
Citation: Nelson, W.; Culp, C.

Machine Learning Methods for

Automated Fault Detection and

Diagnostics in Building Systems

—A Review. Energies 2022, 15, 5534.

https://doi.org/10.3390/en15155534

Academic Editor: George S.

Stavrakakis

Received: 6 July 2022

Accepted: 26 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Machine Learning Methods for Automated Fault Detection and
Diagnostics in Building Systems—A Review
William Nelson 1,* and Charles Culp 2

1 Department of Mechanical Engineering, Energy Systems Laboratory, Texas AM University,
College Station, TX 78412, USA

2 Department of Architecture, Energy Systems Laboratory, Texas AM University,
College Station, TX 78412, USA; cculp@tamu.edu

* Correspondence: wanelson@tamu.edu

Abstract: Energy consumption in buildings is a significant cost to the building’s operation. As faults
are introduced to the system, building energy consumption may increase and may cause a loss in
occupant productivity due to poor thermal comfort. Research towards automated fault detection and
diagnostics has accelerated in recent history. Rule-based methods have been developed for decades
to great success, but recent advances in computing power have opened new doors for more complex
processing techniques which could be used for more accurate results. Popular machine learning
algorithms may often be applied in both unsupervised and supervised contexts, for both classification
and regression outputs. Significant research has been performed in all permutations of these divisions
using algorithms such as support vector machines, neural networks, Bayesian networks, and a variety
of clustering techniques. An evaluation of the remaining obstacles towards widespread adoption of
these algorithms, in both commercial and scientific domains, is made. Resolutions for these obstacles
are proposed and discussed.
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1. Background: Prior Review Articles
1.1. Building Energy Consumption

The 2018 Global Status Report from the International Energy Agency (IEA) found
that building operation accounts for 36% of global energy use [1]. Furthermore, Yang et al.
found that heating, ventilation, and air conditioning (HVAC) systems account for 40%
of all building energy consumption [2]. This leads to the knowledge that HVAC system
consumption accounts for 14% of energy use across the world. Qin et al. found that in Hong
Kong, 20.9% of commercial buildings operate continuously with faults, including sensor
errors and actuator failures, which degrade their performance [3]. There are many failure
points in a building system due to the thousands of sensors, dampers, or other controllable
devices in a building. Katipamula et al. found that operational faults in buildings are the
cause for 15–30% lost energy in commercial buildings [4].

In modern times, building management systems have been installed in many buildings.
These systems provide an interface for continuous measurement and monitoring of the
HVAC system components, which creates new possibilities for advanced fault detection
and diagnostics.

Building management systems provide information about system components which
can be analyzed using software tools. This information includes all sensor measurements
in the building, such as actuator positioning or motor control. These measurements can be
monitored for stability or anomalies, though interdependencies between components and
self-correcting building programming can obscure the fault from detection.

Fault detection in building systems is an important energy conservation measure. HVAC
system and lighting faults can increase energy consumption by up to 18% [5] and degrade
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occupant comfort and productivity when thermal setpoints are not met [6]. A sensor failure
can increase energy consumption by misrepresenting the temperature of air through the
system, which must be corrected by subsequent components. Failures such as these are
represented in the data collected by building systems and may be detected using advanced
analytics. Failures may be detected quickly and with limited additional manual analysis by
using machine learning algorithms for fault detection and diagnostics in building systems,
which reduces the building’s time spent in faulty operation and minimizes wasted energy
and occupant productivity.

1.2. History of FDD in Building Systems

Katipamula et al. [4] conducted a review of established methods for fault detection and
diagnostics (FDD) in building systems. The authors divide diagnostic methods into three
groups: quantitative model based, qualitative model based, and process history based.

As of the time of Katipamula’s publication (2005), the majority of completed research
belonged to the qualitative model-based methods, which include the most popular current
form of fault detection in industry: the rule-based method. The strengths of these models
lie in their simplicity and interpretability. It is easy to explain these rules to engineers
of all knowledge levels. Rule-based models also perform strongly in projects with large
amounts of data compared to those with less data. Breuker and Braun conducted an
experiment on a building with two sets of data: one with six measurements and another
with ten measurements. They were able to conclude that performance of a rule-based FDD
algorithm increased by a factor of two when doubling the measurements by system sensors
and using higher-order models [5].

The first iteration on advanced building analytics came in the form of model-based
methods. Gertler et al. define model-based methods as relying on analytical redundancy
rather than physical redundancy; the former involves the comparison between sensor
values to calculated values from first-principles equations whereas the latter involves sensor
values being compared to other sensor values [6]. Bendapudi and Braun developed a chiller
model from first-principles equations to be used in FDD calculations [7]. However, these
first-principles models are seldom used for FDD because of their required input parameters,
which are extensive and may be missing from the building’s measurements. Lebrun and
Bourdouxhe conducted a review of dynamic HVAC models, which covered over 500
references for all areas of the building system [8]. Though these models have become more
commonplace as computation speeds have improved, there have been comparatively fewer
than 25% applied to FDD in commercial buildings [9–15].

