively.
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Except for type A in Figure 2, the voltage sag types belong to unbalanced voltage sag.
If harmonic disturbance is also taken into account, the three-phase grid voltage can be
assumed as

ug_a(t) = ∑
h=1,3,5,7,...

[
U+

h cos
(
hωgt + ϕ+

h

)
+ U−h cos

(
hωgt + ϕ−h

)]
ug_b(t) = ∑

h=1,3,5,7,...

[
U+

h cos
(
hωgt + ϕ+

h −
2π
3
)
+ U−h cos

(
hωgt + ϕ−h + 2π

3
)]

ug_c(t) = ∑
h=1,3,5,7,...

[
U+

h cos
(
hωgt + ϕ+

h + 2π
3
)
+ U−h cos

(
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2π
3
)] (1)

where U+
h (U−h ) and ϕ+

h (ϕ−h ) represent the amplitude and the phase angle of the hth har-
monic component of the positive-sequence (negative-sequence) of the grid voltage, respec-



Energies 2022, 15, 5560 5 of 21

tively, and h = 1 represents the fundamental voltage. Furthermore, ωg is the actual angular
frequency of fundamental voltage of power grid.

Using Clark transformation [44], the three-phase grid voltage can be formulated as

[
ug_α(t)
ug_β(t)

]
= Tαβ

 ug_a(t)
ug_b(t)
ug_c(t)

 =

 ∑
h=1,3,5,7,...

[
U+

h cos
(
hωgt + ϕ+

h

)
+ U−h cos

(
hωgt + ϕ−h

)]
∑

h=1,3,5,7,...

[
U+

h sin
(
hωgt + ϕ+

h

)
−U−h sin

(
hωgt + ϕ−h

)]
 (2)

where

Tαβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(3)

Applying Park transform [45] with the estimated fundamental positive-sequence phase
angle θ̂+1 , the three-phase grid voltage in synchronous reference frame can be expressed as

[
u+

g_d(t)

u+
g_q(t)

]
= T+

dq

[
ug_α(t)
ug_β(t)

]
=

 ∑
h=1,3,5,7,...

[
U+

h cos
(
(hωg − ω̂g)t + (ϕ+

h − ϕ̂+
1 )
)
+ U−h cos

(
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1 )
)]

∑
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[
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1 )
)
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1 )
)]

 (4)

where

T+
dq =

[
cos θ̂+1 sin θ̂+1
− sin θ̂+1 cos θ̂+1

]
(5)

Under a quasi-locked condition when the estimated angular frequency ω̂g is equal to
ωg, (4) can be approximated as[

u+
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]
≈
[
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]
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=
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1 )
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h − ϕ̂+
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)
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 (8)

It is clear from Equations (7) and (8) that the numbers of positive-sequence or negative-
sequence components of the hth harmonic will decrease or increase by 1 after Park trans-
formation. For instance, the negative-sequence of the fundamental component will rise to
2nd-frequency one, while the positive-sequence of the 5th harmonic will be transformed to
the 4th one, etc. Equation (8) can be simplified as[

ũ+
g_d(t)

ũ+
g_q(t)

]
=

[
fd(2ωg, 4ωg, 6ωg, 8ωg, . . .)
fq(2ωg, 4ωg, 6ωg, 8ωg, . . .)

]
(9)

It can be seen that when asymmetric sag occurs with odd harmonics (3rd, 5th, 7th
harmonic, etc.), the result of Park transformation includes even harmonics (2nd, 4th, 6th
harmonic, etc.) in addition to the DC component corresponding to positive-sequence
fundamental component. Traditional methods to calculate the voltage amplitude based on
SRF are SRF-LPF and DSOGI-SRF, of which the structures are depicted in Figure 3. It should
also be noted that 0.9 p.u. was selected as the threshold for detecting the sag event according
to IEC 61000-4-30 and IEEE Std 1159-2019. In order to limit the influence of low-frequency
harmonics after Park transformation on the calculation of the positive-sequence amplitude
of fundamental wave, the cut-off frequency of LPF is usually tuned to be relatively low
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in SRF-LPF [32], which will result in a delay in the judgement of voltage sag. Owing to
bandpass characteristics, DSOGI extracts of the fundamental positive-sequence component
in αβ synchronous reference frame [36]. However, in order to filter out low-frequency
harmonics before Park transformation, e.g., 3rd, 5th, or 7th harmonics, DSOGI generally
needs to reduce the dynamic response performance.
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In order to eliminate the influence of the low-frequency harmonic components of the
power grid on voltage sag detection, this paper proposes a flexibly configurable fundamen-
tal or harmonic extraction algorithm (called SHEA) that can extract the selected harmonic
component and suppress the influence of other harmonics, realizing the decoupling calcu-
lation of fundamental and harmonics of power grid voltage.

