
Citation: Kaliappan, V.K.; Yu, S.;

Soundararajan, R.; Jeon, S.; Min, D.;

Choi, E. High-Secured Data

Communication for Cloud Enabled

Secure Docker Image Sharing

Technique Using Blockchain-Based

Homomorphic Encryption. Energies

2022, 15, 5544. https://doi.org/

10.3390/en15155544

Academic Editors: R. Maheswar, M.

Kathirvelu and K. Mohanasundaram

Received: 23 June 2022

Accepted: 26 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

High-Secured Data Communication for Cloud Enabled Secure
Docker Image Sharing Technique Using Blockchain-Based
Homomorphic Encryption
Vishnu Kumar Kaliappan 1 , Seungjin Yu 2, Rajasoundaran Soundararajan 3 , Sangwoo Jeon 2, Dugki Min 2,*
and Enumi Choi 4

1 Konkuk Aerospace Design-Airworthiness Research Institute (KADA), Konkuk University, Seoul 05029, Korea;
vishnudms@gmail.com

2 Department of Computer Science and Engineering, Konkuk University, Seoul 05029, Korea;
seunggin.yu@gmail.com (S.Y.); ndrw5580@gmail.com (S.J.)

3 School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India;
rajasoundaransraja@gmail.com

4 Department of Computer Science and Engineering, Kookmin University, Seoul 05029, Korea;
emchoi@kookmin.ac.kr

* Correspondence: dkmin@konkuk.ac.kr

Abstract: In recent years, container-based virtualization technology for edge and cloud computing
has advanced dramatically. Virtualization solutions based on Docker Containers provide a more
lightweight and efficient virtual environment for Edge and cloud-based applications. Because their
use is growing on its own and is still in its early phases, these technologies will face a slew of security
issues. Vulnerabilities and malware in Docker container images are two serious security concerns.
The risk of privilege escalation is increased because Docker containers share the Linux kernel. This
study presents a distributed system framework called Safe Docker Image Sharing with Homomorphic
Encryption and Blockchain (SeDIS-HEB). Through homomorphic encryption, authentication, and
access management, SeDIS-HEB provides secure docker image sharing. The SeDIS-HEB framework
prioritizes the following three major functions: (1) secure docker image upload, (2) secure docker
image sharing, and (3) secure docker image download. The proposed framework was evaluated using
the InterPlanetary File System (IPFS). Secure Docker images were uploaded using IPFS, preventing
unauthorized users from accessing the data contained within the secure Docker images. The SeDIS-
HEB results were transparent and ensured the quality of blockchain data access control authentication,
docker image metadata denial-of-service protection, and docker image availability.

Keywords: cloud computing; secure communication; docker security; homomorphic encryption;
virtualization; blockchain; docker image sharing

1. Introduction

Over the past decade, a boom in virtualization technologies has made it possible
to divide a computer system into many discrete virtual environments. Technology has
progressed quickly and offers many advantages. The virtualization of servers in data centers
is one of the most popular uses of virtualization technology. An administrator can set up one
or more virtual system instances on a single server using server virtualization. These virtual
servers may be hired on a subscription basis and function similarly to physical servers.
The growing adoption of virtualization technologies drives the desire for a virtualization
solution that can offer dense, scalable, and secure user environments. There are various
virtualization products on the market right now. They can be divided into the following
two primary categories: container-based virtualization and hypervisor-based virtualization.
Container-based virtualization is also referred to as operating system virtualization since it
allows the virtualization layer to run as an application along with the operating systems [1].

Energies 2022, 15, 5544. https://doi.org/10.3390/en15155544 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15155544
https://doi.org/10.3390/en15155544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2517-3074
https://orcid.org/0000-0003-1747-9639
https://doi.org/10.3390/en15155544
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15155544?type=check_update&version=2


Energies 2022, 15, 5544 2 of 16

Containers emerged as mini virtual computers, which are lighter and more efficient because
a single operating system can manage all hardware. This means that ten times more virtual
environments can be run on a physical server than in hypervisor-based virtualization [2].
Containers are considered to be the future of virtual machines [3].

It is typical practice to use docker containers for provision across a shared physical
host. A docker image repository simplifies the publishing and shares high-quality docker
images generated by docker. Although the rapid deployment and sharing of docker
images have the significant advantage of allowing developers to share a wide range of
real-time apps [4,5], because there is no specific mechanism for dealing with docker image
vulnerabilities, the docker platform is easily vulnerable to numerous security threats. The
older packages containing vulnerabilities in the Docker image can be vulnerable to attacks
such as DoS, acquire privilege, and so on [6,7].

The distribution of bitcoin mining software is one example of an attack using Docker
images; this attack demonstrates that a variety of attacks may be carried out using Docker
images irrespective of the target Operating System (OS). As a result, one of the critical
difficulties in establishing a reliable Docker environment is the security of Docker images.
The fundamental cause of this Docker image vulnerability issue is users failing to perform
a separate security verification task on downloaded docker images or docker images that
are about to be submitted to a docker image repository.

In light of the preceding factors, we proposed a secure docker image sharing frame-
work with homomorphic encryption and blockchain (SeDIS-HEB) in this paper to secure
the docker images. The proposed framework uses homomorphic encryption to offer au-
thentication and access control to metadata for secure docker image sharing. During the
uploading step, the SeDIS-HEB framework scans the docker image, extracts the CBE list
of the docker, encrypts the matching docker image, and uploads it. Each value is called
ImageBCID and is based on hash values, symmetric keys, and user information. The image
is passed through user authentication during the sharing procedure via ImageBCID. Later,
the system was designed so that it could only be imported via ImageBCID authentication
by encrypting and recording the metadata to obtain docker images and CVE lists in the
blockchain. The uploader proceeds with the sharing procedure using the ImageBCID
issued in the subsequent sharing process. The uploader initially authenticates the user
with authorization to the related docker image using the issued ImageBCID and personal
information. It then provides access to docker metadata on top of the blockchain for users
who pass the authentication. Finally, it generates a new ImageBCID by fusing metadata
and homomorphically encrypted data from users that the uploader wishes to share with.
The shared user receives the shared docker image via their personal information and
ImageBCID.