Rule-based systems are based on a series of if-then statements to produce rules that
govern fault detection. These rules can be as simple as a single threshold limit or more
complicated to include several statements chained together using and/or operators. PECI
and Battelle conducted a review of commonly applied rules to validate their usefulness
in real scenarios [16]. Engineers have also applied rules derived from first-principles
equations [17,18]. House et al. developed a ruleset named “Air-Handling Unit Performance
Assessment Rules” (APAR) aimed to detect faults in air handling units. The ruleset includes
28 rules to represent faults in common operation states in the air handling unit and possible
causes for violations of these rules. The rules cover faults impacting occupant comfort,
indoor air quality, energy, and equipment life. The authors note some drawbacks when
using rule-based systems, namely that the concept of fault severity is missing when using
singular rules; the output of a rule evaluation is binary and offers limited measures of how
far the rule was violated. Fault severity metrics may be introduced by defining multiple
rules, with a cost of added complexity to the model.

Zhao et al. also conducted a review of recent innovations in the use of artificial
intelligence and machine learning methods for Automated Fault Detection and Diagnostics
(AFDD) tasks [19]. Their research divides artificial intelligence (AI) methods into two broad
categories: knowledge-driven and data-driven methods. They determined that while there
has been increased interest in all artificial intelligence algorithms over the past two decades,
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a large percentage of these projects have focused on data-driven methods. The authors
found that of the articles reviewed, 79% were based on data-driven methods and 21% were
based on knowledge-driven methods.

Chen et al. conducted a review of AFDD methods and found that of the major HVAC
system categories (building, variable refrigerant flow, heat pump, air handling unit (AHU),
variable air volume (VAV) terminal, chiller, and sensor), 33% of reviewed research covered
AHUs and 25% covered chillers [20]. Their references include knowledge and data-driven
methods and provide a comprehensive picture of research in the field. Their survey is
divided into three major sections: knowledge-driven, data-driven, and hybrid approaches.
Similar to Katipamula and Zhao, the authors found that knowledge-driven AI approaches,
still represent less than 25% of published research. Over 75% of AFDD research completed
is in data-driven approaches.

The historical references above provide a summary of how FDD in building systems
has evolved. This review paper discusses key historical developments and expands into
Machine Learning (ML) technology research-related developments in the AFDD. It also
includes current published applications of ML.

This review has been divided into the major parts shown in Figure 1, all of which
are classified as data-driven methods by Katipamula and other reviews mentioned pre-
viously [4]. Within the focus of data-driven methods, there has been significant focus on
supervised and unsupervised learning methods as well as accompanying methods such
as Principal Components Analysis (PCA), which is often used as a preprocessing step
before the former two methods [20]. Historically, less complex methods such as clustering,
rule-based methods have been used [4]. Neural networks and Support Vector Machines
(SVMs) have seen an exponential increase in attention in recent years as computer process-
ing power has grown. With higher power, computers are able to optimize complicated
networks in a fraction of the time and produce more accurate results.
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2. Modern Machine Learning for Fault Detection in Building Systems

Computation power has increased dramatically in recent years along with substantial
increases in data collection, creating new possibilities for fault detection methods using
machine learning. Zhao et al. conducted a review in 2019 of the trends in industry using
artificial intelligence methods for FDD [19]. The paper divided the methods into two broad
categories: data-driven methods and knowledge-driven methods. Subcategories of ma-
chine learning algorithms which further divide these broad categories include supervised
learning and unsupervised learning.

Common faults in building systems have been found to be [21]:

Actuator malfunction
Sensor faults
Blocked ducts
Filtration issues
Fluctuation of pressure setpoints
Motor failure
Fan malfunction
Coil fouling
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Supervised learning methods utilize the input features of a dataset and the known
output classes to train a model. These methods require more processed data than other
types of algorithms, since the input datasets require additional information to represent
their output classes. These output classes may be provided from the sensors in the building,
or they may be assigned manually.

Unsupervised learning problems differ from supervised learning in that the training
datasets contain only input values and lack output values. The unsupervised algorithm
determines a probable output based on a set of inputs measured from the system. An
unsupervised learning problem is often solved using clustering, where a dataset becomes
grouped into several clusters forming density clouds. The supervised learning counterpart
to this problem is classification, where a dataset is classified based on the known character-
istics of the classified input data. Each of these are basic examples of algorithms used for
supervised and unsupervised learning; many other algorithms exist to solve each problem.

Tidriri et al. considered a hybrid approach that combines data-driven and model-
driven methods [22]. The authors found that performance of data-driven methods is highly
dependent on the training data, while performance of model-driven methods is highly
dependent on the mathematical model used in the analysis. The authors propose that a
hybrid approach using data-driven methods for fault detection and model-driven methods
for fault diagnostics could prove more successful than using data- or model-driven methods
would individually. The authors also found that many researchers face problems bridging
the two methods without an established framework, which makes the combination difficult
to implement. While these are several examples of hybrid model applications [23–26],
research in this area is just beginning to increase in the number publications.