3. SHEA Principle and Performance Analysis
3.1. Mathematical Modelling of SHEA

The actual control system completes the calculation of the control algorithm in each
discrete sampling period after sampling and holding, so the modeling and implementa-
tion of the proposed method will be based on the discrete domain rather than the ideal
continuous domain. Considering the general situation, the measured voltage u(k) at the
kth moment contains N harmonic components (0, 1,. . ., N−1), where the 0th harmonic
refers to the DC component. Firstly, assuming that the rated fundamental frequency of
u(k) is ω0, the discrete state variable xh(k) of the hth harmonic is constructed with a pair of
orthogonal bases in αβ coordinate plane, as follows. Additionally, the linear combination
of orthogonal bases xh(k) can be used to represent vectors on any plane:

xh(k) =
(

xh1(k)
xh2(k)

)
=

( √
2

2 Uh sin(hω0kTs + ϕh + π
4 )

−
√

2
2 Uh cos(hω0kTs + ϕh + π

4 )

)
(10)

where Ts is the sampling period and Uh and ϕh are the AC RMS and phase angle of the
hth harmonic, respectively. Using the discrete state variables of the hth harmonic, the
expression of the hth harmonic uh(k) to be extracted from the measured voltage u(k) can be
written as

uh(k) =
(
1 1

)
xh(k) = Uh sin(hω0kTs + ϕh) (11)
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The expression of the discrete state variable xh(k + 1) of the hth harmonic at (k + 1)th
moment is

xh(k + 1) =
(

xh1(k + 1)
xh2(k + 1)

)
=

( √
2

2 Uh sin(hω0kTs + ϕh + π
4 + hω0Ts)

−
√

2
2 Uh cos(hω0kTs + ϕh + π

4 + hω0Ts)

)
=

(
cos(hω0Ts) − sin(hω0Ts)
sin(hω0Ts) cos(hω0Ts)

)(
xh1(k)
xh2(k)

)
= Sh·xh(k)

(12)

where Sh is a second-order rotating transformation matrix of the hth harmonic and the state
variable is extended to all N harmonic points as (13):

x(k) =
(
x0(k) · · · xN−1(k)

)T (13)

Therefore, the state equation model of N harmonic is as follows:

x(k + 1) =

S0
. . .

SN−1

x(k) = S·x(k) (14)

where S is a 2N-order square matrix, and x(k) is a 2N-dimensional column vector. As
can be observed, the state variable x(k) is not affected by the input voltage u(k), so the
system performs uncontrolled. After neglecting the high-frequency component with small
amplitude, the expression of u(k) can be written as

u(k) =
N−1

∑
h=0

uh(k) =
((

1 1
)
· · ·

(
1 1

)) x0(k)
...

xN−1(k)

 = E1×2N·x(k) (15)

where E1×2N represents a matrix of dimension (1 × 2N) with all elements of 1.
After introducing the controllability factor µ associated with the input voltage u(k),

Equation (15) can be rewritten as

µ·u(k) = µE1×2N·x(k) (16)

Therefore, the equation of state model of the hth harmonic (Equation (12)) can be
expressed as

xh(k + 1) = Sh·xh(k)− µE2×2N·x(k) + µE2×1·u(k) (17)

The state-space model for the hth harmonic extraction is{
xh(k + 1) = Sh·xh(k)− µE2×2N·x(k) + µE2×1·u(k)
yh(k) =

(
1 1

)
xh(k) + (0)u(k)

(18)

and the state-space model of all N harmonic extraction can be derived as
x(k + 1) = (S− µE2N×2N)·x(k) + µE2N×1·u(k)

y(k) =


(

1 1
)

. . . (
1 1

)


(N×2N)

x(k) +

 0
...
0


(N×1)

u(k) (19)

Finally, the SHEA model considering N harmonic extraction is{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(20)
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The expressions for system matrix A, control matrix B, output matrix C, and direct
transfer matrix D of the state-space model are shown in Equation (19). All the parametric
matrices are time-independent constant–coefficient matrices, so the SHEA model is a linear
time invariant (LTI) system.