This study makes the following significant contributions.

• A new paradigm for improving security in docker image sharing is proposed. The
Docker Image Sharing with Homomorphic Encryption and Blockchain (SeDIS-HEB)
platform enables metadata authentication and access control. The following three key
features were developed to ensure authentication and access control: secure docker
image upload, secure docker image sharing, and secure docker image download.

• The system structure for secure docker image sharing was implemented for the docker
image, ensuring integrity via IFPS.

• The proposed framework was validated with the Proof of concept.

The remainder of the paper is organized as follows: Section 2 elaborates on the back-
ground and current research findings of security measures for docker images. Section 3
describes the potential threads in docker images. Section 4 presents the proposed Secure
Docker Image Sharing with Homomorphic Encryption and Blockchain (SeDIS-HEB) frame-
work. Section 5 presents the implementation and results analysis, and Section 6 explores
the conclusion and future directions.



Energies 2022, 15, 5544 3 of 16

2. Background
2.1. Docker Image Systems

Docker image—The combination of program source code and library required for
service operation is called a Docker image [8]. The service is launched by placing the
docker image on top of the docker image container. Docker images must be chosen as the
default option, and Docker base images are read-only files. The base image is typically
comprised of operating system docker images such as Ubuntu and Debian. Users can
then use different environments by layering the packages they want to use on top of the
corresponding base image. Docker images can be built using docker build. Docker images
can be built in the Advanced Union Mount File System format (AUFS). The AUFS file
system supports the mounting of multiple image files using containers. Docker images
save much space on these systems by reusing the images used to develop other concepts,
allowing for a faster generation.

InterPlanetary File System (IPFS)—Docker images are usually heavy due to their nature.
Hence, storage for them in the blockchain is limited. It takes longer at the start to save data
in the blockchain since it mines blocks first and then saves data in them. Furthermore, while
storing data in blocks, there is a problem with expanding the size of the block. We used
IPFS to efficiently separate data storage [9]. A distributed P2P file system that connects
all computers is known as an interplanetary File System (IPFS). When the files are shared,
IPFS assist in partitioning and distributing them to nodes in the IPFS network. The IPFS
hash is returned to the user based on the uploaded file’s contents, which will be recognized
as the same file if it is kept on the network under a different name. The distributed file can
be accessed using the IPFS hash when a user requires a file.

2.2. Secure Docker Image Systems

CVE (Common Vulnerabilities and Exposures)—CVE is an abbreviation for a publicly
available list of computer security issues. It is typically referred to as the CVE ID number
allocated to a security problem. CVE allows professionals to collaborate to prioritize and
address vulnerabilities to manage safer computer systems. CVE is overseen by MITRE
Corporation [10], which receives funding from the US Department of Homeland Security’s
Cybersecurity and Infrastructure Security Agency. When a new CVE is reported, the CVE
database registers and identifies each new CVE, allowing developers to stay up to date with
the latest information by locating and continuously updating the system contained in their
approach. CVE also provides a CVSS score [11] for security, allowing users to determine
how secure the data is.

Docker Scan—Docker scanning can generate a list of CVEs for docker images. First and
foremost, because the docker image is composed of layers, as previously mentioned, the
docker scan examines the packages in each layer. Once verification is completed, the NVD
dataset [11] is checked for security issues. In this procedure, we cross-check the CVE list
and return the stated information to the user. Anchore [12], Clair [13], and Snyk Engine [14]
are examples of standard Docker image scanning software. In this work, we utilized Snyk
Engine docker scans to scan images that users download from the hub or their docker
images.

Blockchain—Satoshi Nakamoto invented blockchain, a distributed book system, in
2008 [15]. Blockchain technology is primarily kept in a chain-based distributed storage
system based on peer-to-peer (P2P) networks of small data units known as “blocks”. It
is a distributed book storage format that allows arbitrary users to modify the blockchain
and anyone to inspect transactions or modifications through the blockchain. This research
proposes a distributed system that stores metadata using blockchain as a database via
a distributed book storage structure [16]. Each node must be mined to add data to the
blockchain. A consensus technique known as proof-of-work [17] is required for each node
in the mining process for each new block.

Furthermore, denaturing the data necessitates modification of the majority of the
node’s books, which is difficult. Blockchain was previously made available to anybody



Energies 2022, 15, 5544 4 of 16

via public blockchain but currently employs private blockchain for usage by a specific
organization or hybrid blockchain for a combination of the two. In this research, we used
the Ethereum public blockchain.

Smart contract—Ethereum is a public blockchain that may be used to build decentral-
ized applications [18]. The smart contract is a characteristic that distinguishes the Ethereum
blockchain from others. An intelligent contract [19], a notion of Ethereum founder Vitalik
Buterin, outlines the process that must be executed in advance, and when requested by the
contract, it acts as described in the smart contract. The benefit of this method is that if the
requester meets the contract requirements without the assistance of a third-party interme-
diary, the requester provides the desired data and returns it, and if this does not satisfy the
criteria, the contract is stopped. Smart contracts are written in their own languages, which
can be written in Solidity [20], which is similar to object-oriented programming languages
such as JAVA and C++.

Symmetric, asymmetric encryption—In this work, we used various encryption methods
to ensure the confidentiality of the data. The encryption method employs symmetric,
asymmetric, and homomorphic keys. “Symmetric key encryption” refers to algorithms that
enable encryption and decryption using the same key. Symmetric encryption offers the
advantage of swiftly encrypting any data. This paper proposed an encryption procedure
for datasets containing a large amount of data. The AES256 technique generates a key and
encrypts the data using the generated key.

In asymmetric encryption [21], the user has a public and a private key, unlike symmet-
ric keys. Data encrypted with a public key can be decrypted with a private key and vice
versa. Asymmetric encryption has the advantage that symmetrically encrypted keys can
only be utilized by users who encrypted keys with public keys for that symmetric encryp-
tion. Furthermore, asymmetric encryption is used for data registered in the blockchain to
maintain the confidentiality of the data transmitted.