2.1. Feature Selection

Feature selection is applicable to both supervised and unsupervised learning algo-
rithms and is used to trim the input dataset of redundant or unnecessary data, which
improves its training speed and accuracy, depending on the approach. Researchers have
investigated to find optimal approaches to feature selection.

Changrashekar et al. conducted a review of the impact of feature selection in an
analysis [27]. Changrashekar found that for one of their datasets, reducing from 34 features
to just 9 features improved its modeled performance from 90% to 95%. Models containing
excessive features may overfit the dataset and perform worse in testing. Though this
suggests that pruning some features from the data is beneficial, another dataset including
all features produced an accuracy of almost 80%, while reducing that dataset by 1 feature,
to a total of 7, reduced its accuracy to just 71%. These examples show that pruning
features from a dataset may degrade performance. The authors’ conclusions are that
feature selection should be cross validated for each application.

Yan et al. evaluated the benefits of a feature selection algorithm for data preprocess-
ing [26]. Yan found that feature selection can help define the information which improves
model performance most significantly. This may be used when deciding which sensors to
purchase because each sensor has been ranked according to its importance to the model.
Cost-limited analysis, which simulates projects with a limited financial budget, evaluated
this tradeoff and found that using just 16 sensors in their chiller system can provide enough
information for machine learning analysis with greater than 95% accuracy.

Yan et al. used the ReliefF algorithm, which calculates a feature score for each feature to
determine their importance, alongside SVM analysis for feature selection with success [28].
The authors used just 6 variables in the final model instead of the original 65 variables and
produced models with greater than 90% accuracy.
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2.2. Data-Driven Methods
Principal Component Analysis

Principal Component Analysis methods have been used extensively in sensor fault
detection. PCA maps high-dimensional data into a lower dimension representing the
dataset’s variance; the first Principal Component of the dataset is the dimension capturing
the most of its variance. This process is illustrated in Figure 2. Wang and Xiao applied PCA
to AHU sensors in their studies [29]. Li and Wen combined PCA methods and wavelet
transforms to detect faults in AHUs [30]. Du et al. combined PCA and Fisher’s Discriminant
Analysis for FDD in sensors in VAV systems [31].

Energies 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 

2.2. Data-Driven Methods 

Principal Component Analysis 

Principal Component Analysis methods have been used extensively in sensor fault 

detection. PCA maps high-dimensional data into a lower dimension representing the da-

taset’s variance; the first Principal Component of the dataset is the dimension capturing 

the most of its variance. This process is illustrated in Figure 2. Wang and Xiao applied 

PCA to AHU sensors in their studies [29]. Li and Wen combined PCA methods and wave-

let transforms to detect faults in AHUs [30]. Du et al. combined PCA and Fisher’s Discri-

minant Analysis for FDD in sensors in VAV systems [31]. 

 

Figure 2. Visual Representation of principal component analysis. 

Hu et al. studied the sensitivity of fault detection in different fault severity levels in 

chiller sensors [32]. However, there are limitations in using PCA methods for FDD. Zhao 

et al. found that principal components analysis uses linear assumptions, which are detri-

mental to performance because the chiller data are often nonlinear [33]. 

Beghi et al. used PCA to distinguish anomalies from normal operation and recon-

structed the contributions of each variable to order variables according to their improve-

ment to the model’s accuracy [34]. Mahadevan et al. used PCA and dynamic PCA to detect 

faults using established procedures and combined those results with a one-class support 

vector machine to perform fault diagnostics [35]. Zhang et al. combined PCA and cluster-

ing to detect and diagnose faults in building sensors [36].  

Xiao et al. developed PCA models which monitor heat- and pressure-flow-balance in 

an AHU [37]. Wang and Xiao expanded on this research by employing expert rules to 

assist in diagnosing faults and developing separate models for heat and pressure-flow 

balance [38]. The authors research concludes with a third iteration that evaluates these 

models on simulated results [39]. Many researchers have studied the abilities of PCA to 

detect and diagnose sensor faults throughout an HVAC system [40–42]. 

  

Figure 2. Visual Representation of principal component analysis.

Hu et al. studied the sensitivity of fault detection in different fault severity levels
in chiller sensors [32]. However, there are limitations in using PCA methods for FDD.
Zhao et al. found that principal components analysis uses linear assumptions, which are
detrimental to performance because the chiller data are often nonlinear [33].

Beghi et al. used PCA to distinguish anomalies from normal operation and recon-
structed the contributions of each variable to order variables according to their improve-
ment to the model’s accuracy [34]. Mahadevan et al. used PCA and dynamic PCA to
detect faults using established procedures and combined those results with a one-class
support vector machine to perform fault diagnostics [35]. Zhang et al. combined PCA and
clustering to detect and diagnose faults in building sensors [36].

Xiao et al. developed PCA models which monitor heat- and pressure-flow-balance
in an AHU [37]. Wang and Xiao expanded on this research by employing expert rules
to assist in diagnosing faults and developing separate models for heat and pressure-flow
balance [38]. The authors research concludes with a third iteration that evaluates these
models on simulated results [39]. Many researchers have studied the abilities of PCA to
detect and diagnose sensor faults throughout an HVAC system [40–42].