Figure 4 is the amplitude–frequency curve of SHEA. When the number of selective
extraction h is equal to 0, the gain of SHEA in the low frequency band is 0 dB with a
dramatic negative gain at the even-frequency points, which indicates that SHEA can
effectively extract the selected DC component and suppress the impacts of other harmonics
at the same time. When h is equal to 2, SHEA has zero gain at the 2nd-frequency harmonic
(100 Hz), with a great attenuation to other even-harmonic components. The other cases are
similar; that is, SHEA can extract the selected harmonic and simultaneously suppress the
negative effect of other harmonics, realizing the decoupling of the desired signal and the
disturbed signal.
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In order to achieve the detection of voltage sag, this paper mainly considers the
case h = 0. Specifically, SHEA is placed after Park transformation (similar to the SRF-LPF
structure in Figure 3a) to realize selective extraction of DC components and suppress even-
harmonic interference (2nd, 4th, 6th harmonic, etc.). The details related to sag detection
will be discussed in the next section.

3.2. Controllability and Stability Analysis of SHEA

It is vital to theoretically analyze the controllability and stability of SHEA prior to
application because they are prerequisite for proper operation.

3.2.1. Controllability Analysis

Firstly, the controllability of the system is analyzed. According to the control matrix
B (Equation (19)) of the established state-space model, the influence extent of the state
variable x(k) by the unbound input signal u(k) can be characterized by controllability factor
µ. The discriminant criterion for the complete controllability of a LTI system [46,47] is that
the controllability matrix Pc is a nonsingular matrix defined as

Pc =
(
B AB A2B · · · AN−1B

)
(21)

Therefore, the controllability of the system is determined by the system matrix A
and the control matrix B. Specifically, for the certain sampling period Ts and fundamental
frequency ω0, matrix A and B are affected by the highest harmonic number Nmax and
controllability factor µ. Since the number of harmonics selectively extracted or eliminated
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by SHEA is 0, 2, 4, . . . , Nmax, the controllability criterion related to matrix rank can be
calculated as follows:

rank(Pc) = Nmax + 2 (22)

When Nmax is configured large, the system order is correspondingly high, and the
calculation process of the analytical solution is laborious. Therefore, the parameter traversal
approach is used to analyze the relationship between the numerical solution of the matrix
rank and system parameters, as illustrated in Figure 5. The shaded area indicates that
the controllability matrix Pc can achieve uninterrupted full rank, that is, the continuous
controllable interval of SHEA. As can be observed, with the increase of Nmax, µ will
gradually decrease to ensure that the model is controllable. For example, when Nmax ≤ 6,
µ can be any value within (0,1), and the range of µ has been limited to (0.030,0.117) when
Nmax = 16. Additionally, when Nmax = 18, the highest rank of the controllability matrix Pc
is 19 (<20), which means that there is no µ capable of making Pc full rank. In other words,
the system is uncontrolled. Consequently, the controllability of SHEA will decrease with
the increase of the highest harmonic number Nmax. To ensure that the SHEA system is
always controllable, Nmax in this paper is selected as 14 and the corresponding value range
for parameter µ is (0,0.151).
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3.2.2. Stability Analysis

Lyapunov’s analysis methodology [48,49] is used to evaluate the stability of SHEA
model, which is a LTI discrete system. This is because Lyapunov is more direct for the
analysis of a state-space model compared with the classical algebraic criterion, Nyquist
criterion, eigenvalue criterion, etc., whether the original system is linear or nonlinear.
Firstly, the Lyapunov function of the SHEA model is constructed as a quadratic function,
as follows:

V(x(k)) = xT(k)Psx(k) (23)

Combined with Equation (20) of the SHEA model, the corresponding Lyapunov
algebraic equation can be obtained as

ATPsA− Ps = −Q (24)

The sufficient and necessary condition for the asymptotic stability of the system is that
given a positive definite symmetric matrix Q, there exists a positive definite symmetric
matrix Ps, which makes the algebraic Equation (24) hold. According to (24), the stability of
the system is determined by the system matrix A, and for the system with specific sampling
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period Ts and fundamental frequency ω0, matrix A is influenced by the highest harmonic
number Nmax and parameter µ.