Homomorphic Encryption—Homomorphic encryption is a cryptographic method de-
signed to allow operations to be carried out with encrypted data [22]. There are two types
of homomorphic encryption: partial homomorphic encryption and fully homomorphic
encryption. In this work, partial homomorphic encryption, also known as Pailier meth-
ods [23], was used to improve efficiency with less computation and high security. In
addition, partial homomorphic encryption is used for access control and authentication.

3. Related Work

Several studies were conducted in order to avoid malicious docker container image
distribution as well as malicious forgery or alteration of images in the repository. The
relevant studies are described below.

Q. Xu et al. propose a blockchain-based Decentralized Content Trust [24] with the
possibility of extending studies on notary services. Once the docker image is verified, the
signature is converted into a transaction, and the transaction is uploaded to bitcoin using
the Carbon chain’s unique library. The purpose was to ensure signed data denial blocking
to provide decentralized services. However, while the service validates the signature of the
docker image, no scans of the docker image are performed, making it difficult to determine
whether the docker image is malicious.

J. Sun et al. [25] developed a Blockchain-based automatic container cloud security by
performing a vulnerability check on the docker image and registering it on the Ethereum
blockchain. The vulnerability checks on the docker image are unambiguous. The user’s
information and other data are also recorded, leading to flaws in the docker image and
its signature. This determines the CVE linked with the vulnerability and provides precise
information about docker images. In this study, the limitation is that personal information
could be revealed when data were saved in the blockchain. Similarly, Y. Zheng et al. [26]
introduced ZeroDVS, a secure container image based on inheritance graphs. This research
aimed to find the vulnerabilities of the docker image through the layer of the docker
image. The public container images were checked for inherited images, the relationship



Energies 2022, 15, 5544 5 of 16

was examined, and the user was notified of any vulnerabilities. There is no mechanism for
secure sharing in the proposed solution.

To secure applications, S.H. Han et al. [27] developed a container image access control
architecture. Unauthorized users are prevented from accessing the container with basic
user information. For ID authorization, each time the user ID is retrieved after downloading
the container image, it is registered with the kernel policy administrator to grant ID-based
privileges. The author claims that by using this strategy, unauthorized users will be unable
to utilize the Docker image without authentication.

The Docker Image Vulnerability Diagnostic System (DIVDS) was developed by Soon-
hong Kwon et al. [11] to allow users to identify the vulnerability level of each docker
image through the vulnerability evaluation process. The evaluation process is based on the
combined relationship of vulnerable software packages and vulnerability information in a
docker image. DIVDS assures a reliable docker-based application build environment by
preventing users from downloading or uploading vulnerable docker images in a docker im-
age repository. Similarly, Manish K A et al. [28] proposed architecture to ensure security for
docker containers. The proposed architecture includes a plugin that uses a CI/CD pipeline
to deploy the application and to ensure the security of the application. The architecture
ensures security from the starting stage of application development to the deployment
stage including plugin for docker build. The application is bundled in the form of images
along with required libraries, pushing the images to a docker registry. The vulnerabilities
in both static and dynamic resource allocations are validated. The entire implementation is
automated without any manual interventions. The docker security levels’ application mech-
anism was proposed by Vipin Jain et al. [29] to test the different platforms and measure the
security attribute to access the resource.

Blockchain-based lightweight security framework named BlockchainBus was pro-
posed by Joseph Doyle et al. [30] to secure virtual machines when migrating from one
cloud to another. BlockchainBus is implemented using the HyperLedger solution and
deployed on the Microsoft Azure cloud platform. The proposed framework was validated
by comparing with the overall VM migration time and was determined as 2.36 s, whereas
the overall VM migration time was 5 s. Similarly, a general call policy restriction method
for the domestic operating system based on a docker container was proposed by Xu Xin
et al. [31]. The proposed scheme provides practical security protection reinforcement for
containers. An active defence mechanism was developed to filter and isolate container
threats. The following security measures were considered in a study that Xu Xin et al.
conducted: filtering system call, authorized installation, real-time signature verification,
monitoring, resource control, access control and boundary protection.

Applying Zero Trust Containers Architecture (ZTCA) [32] to secure docker containers
was proposed by Darragh Leahy et al. [33]. Initially, the authors investigated the security
state of a default deployment of the docker container engine on Linux and analyzed how
the Zero Trust containers Architecture can be extended beyond the networking to secure
docker deployments. The author validated the ZTCA with the following five test scenarios:
(a) grant user access to remote API, (b) prevent Container network attack, (c) review
a docker image, (d) review an existing container and (e) deploy a privileged container.
Similarly, Robail Yasrab [7] developed a mitigation strategy to secure two types of docker
attacks, namely insider and outside attacks. The proposed solution was based on an access
control methodology to ensure appropriate access management. In this method, the image
maintainers ship the SELinux policy module and its images to the host platform. The policy
models for an image are stated in the docker file and placed in the image metadata during
creation of the image. The author claims that correct configuration and security policy
ensure the greater security of a docker container.

Ferdinand Brasser et al. [34] developed a novel container security architecture named
Trusted Container Extension (TCX). The proposed architecture ensured integrity and
confidentiality for containers executed in the untrusted cloud. The TCX provided an
extended integration to the docker container which was based on AMD Secure Encrypted



Energies 2022, 15, 5544 6 of 16

Virtualization (SEV) [35] and the kata container project [36]. TCX acts as a secure channel
for communication so that the docker cannot distinguish between locally or remotely
executed containers. The proposed architecture was validated with three benchmarks,
namely (a) computational intensive workloads, (b) network intensive workloads and (c)
memory intensive workloads. The author claims a performance impact of 5.77% and
network throughput overhead of 22.1% for the NGINX webserver and overhead of 13.36%
for the Apache webserver.

According to the literature, no framework specifies how to share the Docker image
safely. This allows unauthorized users to edit the docker image and hence update the
identity, allowing the attack to proceed through the docker image. This paper examined
suitable user authentication for Docker images in order to safeguard their sharing, allowing
only authorized users to view and share docker image data. To prevent successive docker
images from being lost, the Secure Docker Image Sharing with Homomorphic Encryption
and Blockchain (SeDIS-HEB) architecture was developed in this research which accounted
for data stability, availability, and integrity.