2.3. Supervised Learning

Data-driven methods perform analysis using more statistical methods such as re-
gression or multiclass classification. This category accounts for the majority (79%) of all
implementations in industry [19]. Support vector machines have proven to be a pow-
erful multiclass classification tool in all fields and have been applied extensively within
building systems.
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Dehestani et al. developed a boosting approach using an artificial neural network
to generate data residuals, which were then used to train the SVM [43]. Yan et al. used
sequential forward feature selection to reduce the number of input features before using
their SVM-based FDD algorithm [28]. Chandrashekar and Sahin conducted a review of
preprocessing methods in general computer science problems, specifically filter, wrapper,
and embedded methods [27].

Han et al. developed a method for chillers using SVMs, which was able to reach 95%
accuracy for several different faults [44]. Kriegel et al. developed an angle-based outlier
detection algorithm which operates on the variance of angles between pairs of points,
which resolves the curse of dimensionality of complicated datasets [45]. They found that
the angle-based algorithm produced recall values and precision values within 10% of other
popular fault detection algorithms such as the local outlier factor.

Bode et al. found that using a balanced dataset is important while developing machine
learning algorithms [46]. Their experiment failed to produce any reliable metrics because of
the high imbalance between normal and faulty data in their dataset. With 99.9% of samples
in the dataset fault-free, the algorithm learned to predict the fault status of any dataset
without a fault. While its test accuracy was high, it produced an unusable model that was
unable to predict faults at all. This is particularly important in the building space, where it
may be difficult to obtain a dataset with known faults.

Ebrahimifakhar et al. evaluated nine different classification algorithms to determine
which performed best given their dataset consisting of 15 features with 8 possible output
classes [47]. The authors determined that their SVM classifier produced the best accuracy
of the nine algorithms they tested. Shohet et al. also evaluated several different algorithms
to model non-condensing boilers and found that their decision trees and support vector
machines produced the highest fault prediction accuracy, over 95% for each [48].

Lee et al. developed several supervised clustering methods to detect false alarm
warnings of chillers in a data center [49]. The authors found their multiclass neural network
to have the best performance, with a 99.6% prediction accuracy on its testing dataset. Wang
et al. used the residual-based exponential weighted moving average method and boolean
rules to detect and diagnose a variety of faults in AHUs [50].

Yu et al. developed a data-mining technique that utilized association rule mining
(ARM), which determines rules based on common associations between variables, along-
side outlier detection methods to model energy consumption of buildings in various
climates [51].

2.3.1. Support Vector Machines

Some researchers have worked to combine several established methods of FDD to
create new, more powerful methods to detect faults. Liang et al. combined model-based
FDD with SVMs [52]. Their model was developed using mass and energy balances in the
system and was then simplified by using a lumped parameter method, which combines
several components of the system into one parameter in the model; a chiller would become
a single parameter in the final model despite it consisting of several sub-components. This
model’s output data were analyzed first using residual analysis with several threshold
alarms set to capture sufficiently different performance. This residual analysis acts as
the fault detection step. After faulty performance has been identified, the data is sent to
the SVM classifier, which has been configured as several layers of a one-vs-all structure,
displayed in Figure 3, to identify which fault has been triggered. The authors of this paper
were able to produce an accuracy of 100% for their classifier. Perfect accuracy was achieved
by including only independent faults in the dataset. Thus, without interdependencies, the
algorithm is able to perfectly separate each fault in the feature space.
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SVMs have been used to classify building data. Suykens and Vandewalle developed
least squares SVM classifiers for binary fault classification [53], which was used by Han et al.
for chiller fault diagnosis [54]. Every et al. developed an unsupervised method for fault
diagnostics using SVMs and Gaussian system models [55]. Han et al. developed another
FDD algorithm which uses SVMs for classification in vapor compression systems [56],
which makes use of measured data in the chiller from ASHRAE project 1043-RP. The
authors chose the Gaussian Radial Basis Function (RBF) kernel function and used 10-fold
cross validation to tune its parameters. Li et al. combined Binary Relevance with the SVM
algorithm to create BR-SVM, which was able to successfully diagnose simultaneous faults
in a system using a model trained only on single faults [57]. Wu et al. developed an SVM
model of an AHU [58]. Their model had a test accuracy of 99.58% but failed to classify any
of the faults it detected. Han et al. applied SVMs to detect multiple-simultaneous faults in
chiller operational data, where they found that their models were able to predict over 99%
of multiple-simultaneous faults in their dataset [44].

SVMs are also able to be successfully applied as regression models, as Tran et al.
found [59]. SVMs map data into a higher-dimensional space to find a linear boundary
between the output classes, as displayed in Figure 4. The authors modeled the ASHRAE
RP-1043 dataset using a differential-evolution SVR algorithm and found that its correct
detection rate for chiller faults was up to twice the value of the reference t-statistic model.
Zhao et al. also used support vector regression (SVR) algorithms alongside exponentially
weighted moving averages to detect chiller faults in the ASHRAE RP-1043 dataset [32].
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2.3.2. Neural Networks

Artificial Neural Networks (ANN) are also able to classify fault data [61,62]. Afram
et al. conducted a review of an ANN with a Model Predictive Control (MPC) system used
in conjunction with a Best Network after Multiple Iterations (BNMI) model [63]. MPC
implementations are used in combination with ANNs with a set of objectives in mind,
including the minimization of energy consumption or maintaining thermal comfort, which
the authors define as the Predicted Mean Vote (PMV) index. The PMV index is calculated
as the mean vote from a set of people about their thermal comfort, where +3 is hot and
−3 is cold. The objective of maintaining thermal comfort is to keep the PMV index within
0.5 points of 0.