Since the number of harmonics selectively extracted or eliminated by SHEA is 0, 2,
4, . . . , Nmax, the positive definite symmetric matrix Q can take the unit square matrix I
of order (Nmax + 2). If the calculated matrix Ps is a real symmetric matrix by numerical
analysis, sufficient and necessary conditions for Ps to be positive is that all the eigenvalues
of the matrix are positive. Figure 6 illustrates the relationship between the symmetric
positive definiteness of the stability-related matrix Ps and parameter µ under various Nmax,
where the shaded region represents that Ps has a symmetric positive definite property,
that is, the asymptotic stability interval of the system. In order to ensure the stability
of SHEA, the range of µ will gradually decrease as Nmax increases. For instance, when
Nmax = 1, µ can be specified as any value within (0,1) while when Nmax = 18, the range
narrows to (0,0.105). Therefore, the asymptotic stability of the SHEA model will decline
with the increase of the highest harmonic number Nmax. In this paper, the selected Nmax is
14, and the range of µ is (0,0.133).
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3.3. Performance Evaluation of SHEA

When the SHEA model satisfies the controllability and stability conditions, the system
performance of the model needs to be investigated thoroughly, which consists of dynamic
and steady-state performance. Since SHEA selectively extracts the DC component after
Park transformation in the disturbed signal, the dynamic performance of SHEA in the
time domain can be characterized by the overshoot (σos) and the convergence time (ts) of
the response error e(t) to a unit step. Additionally, the steady-state performance can be
quantified by the steady-state error (ess) after convergence. It should be noted that ts is
defined as the time required for e(t) to reach and maintain within ±2%, while σos is defined
as the percentage of the overshoot peak of e(t) relative to ess, which can be expressed as (25):

ess = [u(t)− y0(t)]t→∞ (25)

Figure 7 depicts the convergence curve of SHEA error under different Nmax and µ. It
can be seen that ess can always converge to zero, regardless of the parameters. Therefore, its
steady-state performance is excellent. The increase of Nmax scarcely affects the value of σos
and ts, that is, the dynamic property is almost irrelevant to the system’s order. However,
the effect of µ on the dynamic performance of SHEA is not monotonic. With the increase of
µ, the convergence time (ts) tends to decrease and subsequently increase, which is brought
on by the overshoot (σos) that is from scratch and progressively raised.
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According to Figure 7, when Nmax = 14, the dynamic performance of SHEA is optimal
when µ is 0.024. Additionally, the convergence time (ts) is 9.2ms, while the overshoot (σos)
is only 0.72%. Combined with the above analysis, the SHEA model under this parameter is
controllable and stable, so µ in this paper is set as 0.024.

4. A Novel Voltage Sag Detection Method Based on SHEA and Its Optimization

As stated previously, the application of SHEA in voltage sag detection can be flexible
in that it can be connected either after or before Park transformation. For the former, SHEA
extracts the DC component and suppresses even-harmonic interference (2nd, 4th, 6th
harmonic, etc.) simultaneously, similar to the SRF-LPF structure in Figure 3a. For the latter,
it extracts the fundamental positive-sequence component and eliminates odd-harmonic
disturbance (3rd, 5th, 7th harmonic, etc.), like the DSOGI-SRF structure in Figure 3b. To
facilitate the subsequent optimization analysis, SHEA is placed after Park transformation
in this paper. The voltage sag detection method based on SHEA is shown in Figure 8. The
threshold for sag event is also defined as 0.9 p.u. Phase-locked loop (PLL) is integrated into
the proposed method for frequency adaptation. In addition, the gain compensator (GC)
in the figure is employed to improve the dynamic performance of SHEA, which will be
discussed below.
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SHEA realized the suppression of low- and medium-frequency harmonics that have a
significant impact on the accuracy of voltage detection, which is vividly shown in Figure 4
(h = 0). Therefore, the gains of low- and medium-frequency bands can be considered to be
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compensated to enhance the dynamic performance. The proposed gain compensator (GC)
consists of one zero and one pole. The discretized expression using bilinear transformation
is as follows:

GC(z) =
1 + s/ωL

1 + s/ωH

∣∣∣∣
s= 2

Ts
z−1
z+1

=
(1 + 2

ωLTs
)z + (1− 2

ωLTs
)

(1 + 2
ωHTs

)z + (1− 2
ωHTs

)
(26)

where ωL and ωH represent the transition angle frequency of the zero and the pole, re-
spectively. The selection of ωH is determined according to the highest harmonic number
Nmax of SHEA, which can retain a certain high-frequency attenuation ability of the algo-
rithm. Additionally, ωL determines the gain compensation ability of GC for the low- and
medium-frequency bands of SHEA.