4. Blockchain-Based Homomorphic Encryption (SeDIS-HEB Framework)

The proposed architecture uses Homomorphic encryption, authentication, and access
control to provide docker images securely. The functionality implementation of a docker
image with modifications made using the SeDIS-HEB system’s existing docker architecture
is shown in Figure 1. The SeDIS-HEB system consists of the following four components:
the SeDIS-HEB Docker client, the Docker Engine and Docker hub, the IPFS peer-to-peer
network, and the Ethereum blockchain peer-to-peer network. The existing Docker client
module was modified to include homomorphic encryption authentication. SeDIS-HEB is
made up of several submodules that work together to ensure the security of docker image
upload, image share, and image download at the DI customer’s request.

Figure 1. SeDIS-HEB System Architecture.

4.1. SeDIS-HEB Docker Client

The security components are integrated into the existing docker container design. The
source code used is from the docker repository [37]. The modified source is updated in the
following repository (https://github.com/seunggin/SDIS accessed on 25 July 2022). The
following provides a detailed explanation of the three newly integrated modules:

Docker Image Secure Sharing Manager—The docker image secure manager ensures the
following three logics: secure docker image upload for secure uploading of docker images,
secure docker image share for sharing uploaded docker images, and secure docker images
image download for download by the recipient. To make all the three logics possible, the
docker manager ensures each controller, encryption module, and registry can be requested
to perform the functions and pass on the resulting values.

https://github.com/seunggin/SDIS


Energies 2022, 15, 5544 7 of 16

HE Authentication & Access Controller—Homomorphic encryption, authentication, and
access control are provided by the HE authentication and access controller. Upon receipt of
essential information such as user data, docker image, CVE lists, HE authentication, and
access controller module, the data are cross-checked and sent to the encryption module,
where encryption is completed, and the image BCID is received. The image BCID controls
access to the IPFS access controller.

Encryption Module—Paillier Homomorphic Encryption (PHE) [23], AES-256 symmetric
encryption [38], and RSA-256 Asymmetric Encryption [21] were the three methods of
encryption used in this module. The authentication and control access to the individual
data were ensured using the Paillier homomorphic encryption technique. Before posting
docker images and CVE lists to IPFS, AES-256 was used to encrypt them. To preserve the
security of symmetric key data, RSA-256 asymmetric encryption was utilized to decrypt
the docker image and CVE list hash values uploaded on top of the blockchain, as well as
the encrypted metadata.

4.2. Docker Engine and Docker Hub

This paper used the existing Docker Engine and Docker Hub. Docker Engine is in
charge of publishing docker images and managing containers, whereas Docker Hub [39] is
in charge of publicly storing docker images.

4.3. IPFS P2P Network

The proposed architecture securely used IPFS to store the docker images and CVE
lists. The user-requested files are sent to the user-registered node. The IPFS peer-to-peer
(P2P) network is linked and connected with other peer nodes simultaneously to ensure the
smooth transfer of the requested data.

4.4. Ethereum Blockchain P2P Network

Through the Smart Contract capability for data registration and invocation, the
Ethereum blockchain P2P network grants access control to the docker image metadata.

4.5. Homomorphic Authentication via ImageBCID

Fowler_Noll-Vo function process—The Fowler Noll Vo (FNV) hash function varies sub-
stantially with a small change in value. We can see in the above ImageBCID generating
procedure that we first processed FNV hash functions before proceeding to homomorphic
encryption. This solution requires the following four types of data: user information,
hashes obtained after uploading the docker to IPFS, hashes obtained after uploading the
CVE list to IPFS, and symmetric keys that encrypt the docker image and CVE list using
the AES-256 algorithm. After string processing, the four values were transformed into
integers using the FNV hash algorithm. Converting these values to integers allows them
to be used in homomorphic encryption. The three docker image-related data cannot be
modified during this operation; however, the user information provided by the user can
only be submitted by those who know the information accurately. Even if this value is
significantly changed, the FNV hash method yields a different output.

4.6. Homomorphic Encryption Authentication and Access Control with ImageBCID

Docker image sharing and downloading require authentication processes in order to
gain the required docker image rights. The certification process produced two results. This
occurs when authentication fails for the incorrect user but passes for the correct user. When
a user fails to authenticate, all functions, regardless of process, are terminated, and the user
is notified of the failure. It also restricts access to blockchain data, which is required to
obtain IPFS docker images. We provided access control over actions via data for docker
image calls on top of the blockchain for users that are correctly logged in. The DI Owner
can share docker images with others during this process, and the DI Consumer can decrypt
and use docker images that are encrypted and downloaded from the shared docker images.



Energies 2022, 15, 5544 8 of 16

Use Case1: Secure docker Image Upload—The first use case is to upload the docker images
securely. The docker image owner utilizes this functionality to check for vulnerabilities
before publishing the docker image. Then, the docker image and CVE list are uploaded
after the docker image has been analyzed. The ImageBCID key value will then be returned.
This is the most critical value for future Docker image downloads or sharing.

Each CVSS value is generated separately to create the CVE list. The corresponding
values are then gathered, and access is limited based on CVSS ratings. As seen in Figure 2,
the user initially requests that the Docker image be uploaded. When the command is
received, the Docker Command Line performs the Docker Image Secure Sharing Manager’s
Secure Docker Image Upload logic (DISSM). The DISSM uses the Docker API to request a
scan of the Docker image and then uses the CVE Access Controller to obtain the CVSS score
of the CVE list. If the CVVS rating exceeds the threshold, the CVE access controller prevents
the Docker image from being uploaded. Otherwise, just the necessary docker image and a
list of CVEs are returned. The safe docker image upload pseudocode is depicted in code
snippet 1.

Figure 2. Sequence flow of the secure docker image upload.