Afram et al. followed the Universal Approximation Theorem [64] when designing
their neural network, which was a Multi-Layer Perceptron (MLP) with one hidden layer
and one output layer, as shown in Figure 5. The BNMI model iteratively finds the optimal
parameter weights by computing the model’s goodness of fit after each iteration and
subjecting that to a threshold of acceptable results. The BNMI model find an acceptable
model when given enough iterations. The authors found that the BNMI model improved
performance between 6% and 59% compared to their previous works.
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Taheri et al. developed seven neural networks to model fifteen different variables from
buildings at the Lawrence Berkeley National Laboratory [65]. The datasets used for their
project consist of verified normal and faulty data. Their neural networks predicted the fault
of the system given the input data. The trained models were evaluated using precision and
recall. Precision is defined as the fraction of predictions which were correct, while recall is
defined as the fraction of faulty points which were predicted correctly. Precision and recall
are used to quickly communicate the type I and type II errors in the results. The authors
found that one of their less complex models, consisting of fewer nodes, outperformed the
more complicated ones and produced an average precision of 0.8 and 0.72 with an average
recall of 0.85 and 0.77 for single-zone AHUs and multi-zone AHUs, respectively.

Tang et al. evaluated five different data-mining algorithms, including decision trees,
support vector machines, and neural networks, to model their full HVAC system dataset
and found that a multilayer perceptron ensemble performed best for clustering analy-
sis [66]. Their clusters were able to successfully detect different scenarios of operation for
the building to produce a model with a mean absolute percentage error of less than 4%
of the system’s total energy consumption. Du et al. used combined neural networks and
subtractive clustering to detect various faults in an HVAC system [67,68]. Fan et al. devel-
oped several neural networks, including back-propagation and Elman neural networks, to
identify sensor faults in an AHU [69].

Guo et al. used a backpropagation neural network for fault detection of a variable
refrigerant flow air conditioning system [70]. Magoulès et al. used a recursive deterministic
perceptron to model building energy consumption [71], while Zhu et al. and Yang et al.
combined neural networks with wavelet and fractal preprocessing to model sensor behav-
ior [72,73]. Fan et al. attempted to perform AFDD using neural networks using limited
labeled data in an AHU [74,75].

Shahnazari et al. developed layer recurrent neural networks (LRN) to detect and
diagnose a variety of HVAC faults in a series of studies [76–78]. The authors found that the
LRNs are suitable for fault detection because of the nonlinear dynamic functions used in
their analysis. Their models are trained histories without faults and compare healthy data
against up-to-date measured data for discrepancies.

2.4. Unsupervised Learning

Unsupervised learning algorithms can be distinguished further into popular meth-
ods, such as clustering, rule-based methods, and regression-based methods. Of these
distinctions, rule-based methods have been historically the most widely used methods [4].
Principal components analysis and regression using complex algorithms in neural networks
have been gaining popularity in recent years [19].

2.4.1. Clustering

Li et al. combined density clustering and PCA to improve on the single-PCA model
approach [79]. The authors employed Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [80] to distinguish between clusters of unknown shapes based on
the connections between high- and low-density spaces. DBSCAN creates clusters based on
point density, excluding sparse points. Figure 6 demonstrates the classification of dense
points vs. sparse points. PCA was used in conjunction with DBSCAN to aid in visualization
and result interpretation.

DBSCAN is used in the initial step of the algorithm to cluster historical data perfor-
mance. Each operating condition was processed using a unique PCA model (described
as sub-PCA by Li and Hu [79]), which is then clustered by the DBSCAN algorithm. Any
new data collected from the building system is classified using the DBSCAN algorithm
to predict which building operating mode is active. If the new data matches an operating
condition which has already been trained by the algorithm, the corresponding model will
be used for analysis. The DBSCAN-PCA approach to sensor fault analysis produced an
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improvement in detection ratio of 29.8% and diagnosis ratio or 27.9% over the classical
PCA approach to analysis.
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Dey et al. developed an event-area based clustering algorithm to determine the
operating mode of Terminal Boxes (TB) [81]. The authors detected specific operational
changes in the TB related to cooling or heating start and end events and calculated the area
under those power curves to determine approximate efficiency metrics. They then clustered
the average value of these events over the course of the day to produce approximate
operational modes: normal and faulty states dependent on the power curves of cooling
and heating equipment. Their methods produced precision and recall values greater than
0.9 for all test cases.