The Bode diagram of SHEA after GC compensation at various ωL is depicted in
Figure 9. The gain of the envelope of SHEA with GC in the low- and medium-frequency
bands will be higher along with the decrease of ωL; in other words, the loss of the side-lobe
gain around DC signal will be smaller, which means that the dynamic response speed of
the system will be better theoretically.
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However, the performance is not directly correlated with the GC’s compensation
capacity of gain. The dynamic performance of SHEA with GC should meet the demand of
voltage sag detection. For instance, short rise time (tr) is needed to detect the occurrence
of voltage sag promptly; short convergence time (ts) ensures the quick calculation of the
accurate voltage compensation instructions for DVR; and small overshoot (σos) implies an
accurate sag judgment and a low probability of incorrect identification.

Figure 10 shows the convergence curve of error (e(t)) for SHEA with GC under unit
step with different ωL. As can be seen, with ωL decreases, the rise time (tr) decreases
dramatically (here, tr is defined as the moment when e(t) decreases to zero for the first
time). However, the decrease in the rise time is at the expense of system overshoot. For
example, when ωL = 314 rad/s, tr, decreased to 7.0 ms from 10.0 ms, but σos increased to
29.46% from 0.72% after compensation. In addition, the convergence time is hardly affected
by the zero-related parameter ωL, and SHEA with GC can always converge around 10 ms.

Under the premise that the accuracy of sag judgment is guaranteed, the rapidity of the
algorithm can be optimized according to Figure 10. The zero corresponding to σos = 15% is
chosen as the parameter for GC: ωL = 540 rad/s, with tr = 8.2 ms.
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5. Simulation Results

The performance of voltage sag detection based on SHEA with GC was verified in a
MATLAB/Simulink simulation toolbox and compared with traditional detection methods.
The voltage sag detection method needs to adapt to the nonideal power grid environment,
including three-phase unbalance, phase variation, frequency drift, low-frequency harmonic
disturbance, etc. The detailed simulation parameters are summarized in Table 1.

Table 1. The main parameters.

Parameter Value

Rated grid line voltage (Ug_line) 380 V (1.0 p.u.)
Rated frequency (f 0) 50 Hz

Symmetrical sag depth (Udepth1) 0.4 p.u.
Asymmetrical sag depth (Udepth2) 0.2 p.u.
Variation of frequency (f variation) +5 Hz

Variation of phase angle (θvariation) −20◦

Background harmonic distortion 0.05 p.u. 5th positive-sequence harmonic
0.05 p.u. 7th negative-sequence harmonic

Injected harmonic disturbance
0.10 p.u. 3rd positive-sequence harmonic
0.05 p.u. 5th positive-sequence harmonic

0.01 p.u. 5 kHz noise
Sampling frequency (f s) 10 kHz

Threshold for sag judgment (U+
threshold) 0.9 p.u.

The adaptability and robustness of the method is confirmed by complex operating
conditions. Several grid conditions are considered in this paper as follows:

(1) Symmetrical voltage sag with Udepth1 happens in a three-phase power grid.
(2) The three-phase power grid undergoes an asymmetrical sag of type C (as shown in

Figure 2) with Udepth2.
(3) Symmetrical voltage sag with Udepth1 occurs accompanied by phase variation θvariation.
(4) Symmetrical voltage sag with Udepth1 occurs accompanied by frequency drift of

f variation.
(5) Symmetrical voltage sag with Udepth1 occurs injected with harmonic disturbance,

which is given in Table 1.
(6) The three-phase power grid experiences an asymmetrical sag of type C accompanied

by phase variation of θvariation, frequency drift of f variation and harmonic disturbance.
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Moreover, aside from SRF-LPF and DSOGI-SRF, the numerical matrix in [16], SRF-RMS
in [35], and GDFT [27] are taken into account to make a comparison with the proposed
detection method. It should be noted that the feasibility and effectiveness of methods can
be validated by judge time tj and convergence time ts of zero steady-state error. The judge
time tj is the interval between the sag event occurrence and the moment when the method
reaches the threshold (0.9 p.u.).