Once the vulnerability is identified using the CVE list, the docker image is symmetri-
cally encrypted using AES-256 symmetric encryption and the CVE list. Using IPFS Access
Controller, the encrypted picture is then uploaded to IPFS (IPFS-AC). The IPFS-AC gener-
ates the corresponding hash value and returns it to the SeID client. As previously shown,
the user can submit a Docker image and create an ImageBCID containing all the data.
Because user data are hashed with FNV and consists of an ID and password, there is no risk
of the value leaking even if it is later recovered. Prior to Homomorphic encryption, the FNV
function was used to generate hashes and Homomorphic encryption. This approach creates
value using the Paillier Homomorphic encryption technique, which allows encryption
with the public key. The imageBCID is formed by combining the values produced via
homomorphic encryption. The value is then used as the blockchain’s key value in order
to obtain further data and authenticate users. The ImageBCID is then registered on the



Energies 2022, 15, 5544 9 of 16

blockchain with key values using BC Access Controller smart contracts. After that, the
ImageBCID is returned to the user.

1 if docker score = assigned score then
2 deliver the corresponding doker image and CVE list
3 else
4 return Null
5 end if
6 return CVVS score
7 end function
8 CVEList = CVE_AccessControl (Cvelist.json)
9 AESKey = sha256 (marshaIJSON (ownerInfo + CVEList)) //

Encrypting docker image and CVE Lists
10 enDimage, enCVE = AES256Encryption (AESKey, Docker_Image,

CVElist) //file upload to IPFS
11 homoCVE, homodimage, homoAESKey, homoOwnerInfo =

homoRSAEncryption (homoPublicKey, FNVHash (CVE_IPFSHash),
FNVHash (Dimage_IPFSHash), FNVHash(AESKey), FNVHash(

ownerInfo)) //return the hash value
12 ImageBCID = makeBCID_by_homoAdd (homoCVE + homoDimage +

homoAESKey + homoOwnerInfo) // Image BCID creation and
blockchain registration

13 rsaCVE_IPFSHash, rsaDimage_IPFSHash, rsaAESKey = RSAEncryption
(ownerPublickey, CVE_IPFSHash, Dimage_IPFSHash,

AESKey)
14 registertoBlockchain (ImageBCID, rsaCVE_IPFSHash,

rsaDimage_IPFSHash, rsaAESKey)

Code Snippet 1: Secure docker image upload (Input: Address, Docker Image name, CVEs.
Output: upload secure docker image, check for vulnerabilities, CVE list, ImageBCID
key value.

4.7. Use Case2: Secure Docker Image Share

Secure Docker Image Share presupposes that a docker image is uploaded as indicated
in Figure 3, in which the owner of the docker image has a corresponding ImageBCID,
and the user who wishes to share the docker image has homomorphically encrypted it.
This technique enables docker image owners to share the docker images with requested
users safely. The new ImageBCID is generated, and the same is shared with the user.
As illustrated in Figure 3, the metadata are retrieved from the docker image through
blockchain via the BC access controller and image BCID. The retrieved metadata will be
used for authentication using FNV hash functions and homomorphic encryption. Once the
data are encrypted, the image is authenticated using the personal password of the docker
image owner. Further decryption is carried out if the two values are matched. The safe
docker image share pseudo code is depicted in code snippet 2.

To share these values again, it undergoes asymmetric encryption using the DI Con-
sumer’s public key. New values are prepared to be registered in the blockchain as a result
of this. The data are then registered with the new New Image BCID as the key value by the
BC Access Controller. It then returns the user the New Image BCID.

4.8. Use Case3: Secure Docker Image Download

Secure Docker Image Download works on the assumption that a docker image has
been uploaded and that the image BCID is known. Figure 4 depicts the full process of
the DI Owner downloading the image from the DI Consumer after it has been shared. To
begin, the ImageBCID is transmitted to request the download of the corresponding docker



Energies 2022, 15, 5544 10 of 16

image. The SeDIS-HEB Docker client imports Docker image metadata that matches the
ImageBCID. Once the matching process is carried out, the docker metadata is decrypted
by the DI consumer with the private key transmitted through the FNC. Like the previous
homomorphic encryption authentication, the downloader combines the rest of the metadata
with their password and proceeds with the authentication procedure. Users who complete
the authentication process will be sent encrypted docker images and CVE lists via decrypted
data. The docker image and CVE list are then re-symmetrized using asymmetric decrypted
symmetric keys. It then returns the user the docker image and CVE list. The pseudocode is
illustrated in code snippet 3.

1 CVE_IPFSHash, Dimage_IPFSHash, AESKey = RSADecryption (
ownerPrivateKey, rsaCVE_IPFSHash, rsaDimage_IPFSHash,
rsaAESKey) // CVE hash, image hash, AES key

2 homoCVE, homoDimage, homoAESKey, homoOwnerInfo =
homoRSAEncryption (homoOwnerPublicKey, FNVHash (
CVE_IPFSHash), FNVHash (Dimage_IPFSHash), FNVHash (AESKey),
FNVHash (ownerInfo)) // Verification with access control

3 function Verification Result (FHE Access control) Verification
Result = FHE_AccessControl (imageBCID, homoCVE, homoDimage

, homoAESKey, homoOwnerInfo) // Verification with access
control

4 function Verification Result (FHE Access control) Verification
Result = FHE_AccessControl (imageBCID, homoCVE, homoDimage

, homoAESKey, homoOwnerInfo)
5 If verification Result == false then
6 return Null
7 else
8 newImageBCID = makeImageBCID (homoConsumerInfo, homoCVE,

homoDimage, homoAESKey)
9 end if

10 return verification Result
11 end function
12 rsaConCVE_IPFSHash, rsaConDimage_IPFSHash, rsaConAESKey =

RSAEncryption (consumerPublicKey, CVE_IPFSHash,
Dimage_IPFSHash, AESKey) // register the newly generated
BCID with blockchain

13 registertoBlockchain (newImageBCID, rsaConCVE_IPFSHash,
rsaConDimage_IPFSHash , rsaConAESKey)

Code Snippet 2: Secure docker image share (Input: Request docker metadata. Output: New
image BCID).