Gaitani et al. combined principal components analysis and clustering analysis to
evaluate heating performance in 1100 school buildings [82]. The energy output describes
the approximate rate of oil consumption used in the heating system. The authors used
K-means clustering analysis, which assigns an output class to a data point according to the
nearest cluster mean, on the principal components generated from the seven original input
variables to determine which of the five classes the building operation belongs to. K-means
analysis is shown in Figure 7, where Step 1 represents the initial random assignment of
cluster centroids and the successive steps demonstrate the updating of cluster centroids
and drawing of a new decision boundary. Their analysis was able to determine, with only
5% variance, the energy behavior class of the school building using only the seven inputs.
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Luo et al. analyzed a chilled water system using the k-means clustering analysis,
which assigns an output class to a data point according to the mean of the nearest cluster,
coupled to the Davis–Bouldin value to determine the optimal number of clusters in the
dataset [84]. Yang et al. used the k-shape clustering algorithm, which is a time-series
clustering algorithm using centroids, to forecast building energy usage patterns using
daily consumption datasets from an SVM model [85]. Hsu et al. also forecasted energy
consumption of a building using many different algorithms, including K-means, and found
that clusterwise regression performed the best, with a mean CVMSE of 0.3 and a standard
deviation of 0.15 [86]. Lavin et al. also identified trends in energy usage profiles using
k-means analysis and found that the algorithm was able to group similar-performing
datasets together [87]. Several researchers have used clustering to assist in modeling
occupant influence on a building’s energy consumption [50,88,89]. D’Oca et al. used
k-means clustering to detect open and closed windows in an office using numerical and
categorical variables [90].

Jakkula et al. used k-Nearest Neighbor (kNN), which assigns an output class to a data
point according to the most common class of its k nearest neighbors, clustering for outlier
detection in electric consumption datasets [91]. They found that the kNN algorithm was
able to produce greater than a 90% accuracy in detecting outliers.

Yuwono et al. used the Swarm Rapid Centroid Estimation consensus clustering with a
novel self-evolution strategy as a feature selection technique in their AFDD analysis [92].
They also used Ensemble Rapid Centroid Estimation techniques. Their results are grouped
by season, and the model’s sensitivity and specificity metrics for each fault were greater
than 97% throughout the 3 evaluated.

Shao et al. combined clustering with motif mining to disaggregate energy consumption
in a building and determine which components are the heaviest consumers [93]. They
found accurate performance for pumps, blowers, and fans, producing precision and recall
of 0.99.

Guo et al. developed a Gaussian Mixture Modeling (GMM) approach to model failure
modes of a variable refrigerant flow air-conditioning system [94]. The model was used to
predict refrigerant over- and under-charge, outdoor unit fouling, and four-way reversing
valve faults. The Gaussian mixture model is an unsupervised clustering algorithm which
produces clusters in the original dataset and assigns each data point a probability of being
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in each cluster, as shown in Figure 8. They found that as the number of features increases,
the GMMs were able to achieve greater than 99% accuracy. Karami et al. also used GMMs
to successfully model a water-cooled multi-chiller plant system, with a RMSE of 0.7 and
MAE of 13.52 kW [95].
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2.4.2. Regression Algorithms

Regression algorithms have seen an explosion in popularity in recent years [19]. Yan
et al. used classification and regression decision trees for FDD of air handling units [41]. The
average f-score for the algorithm was 0.97, and a comparison of the diagnostic information
with field expert knowledge show that the interpretability of the decision tree is strong,
though some diagnostics were incorrect. Li et al. also used decision trees to detect and
diagnose faults in a building’s cooling system [97]. The authors used a tree structured fault
dependence kernel method, which produced an accuracy of up to 90%.

Jones used lateral priming adaptive resonance theory neural networks to detect and
diagnose faults in building sub-systems [98]. These are coupled fuzzy adaptive resonance
theory networks, which use self-organizing learning instead of gradient descent. Lee
et al. also evaluated faults in building sub-systems using neural networks [99]. The
authors found that the nonlinearity of the regression networks produce accurate models
for building operation.

Howard et al. used spline regression models, which model a function as a piecewise
definition, to model daily electricity consumption in a building [100]. Yang et al. developed
a hybrid analysis using fractal correlation dimension for nonlinear signal processing with
residual-based analysis for AHU sensor diagnosis [101].

Yan et al. developed an autoregressive model with exogenous terms (ARX) model,
which models future performance based on past performance, for chillers which was used
in conjunction with support vector machine analysis [22]. The authors found that without
proper preprocessing, results were unusable. Yoshida et al. used a recursive ARX model to
detect faults in a VAV AHU but found that datasets containing sensor errors will produce
unacceptable results [102]. Several researchers have been able to develop a successful ARX
model by using the ReliefF preprocessing method and SVM analysis on the ARX model
parameters [28,103–105].

2.4.3. Rule-Based Methods

House et al. developed a comprehensive ruleset for AHUs complete with performance
analysis for each rule [18]. In this system, rules are collected into several modes: heating,
cooling with outdoor air, mechanical cooling with 100% outdoor air, and mechanical cooling
with minimum outdoor air. Several rules were developed for each mode to capture several
impact areas: comfort, indoor air quality, energy, and maintenance. Of the twenty-eight
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rules, thirteen monitor comfort performance in the building, two monitor its indoor air
quality, twenty-five monitor energy consumption, and only one monitors behavior that
would increase maintenance costs.