5.1. Comparison with SRF-LPF and DSOGI-SRF

The performance of the proposed method is compared with that of the traditional
methods SRF-LPF and DSOGI-SRF in the cases of six sag conditions.

The results of symmetrical sag (grid condition 1) are shown in Figure 11a. Among the
three schemes, SHEA with GC minimizes the interval (tj) to identify the sag occurrence
as 1.0 ms compared with SRF-LPF (2.9 ms) and DSOGI-SRF (1.9 ms). Although the 2%
convergence time (ts) of SHEA with GC (10.4 ms) is a little longer than that of SRF-LPF
(9.3 ms), the convergence time around 10 ms is reasonable since the system overshoot (σos)
of SHEA with GC is in exchange for the judgment speed, which is consistent with the error
convergence analysis in Figure 10.

In Figure 11b, the results of the asymmetric sag (grid condition 2) are displayed. It
takes 5.4 ms, 4.5 ms, and 3.8 ms for SRF-LPF, DSOGI-SRF, and SHEA with GC respec-
tively to detect the occurrence of voltage sag. Additionally, asymmetric voltage sag will
induce a fundamental negative-sequence component, so that SRF-LPF without funda-
mental negative-sequence suppression ability has poor accuracy with steady-state ripple
around 10%Vp-p. In comparison, the fundamental negative-sequence component can be
effectively eliminated by both DSOGI-SRF and SHEA with GC, and the convergence is
finished at 7.4 ms and 5.5 ms, respectively. Specifically, SHEA with GC performs better in
both dynamic state and steady state.

The results for phase variation (grid condition 3) and frequency drift (grid condition 4)
are shown in Figures 11c and 11d, respectively. SHEA with GC needs only 1.0 ms to
detect the occurrence of voltage sag caused by additional phase jump, while the other
two methods, SRF-LPF and DSOGI-SRF, need 2.8 ms and 1.6 ms, respectively. The case of
frequency drift is analogous, where SRF-LPF, DSOGI-SRF, and SHEA with GC take 2.9 ms,
1.5 ms, and 0.8 ms, respectively. The convergence times ts in these two grid conditions are
close to those in grid condition 1. The difference is that the time ts is influenced by the
background harmonic distortion.

Figure 11e depicts the results of harmonic interference (grid condition 5). SHEA with
GC takes only 1.3 ms to determine the occurrence of voltage sag, while the traditional
method takes 3.3 ms and 2.3 ms as a benchmark. In addition, due to the insufficient
attenuation of SRF-LPF and DSOGI-SRF for low-frequency harmonics, there are low-
frequency oscillations after stabilization, and the ripple amplitudes are 5% Vp-p and 7%
Vp-p, respectively. In comparison, SHEA with GC completes zero-error convergence after
10.2 ms, showing a strong ability to resist the harmonics.

In the face of complex operating conditions such as asymmetric sag, phase variation,
frequency drift, and harmonic disturbance (grid condition 6 in Figure 11f), the dynamic
and steady performance of SHEA with GC is outstanding compared with conventional
techniques, especially when it comes to judging speed, convergence time, and steady-state
accuracy. SRF-LPF and DSOGI-SRF require 6.3 ms and 6.7 ms to determine the occurrence
of sag, whereas SHEA with GC requires only 4.5 ms. The traditional approaches suffer from
low-frequency oscillation following quasi-convergence, which is associated with negative-
sequence and harmonic components, while SHEA with GC has almost no fluctuation after
convergence at 12.3 ms and the steady-state accuracy is relatively high.
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frequency harmonic interference and high-frequency noise; (f) asymmetrical sag with comprehensive
disturbance.

5.2. Comparison with Other Methods

The performance of the proposed method is compared with that of other methods
such as numerical matrix, SRF-RMS, and GDFT. The test cases are selected as symmetrical
sag (grid condition 1) and harmonic interference (grid condition 5).