Energies 2022, 15, 5544 11 of 16

Figure 3. Sequence flow of the secure docker image share.

Figure 4. Sequence flow of the secure dockerimage download.



Energies 2022, 15, 5544 12 of 16

1 request Docker Image Metadata (newImageBCID)
2 homoCVE, homoDimage, homoAESKey, homoConsumerInfo =

homoRSAEncryption (homoConPublicKey, FNVHash (CVE_IPFSHash)
, FNVHash (Dimage_IPFSHash), FNVHash (AESKey), FNVHash(
ownerInfo)) //homomorphic encryption

3 VerificationResult = FHE_AccessControl (newImageBCID, homoCVE,
homoDimage, homoAESKey, homoConsumerInfo) //Verification

of results
4 function Verification Result (FHE Access control)
5 Verification Result = FHE_AccessControl (newImageBCID, homoCVE

,
6 homoDimage, homoAESKey, homoConsumerInfo)
7 If verification Result == false then
8 return Null
9 else

10 enCVE, enImage = downloadFromIPFS (CVE_IPFSHash,
Dimage_IPFSHash)

11 end if
12 return verification Result
13 end function
14 CVElist, Dimage = AES256Decrypt (AESKey, enCVE, enDimage) //

decryption using AES

Code Snippet 3: Secure docker image download (Input: Request docker metadata. Output:
Docker image, CVE List).

5. Verification and Validation

Verification and Validation are carried out using the docker that does not provide
security guarantees for vulnerable software packages installed within the docker image.
This paper applied the proposed SDIS HEB to the docker environment when uploading,
sharing, or downloading docker images. To demonstrate the applicability of the SDIS HEB,
we verified and validated the SDIS HEB works correctly. SDIS HEB security was ensured
with the following quality properties.

5.1. Quality Properties

The quality properties are studied in this section to verify and validate the proposed
security mechanism to ensure the docker image is securely shared among the user.

Homomorphic-based authentication—The docker image is not shared with anyone who
is not the Data Owner of that docker image or who is not allowed to share it. By collecting
the docker image provided by other attackers, this authentication stops the attacker from
polluting other people’s docker containers. This research provides authentication using
ImageBCID, created via homomorphic encryption. Even if an unauthorized user attempts
to download with ImageBCID, the download will fail since ImageBCID is not produced
using the personal information they provided during the authentication process.

Docker Image Content-Based Access Control with Homomorphic Encryption—In this re-
search, we used ImageBCID to control metadata access for Docker images stored on the
blockchain. The docker image stored on IPFS cannot be accessible if no metadata is im-
ported. The role of ImageBCID is to offer access control to blockchain data activities.
ImageBCID contains metadata from Docker images as well as personal passwords that
are encrypted after the hash, granting them access to data in the blockchain via that value.
This document stops users from computing their data if they fail to authenticate in an
Encryption module. In other words, the blockchain’s access control fails to retrieve docker
images and CVE lists from IPFS.



Energies 2022, 15, 5544 13 of 16

Confidentiality of data uploaded to blockchain and IPFS—The system then uses symmetric
and asymmetric encryption to encrypt data written on the blockchain. Symmetric encryp-
tion was employed during the encryption operation for CVE lists and docker images with
large data volumes. Metadata is intended to discourage users from using IPFS, even if
they download it without authorization. Symmetric keys for decrypting metadata and
hash values for retrieving data from IPFS are also encrypted and stored on the blockchain
using asymmetric keys. As a result, even if the data are obtained by someone else, they
cannot be used. During the ImageBCID creation process, the user sends a homomorphically
encrypted value to the data owner instead of the original password of the Data consumer
and then constructs a new ImageBCID using the encrypted value.

Denial containment of Docker image metadata—If the docker image metadata are cor-
rupted, obtaining the related docker image is generally difficult. On the other hand, this
approach prevents metadata deterioration since it maintains metadata about Docker images
in the blockchain. Because of its structure, blockchain involves modifying the books of
most nodes to corrupt data, which is essentially impossible. If an image posted to this
system is infected, it is hard to dispute that the docker image was uploaded.

Stability for Docker Image—Other prior studies identified a lack of research on docker
image storage. Therefore, this effort provided availability for this component through
distributed storage. Because encrypted docker images and CVE lists are distributed over
IPFS, local repositories utilizing existing containers may overcome the disadvantages of
disappearing and data disappearing simultaneously, ensuring stability.

Integrity to Docker Image—Because IPFS returns hash values based on the file’s contents,
the hash values of the file change as the file’s content changes. After the encryption
procedure in this system, the hash values are placed on the blockchain. Following that, the
encrypted hash values are re-imported, assuring the integrity of the docker image and the
CVE list.

5.2. Comparative Analysis of the Proposed Work

As shown in Table 1, five related studies and the systems provided in this paper were
divided and compared based on six items. We show that there were deficiencies in each
related study and that the system structure proposed in this paper provides each of the
quality attributes discussed in Section 3. Each property lacking in existing relevant studies
is guaranteed through the proposed architecture. We provided non-repudiation for docker
image metadata via blockchain, docker image vulnerability check with docker scan, user
authentication for docker images, confidentiality guarantees for each docker image and
metadata, access control for docker images, and stability in storing docker images reliably.

Table 1. Comparative analysis of SDIS HEB with landmark methods.

Core Security Essentials Notary Decentralized
Content Trust Security System Zero DVS Container Image

Access Control SDIS HEB

Blockade and Docker Image Information NO YES
(bitcoin)

YES
(Ethereum) NO NO YES

(Ethereum)

Vulnerability checking for docker image NO NO YES
YES

(image check
inheritance)

NO YES
(Docker Scan)

Authentication procedures for docker image unique NO NO NO NO NO YES
(ImageBCID)

Ensure confidentiality of docker information NO NO NO NO NO YES
(AES, RSA)

Docker image data access control NO NO NO NO
YES

(Container
Access control)

YES
(ImageBCID)

Stability for docker image NO NO NO NO NO YES
(IPFS)



Energies 2022, 15, 5544 14 of 16

5.3. Evaluation and System Performance Analysis

We can observe that only metadata computations have been performed, with no actual
file uploads or downloads. Figures 5–7 depicts the time spent in the sharing procedure.