The rules are also grouped into various relationships: coils, mixing boxes, comfort
requirements, zones, economizer operation, and controller logic. Each of these relationships
contains rules from several operating modes to maximize the operating time coverage by
the rule groups.

The rules were developed to require only 11 sensor measurements, each of which
were expected to be available in most buildings at the time of this paper’s publication
in 2001. These are (1) occupancy status, (2) supply air temperature set point, (3) supply
air temperature, (4) return air temperature, (5) mixed air temperature, (6) outdoor air
temperature, (7) cooling coil control, (8) heating coil control, (9) mixing box damper control,
(10) return air relative humidity, and (11) outdoor air relative humidity.

The results of the study show that in general, the rules correctly identify faulty behavior
in a building. However, House et al. found that the rules detected faults at a high rate
in the field testing trials. The suggestion by the authors for the cause of this detection
rate is improperly defined user thresholds for each of the rules, which aligns with the
understanding that rule-based methods for FDD require a high level of configuration in
each building to produce accurate results.

Schein and Bushby implemented a rule-based system based on the hierarchy of subsys-
tems in an HVAC system to evaluate rules in boiler and chiller plants [106]. Their analysis
correctly determined the source of the fault in 49 of 60 trials and 8 correct fault-free cases
for a total correct response rate of 95%.

Tran et al. developed a set of rules corresponding to seven faults for fault diagnos-
tics [107]. These rules consisted of relative metrics for five measured parameters in a chiller
to describe whether the parameter increases, decreases, or remains relatively stable in
each fault condition. The rules were used in conjunction with an RBF model for each
feature value and were able to successfully diagnose condenser scaling when tested with
measured data.

2.5. Characteristic Signatures

Characteristic signatures are normalized plots showing the difference between simu-
lated and measured values as a function of outdoor air temperature [108]. Characteristic
signatures can be created for any component in the building system. These characteristic
signatures are historically used to calibrate a building’s energy consumption by guiding
the user to adjust appropriate variables in the calibration process. When a simulation’s
characteristic signature matches a predetermined signature, this equipment may be ac-
cepted as successfully calibrated. A similar process is completed for every component
in the system until a significant difference is found between published and simulated
characteristic signatures. This component’s simulation is incorrect and should be fixed.
The calibrations are generally considered successful if they are able to reach 5–10% of the
mean value of the consumption. The limitation is that only one variable can be used in
each step of the calibration process.

The final calibrations are monitored using measured data for any significant deviations
between measured and simulated energy consumptions. Plots of energy consumption
against outside air temperature can be generated for the measured period and a second
calibration of the baseline model against the measured plots is performed. The parameters
of the original baseline model and the calibrated faulty model are compared to determine
the approximate failure mode in the system.

First-principles equations may be used with the knowledge of the system to trace
effects and provide a more complete understanding of the system’s new behavior. This
concept has been used by Lin et al. to detect abnormal building energy consumption [109],
but not when detecting component faults in a building.
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2.6. Challenges

Yang et al. claim it is difficult to generate enough real data to do full-scale analysis
of a building [110]. Machine learning analysis requires a large amount of training data
evenly distributed among fault classes for the best performance. In reality, this is difficult
to guarantee because it is often unknown which faults are active in a building at all times.
This leads to mislabeled training data, which produces a model which will predict incorrect
output classes.

In addition, generalization of machine learning analysis is an ongoing problem [49,75,104].
Research has been completed over many specific buildings or pre-compiled datasets, but lit-
tle research has been completed which has been designed to apply across a variety of build-
ings with different configurations [111]. Additionally, research tailored to a single dataset
may produce very high accuracies which are unattainable when using other datasets.

Granderson et al. conducted a review of currently established AFDD tools in commer-
cial buildings [112]. This paper provides insight on the differences between trends in the
field and the more practical use cases. Fourteen tools were evaluated, and twelve of these
fourteen make use of rule-based algorithms. While many of these tools use other methods
alongside the rules, the studies show their reliability and establish the rule-based tools as
most popular in current applications. Only three of the fourteen tools use black-box models
to perform fault detection.

Hacker et al. found that the majority (63%) of surveyed building managers see the
adoption of AFDD tools to be a difficult change to their workflow [113]. 70% of those
managers find the lack of standardized data access to be a major barrier toward widespread
adoption of these AFDD routines. There have been recent efforts to provide standardized
data access [114]. However, over 90% of these managers see high value in reducing energy
consumption and costs in their buildings. If their major barriers to entry are resolved, they
have communicated an interest in the benefits that AFDD tools may provide.

2.7. Machine Learning Methods in the Future

Machine learning algorithms and applications are improved continuously by iden-
tifying their weaknesses and proposing solutions. Researchers have conducted studies
to identify weaknesses in machine learning applications for building system AFDD and
constructively proposed their solutions.