The results of symmetrical sag (grid condition 1) are shown in Figure 12a. The method
of numerical matrix consumes 1.1 ms to detect the occurrence of the sag event, while it
only takes 3.7 ms to finish the convergence for the voltage calculation after a significant
oscillation. Furthermore, the proposed SHEA with GC minimizes the interval (tj) to identify
the sag occurrence as 1.0 ms, in contrast with SRF-RMS (2.6 ms), GDFT (2.2 ms). Compared
with the numerical matrix, the 2% convergence time (ts) for the other three methods are
9.6 ms, 6.9 ms, and 10.4 ms. Although the dynamic response speed of the numerical matrix
is outstanding among the four schemes, the robustness is relatively poor, illustrated in
Figure 12b (grid condition 5). When encountering high-frequency noise, which has been
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neglected in the design process, the correct results will not be obtained by numerical matrix.
That is, the sag event will be missing. Separately, the other three methods, SRF-RMS,
GDFT, and SHEA with GC, spend, respectively, 3.0 ms, 2.6 ms, and 1.3 ms to determine the
occurrence of sag. In comparison with the results in Figure 12, SRF-RMS and GDFT have
longer judge times (tj) and faster convergence speeds. In other words, these two methods
have a strong robustness but a slow detection speed. Additionally, numerical matrix is
not suitable for nonideal grid conditions even though it has a relatively good dynamic
speed, and the proposed SHEA with GC performs well in both dynamic and steady-state
performance.
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high-frequency noise.

5.3. Reliability Discussion

In order to confirm the reliability of the proposed method, a shallow sag (0.95 p.u.)
with frequency drift (+5 Hz) and large harmonic distortion (0.10 p.u. 5th positive-sequence
harmonic and 0.10 p.u. 7th negative-sequence harmonic) is considered to be used as a false
sag event.

The results of five detection methods for shallow sag event are shown in Figure 13.
SRF-LPF, SRF-RMS, and SHEA with GC will not identify this event as a true sag event:
The false margins, defined as the difference between the lowest detection value and the
value (0.9 p.u.), are 0.04 p.u., 0.038 p.u., 0.015 p.u., respectively. Conversely, DSOGI-SRF
and GDFT will recognize the shallow sag event as a real sag event as a result of the large
harmonic distortion. Separately, numerical matrix will produce an incorrect judgement due
to the oscillation related to its sensitivity to the nonideal conditions.
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False positive events will trigger the DVR into compensation mode when no real
voltage sag has occurred. The proposed SHEA with GC method has a relatively fast
detection speed (Figures 11 and 12) and an acceptable false margin (Figure 13); that is, the
method makes a reasonable compromise between sensitivity and robustness. Furthermore,
the dynamic or steady-state performance of different voltage sag detection methods for
different nonideal grid conditions is summarized in Table 2. Additionally, the judge time of
GDFT under asymmetrical sag is smaller because it is based on the detection of each phase
rather than a three-phase positive-sequence component.

Table 2. The performance of the different voltage detection methods.

Grid Conditions Performance Metrics SRF-LPF
[32]

DSOGI-SRF
[36]

Numerical
Matrix [16]

SRF-RMS
[35]

GDFT
[25]

Proposed
Method

Symmetrical sag Judge time tj (0.9 p.u.) 2.9 ms 1.9 ms 1.1 ms 2.6 ms 2.2 ms 1.0 ms
Convergence time ts (2%) 9.3 ms 12.0 ms 3.7 ms 9.6 ms 6.9 ms 10.4 ms

Asymmetrical sag Judge time tj (0.9 p.u.) 5.4 ms 4.5 ms 1.2 ms 5.2 ms 3.5 ms 3.8 ms

Convergence time ts (2%) 10% Vp-p
ripple 7.4 ms 3.0 ms 7.5 ms 9.3 ms 5.5 ms

Symmetrical sag with
phase variation

Judge time tj (0.9 p.u.) 2.8 ms 1.6 ms 1.1 ms 2.3 ms 1.7 ms 1.0 ms
Convergence time ts (2%) 9.2 ms 28.6 ms 3.8 ms 9.5 ms 15.2 ms 13.3 ms

Symmetrical sag with
frequency drift

Judge time tj (0.9 p.u.) 2.9 ms 1.5 ms 1.1 ms 2.5 ms 1.9 ms 0.8 ms

Convergence time ts (2%) 9.3 ms 24.4 ms 25% Vp-p
ripple 9.4 ms 11.9 ms 10.2 ms

Symmetrical sag with
harmonic interference

Judge time tj (0.9 p.u.) 3.3 ms 2.3 ms missing 3.0 ms 2.6 ms 1.3 ms
Convergence time ts (2%) 5% Vp-p ripple 7% Vp-p ripple — 9.3 ms 6.5 ms 10.2 ms