Figure 5. Comparison of upload time with Alpine, Debian and CentOS.

Figure 6. Comparison of shared time with Alpine, Debian and CentOS.

Figure 7. Comparison of download time with Alpine, Debian and CentOS.

The results show that alpine, Debian, and centos were uploaded from the official
repository. However, Ubuntu had multiple flaws in the image, causing the upload to fail.
Furthermore, ImageBCID was issued for all images using homomorphic encryption in a
relatively short period of time using the paillier method. Likewise, wrongly supplied user
information can be noticed to keep the user away from the data.

While reusing the docker image, the problem we face is that when the user downloads
the data randomly and while sharing with the other user, our proposed work does not
block the data flow. This leads to a lack of prevention of the unauthorized reuse of docker
images. Currently, we are developing a Digital Right Management (DRM)-based prevention
mechanism to prevent the unauthorized reuse of docker images.

6. Conclusions

This study proposed a distributed framework named Safe Docker Image Sharing
with Homomorphic Encryption and Blockchain (SeDIS-HEB) for container image security



Energies 2022, 15, 5544 15 of 16

to solve the security issues in one of the most extensively used infrastructures in cloud
services. The following major findings were obtained:

(a) In the proposed frameworks, the information about the Docker image owner and
docker image consumer users is accessed only by authorized users. This is achieved
by providing a control scheme approach through authentication procedures and
blockchain data through homomorphic encryption.

(b) While storing the docker image in IPFS, the confidentiality and integrity of data are
ensured through asymmetric encryption.

(c) Homomorphic encryption allows users to secure their privacy by using features that
can be computed by encrypting DI Consumer’s privacy during docker image sharing.

The SeDIS-HEB architecture combines cutting-edge decentralized technologies such as
IFPS and blockchain as core kernels. A secure scan will check for docker images on image
upload to discover vulnerabilities in docker images, ensuring docker image metadata
denial-of-service protection. We also provided authentication and access control using
ImageBCID, which was constructed using homomorphic encryption, and privacy for the
remaining data using various asymmetric and symmetric encryption methods. Further-
more, we are introducing the unauthorized reuse of docker images utilizing Digital Right
Management (DRM) technology to improve the security of the docker image.

Author Contributions: Conceptualization, V.K.K., S.Y. and D.M.; methodology, D.M., S.Y.; software,
S.Y.; validation, V.K.K., S.J., D.M. and R.S.; formal analysis, V.K.K.; investigation, D.M.; resources,
E.C.; data curation, E.C.; writing—original draft preparation, V.K.K. and S.Y.; writing—review and
editing, V.K.K. and S.Y.; visualization, D.M. and E.C.; supervision, D.M.; project administration,
D.M.; funding acquisition, D.M. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A
1A03046811). This work was supported by the National Foundation of Korea (NRF) grant funded by
the Korea government (Ministry of Science and ICT (MIST)) (No. 2021R1A2C209494311).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
2. Burniske, C. Containers: The Next Generation of Virtualization? 2016. Available online: https://ark-invest.com/articles/analyst-

research/containers-virtualization/ (accessed on 25 July 2022).
3. Rodriguez, M.A.; Buyya, R. Container-based cluster orchestration systems: A taxonomy and future directions. Softw. Pract. Exp.

2019, 49, 698–719. [CrossRef]
4. Merkel, D. Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014, 239, 2.
5. Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 2015, 49, 71–79. [CrossRef]
6. Tunde-Onadele, O.; He, J.; Dai, T.; Gu, X. A study on container vulnerability exploit detection. In Proceedings of the 2019 IEEE

International Conference on Cloud Engineering (IC2E), Prague, Czech Republic, 24–27 June 2019; pp. 121–127.
7. Yasrab, R. Mitigating docker security issues. arXiv 2018, arXiv:1804.05039.
8. Rad, B.B.; Bhatti, H.J.; Ahmadi, M. An introduction to docker and analysis of its performance. Int. J. Comput. Sci. Netw. Secur.

(IJCSNS) 2017, 17, 228.
9. Rajalakshmi, A.; Lakshmy, K.; Sindhu, M.; Amritha, P. A blockchain and ipfs based framework for secure research record keeping.

Int. J. Pure Appl. Math. 2018, 119, 1437–1442.
10. MITRE. CVE Records. Available online: https://www.cve.org/ResourcesSupport/Resources (accessed on 17 June 2022).
11. Kwon, S.; Lee, J.H. Divds: Docker image vulnerability diagnostic system. IEEE Access 2020, 8, 42666–42673. [CrossRef]
12. Anchore. Docker Image Security; Anchore: Santa Barbara, CA, USA, 2022.
13. Clair. Clair—Static Analysis of Vulnerabilities. 2020. Available online: https://github.com/quay/clair (accessed on 23 June

2022).

http://doi.org/10.1109/MCC.2014.51
https://ark-invest.com/articles/analyst-research/containers-virtualization/
https://ark-invest.com/articles/analyst-research/containers-virtualization/
http://dx.doi.org/10.1002/spe.2660
http://dx.doi.org/10.1145/2723872.2723882
https://www.cve.org/ResourcesSupport/Resources
http://dx.doi.org/10.1109/ACCESS.2020.2976874
https://github.com/quay/clair


Energies 2022, 15, 5544 16 of 16

14. Snyk. Snyk Engine. 2019. Available online: https://snyk.io/product/open-source-security-management/ (accessed on 12 March
2019).

15. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. Available online: https:
//www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-Peer_Electronic_Cash_System (accessed on 12 March 2019).

16. Naz, M.; Al-zahrani, F.A.; Khalid, R.; Javaid, N.; Qamar, A.M.; Afzal, M.K.; Shafiq, M. A secure data sharing platform using
blockchain and interplanetary file system. Sustainability 2019, 11, 7054. [CrossRef]

17. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of the
2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India,
10–12 July 2018; pp. 1–4.