Shohet et al. found that physical models, which are defined by first-principles equa-
tions, are able to be generalized [48], but research using physical models is less common
than data-driven models [19]. Physical models are mathematically complex and can be
difficult to develop. In addition, adapting the mathematically complex model to specific
building equipment requires configuration, which requires an experienced user [4]. To
avoid the pitfalls of physical models, generalizable data-driven models should be devel-
oped. As buildings continue to measure large amounts of data, data-driven models are
well suited for solving building problems.

It has been proposed that hybrid approaches to AFDD may perform better than
either strictly model-based or data-driven approaches [22]. Hybrid models can offer a
solution to the mathematical complexities of physical model analysis and the data collection
restrictions in data-driven models. The main obstacle, according to Tidriri et al., is having
no clear framework to interface between model-based analysis and data-driven machine
learning. This obstacle results in tools either designed for a specific case or a tool making
use of purely physical models or data-driven algorithms, with no interface between them.

While the reviewed research found success in using machine learning algorithms
in AFDD applications, their analysis requires configuration only possible to users with
advanced knowledge of machine learning algorithms. In practice, it is unrealistic to expect
all building engineers to have the required knowledge of machine learning algorithms
to design their own solution. Applications of these algorithms should be designed to
minimize the knowledge required by the user to maximize the usability of the software.
This may be achieved by simplifying data processing and model tuning.
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The format of results produced by the algorithms in this review require a similar
amount of training to interpret. As the algorithm’s complexity increases, so does the
complexity of its results. Results should be post-processed into an interpretable format that
requires no additional training to read. The output should be a human-readable description
of the event. Interpretability scales in difficulty as the analysis is generalized. For a given
building, the results may be easily interpreted because of the knowledge of the structured
dataset and available sensors. As the analysis is generalized, the structure of each training
dataset may change and results must be further post-processed to maintain readability.

3. Concluding Thoughts

The literature reviewed in this study provides an overview of current trends in machine
learning analysis for fault detection and diagnosis. The review focuses on the data-driven
and hybrid methods which is representative of research performed in the building energy
analytics field [19]. Additional research has been performed on fault detection without
diagnostics, which requires manual diagnostics by a skilled engineer.

The data-driven methods are further divided into supervised and unsupervised learn-
ing as well as PCA-based analysis. PCA-based analysis represents early research in this
field and is used today as part of data preprocessing before major analysis is performed
using more complex algorithms. Supervised learning describes analysis using datasets
where the output class describing the fault condition is known. There have been problems
historically obtaining data where the potential active faults are known, which can make
developing supervised analysis difficult. Unsupervised learning only requires measured
data from the system; the algorithm will derive the faults using the measured data. Unsu-
pervised methods may also be less interpretable than their supervised counterparts because
each output class must be defined after analysis.

Classification algorithms such as support vector machines or neural networks have
found strength in supervised fault diagnostics, where datasets are generated using known
fault states. Support vector machines are efficient on smaller datasets but are less effective
on datasets with overlapping classes. Neural networks are very powerful learners but
are black boxes with little interpretability. Clustering has been successful in unsupervised
situations for fault detection and is often used in conjunction with other algorithms for
fault diagnostics.

Regression algorithms have found success predicting system energy consumption
and detecting faults from consumption anomalies. Rule-based analysis is established as
the most popular current form of AFDD implementation in building systems [112] but is
known to require precise configuration and is limited in scope.

A common conclusion from the reviewed research is that many algorithms grow
stronger when used in combination with another. When chosen correctly the combination
employs checks and balances on each algorithm, which produces a whole which is greater
than the sum of its parts.

This review into the state of research into AFDD today reveals some areas in need of
improvement before widespread adoption of these tools. These tools must be generalizable,
easy to use, and interpretable [112]. Future work in this field should resolve the issues listed
above. Models must be trained with data which defines the fault condition in the system,
or algorithms must be used which can make use of fault-free data to produce predictions
which are interpretable to the engineer. Hybrid approaches may define the fault condition
through simulated data, which is generated to a known system state. Additional work
remains to simplify data collection and processing, which may make use of the system’s
governing equations if a hybrid approach is used.
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Nomenclature

AFDD Automated Fault Detection and Diagnostics
AHU Air Handling Unit
AI Artificial Intelligence
ANN Artificial Neural Network
APAR Air-Handling Unit Performance Assessment Rules
ARM Association Rule Mining
ARX Autoregressive Model with Exogenous Terms
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
BNMI Best Network after Multiple Iterations
DBSCAN Density-Based Spatial Clustering of Applications
FDD Fault Detection and Diagnostics
GMM Gaussian Mixture Model
HVAC Heating, Ventilation, and Air Conditioning
IEA International Energy Agency
kNN k-Nearest Neighbor
LRN Layer Recurrent Neural Networks
MAE Mean Absolute Error
ML Machine Learning
MLP Multi-Layer Perceptron
MPC Model Predictive Control
PCA Principal Components Analysis
PMV Predicted Mean Vote
RBF Radial Basis Function
RMSE Root Meat Squared Error
SVM Support Vector Machines
SVR Support Vector Regression
TB Terminal Box
VAV Variable Air Volume
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