Asymmetrical sag
with comprehensive

disturbance

Judge time tj (0.9 p.u.) 6.3 ms 6.7 ms missing 5.8 ms 2.2 ms 4.5 ms

Convergence time ts (2%) 7% Vp-p ripple 7% Vp-p ripple — 3.2% Vp-p
ripple 14.2 ms 12.3 ms

Shallow
symmetrical sag

False margin
(relative to 0.9 p.u.) 0.04 p.u. false false 0.038 p.u. false 0.015 p.u.

6. Conclusions

Traditional voltage sag detection methods are unable to quickly and accurately identify
the occurrence of voltage sag in harmonically disturbed nonideal power grids. In this
paper, a novel selective harmonic extraction method (SHEA) is proposed, and a parameter
configuration method based on controllability analysis, stability analysis, and convergence
analysis is given. Additionally, the dynamic response speed of the sag detection based on
SHEA is optimized with a well-designed gain compensator (GC). The simulation results
show that compared with the traditional sag detection methods, the method based on SHEA
with GC has good dynamic and steady-state performance as well as excellent disturbance
immunity, which can meet requirements under nonideal grid conditions. The proposed sag
detection method can provide theoretical support for the rapid start-up and high-precision
compensation of power quality equipment such as DVR.
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Nomenclature

CS Computer system
ASD Adjustable speed driver
PLC Programmable logic controller
DVR Dynamic voltage restorer
APF Active power filter
SHEA Selective harmonic extraction algorithm
GC Gain compensator
ESS Energy storage system
SCT Series-coupled transformer
VSC Voltage source converter
RMS Root mean square
FFT Fast Fourier transform
DFT Discrete Fourier transform
GDFT Generalized Discrete Fourier transform
GDSC Generalized delayed signal cancellation
WT Wavelet transform
RNN Recurrent neural network
LES Least error squares
FIR Finite impulse response
PLL Phase-locked loop
LPF Low-pass filter
DSOGI Dual second order generalized integrator
MSOGI Multi second order generalized integrator
LTI Linear time invariant
SRF Synchronously Rotating Frame
3ph-3w Three-phase and three-wire
ug_a, ug_b, ug_c Instantaneous grid voltage

Uh
+, Uh

− Amplitude of the hth harmonic component of the positive-sequence
(negative-sequence) of the grid voltage

ϕh
+, ϕh

− Phase angle of the hth harmonic component of the positive-sequence
(negative-sequence) of the grid voltage

ωg Actual angular frequency of fundamental voltage of power grid
ω̂g Estimated angular frequency of fundamental voltage of power grid
ω0 Rated angular frequency of fundamental component of u(k)
f 0 Rated frequency of power grid
ωL Transition angle frequency of the zero
ωH Transition angle frequency of the pole
Ts Sampling period
fs Sampling frequency
θ̂+1 Estimated fundamental positive-sequence phase angle
Û+ Positive-sequence amplitude of fundamental voltage of power grid
U+

threshold Threshold for sag judgment
u(k) Instantaneous measured voltage
uh(k) hth harmonic of u(k)
N Number of harmonic components of u(k)
Nmax Highest harmonic number of SHEA
xh(k) Discrete state variable of the hth harmonic component of u(k) in SHEA
Uh AC RMS of the hth harmonic
ϕh Phase angle of the hth harmonic
µ Controllability factor for SHEA
Sh Second-order rotating transformation matrix of the hth harmonic
S 2N-order square matrix
E1×2N Matrix of dimension (1 × 2N) with all elements of 1
Pc Controllability matrix for SHEA
Q Positive definite symmetric matrix in Lyapunov’s analysis
Ps Stability related matrix
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e(t) Response error
ess Steady-state error after convergence
σos Percentage of overshoot peak value
tr Rise time of error curve
ts Convergence time within ±2%
tj Judge time of sag detection related to threshold (0.9 p.u.)
Ug_line Rated grid line voltage
Udepth1 Symmetrical sag depth
Udepth2 Asymmetrical sag depth
f variation Variation of frequency
θvariation Variation of phase angle
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