18. Vujičić, D.; Jagodić, D.; Rand̄ić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018
17th International Symposium Infoteh-jahorina (Infoteh), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018; pp. 1–6.

19. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform; White Paper; nft2x.com: New York, NY, USA,
2014; Volume 3, pp. 1–2.

20. Solidity. Object-Oriented, High-Level Language. 2016. Available online: https://docs.soliditylang.org/en/v0.8.11/ (accessed on
2 May 2022).

21. Simmons, G.J. Symmetric and asymmetric encryption. ACM Comput. Surv. (CSUR) 1979, 11, 305–330. [CrossRef]
22. Ogburn, M.; Turner, C.; Dahal, P. Homomorphic encryption. Procedia Comput. Sci. 2013, 20, 502–509. [CrossRef]
23. Koç, Ç.K.; Özdemir, F.; Özger, Z.Ö. Paillier Algorithm. In Partially Homomorphic Encryption; Springer: Cham, Switzerland, 2021;

Volume 20, pp. 95–105.
24. Xu, Q.; Jin, C.; Rasid, M.F.B.M.; Veeravalli, B.; Aung, K.M.M. Blockchain-based decentralized content trust for docker images.

Multimed. Tools Appl. 2018, 77, 18223–18248. [CrossRef]
25. Sun, J.; Wu, C.; Ye, J. Blockchain-based Automated Container Cloud Security Enhancement System. In Proceedings of the 2020

IEEE International Conference on Smart Cloud, Washington, DC, USA, 6–8 November 2020; pp. 1–6.
26. Zheng, Y.; Dong, W.; Zhao, J. ZeroDVS: Trace-ability and security detection of container image based on inheritance graph. In

Proceedings of the IEEE 5th International Conference on Cryptography, Security and Privacy, CSP 2021, Zhuhai, China, 8–10
January 2021; pp. 186–192.

27. Han, S.H.; Lee, H.K.; Lee, S.T.; Kim, S.J.; Jang, W.J. Container Image Access Control Architecture to Protect Applications. IEEE
Access 2020, 8, 162012–162021. [CrossRef]

28. Abhishek, M.K.; Rao, D.R. Framework to Secure Docker Containers. In Proceedings of the 2021 Fifth World Conference on Smart
Trends in Systems Security and Sustainability (WorldS4), London, UK, 29–30 July 2021; pp. 152–156.

29. Jain, V.; Singh, B.; Choudhary, N. Audit and Analysis of Docker Tools for Vulnerability Detection and Tasks Execution in Secure
Environment. In Proceedings of the International Conference on Emerging Technologies in Computer Engineering, Jaipur, India,
4–5 February 2022; pp. 654–665.

30. Doyle, J.; Golec, M.; Gill, S.S. Blockchainbus: A lightweight framework for secure virtual machine migration in cloud federations
using blockchain. Secur. Priv. 2022, 5, e197. [CrossRef]

31. Xu, X.; Zhang, Y.; Hao, Y.; Jiang, Y.; Geng, M. Research of Container Security Reinforcement Multi-Service APP Deployment for
New Power System on Substation. In Proceedings of the 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES),
Chengdu, China, 25–28 March 2022; pp. 945–949.

32. Kindervag, J.; Balaouras, S. No more chewy centers: Introducing the zero trust model of information security. Forrester Res.
2016, 3, 1–15.

33. Leahy, D.; Thorpe, C. Zero Trust Container Architecture (ZTCA): A Framework for Applying Zero Trust Principals to Docker
Containers. In Proceedings of the International Conference on Cyber Warfare and Security, Albany, NY, USA, 17–18 March 2022;
Volume 17, pp. 111–120.

34. Brasser, F.; Jauernig, P.; Pustelnik, F.; Sadeghi, A.R.; Stapf, E. Trusted Container Extensions for Container-based Confidential
Computing. arXiv 2022, arXiv:2205.05747.

35. Kaplan, D. Protecting VM Register State with SEV-ES; White Paper; 2017. Available online: www.amd.com (accessed on 25 July
2022).

36. Kata. Kata Containers. 2017. Available online: https://katacontainers.io/ (accessed on 25 July 2022).
37. Docker. Docker. 2013. Available online: https://github.com/docker/docker.github.io (accessed on 25 July 2022).
38. Abdullah, A.M. Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptogr. Netw. Secur. 2017,

16, 1–11.
39. Yadav, S.P.; Agrawal, K.K.; Bhati, B.S.; Al-Turjman, F.; Mostarda, L. Blockchain-based cryptocurrency regulation: An overview.

Comput. Econ. 2020, 59, 1659–1675. [CrossRef]

https://snyk.io/product/open-source-security-management/
https://www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-Peer_Electronic_Cash_System
https://www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-Peer_Electronic_Cash_System
http://dx.doi.org/10.3390/su11247054
https://docs.soliditylang.org/en/v0.8.11/
http://dx.doi.org/10.1145/356789.356793
http://dx.doi.org/10.1016/j.procs.2013.09.310
http://dx.doi.org/10.1007/s11042-017-5224-6
http://dx.doi.org/10.1109/ACCESS.2020.3021044
http://dx.doi.org/10.1002/spy2.197
www.amd.com
https://katacontainers.io/
https://github.com/docker/docker.github.io
http://dx.doi.org/10.1007/s10614-020-10050-0

	Introduction
	Background
	Docker Image Systems
	Secure Docker Image Systems

	Related Work
	Blockchain-Based Homomorphic Encryption (SeDIS-HEB Framework)
	SeDIS-HEB Docker Client
	Docker Engine and Docker Hub
	IPFS P2P Network
	Ethereum Blockchain P2P Network
	Homomorphic Authentication via ImageBCID 
	Homomorphic Encryption Authentication and Access Control with ImageBCID
	Use Case2: Secure Docker Image Share
	Use Case3: Secure Docker Image Download 

	Verification and Validation 
	Quality Properties 
	Comparative Analysis of the Proposed Work
	Evaluation and System Performance Analysis

	Conclusions
	References

