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Abstract: Before carbon capture and storage technologies can truly be promoted and applied, and
nuclear or renewable energy power generation can become predominant, it is important to further
develop more efficient and ultra-low emission USC units on the basis of leveraging the strengths of
CFB technology. In view of this complex system with strong nonlinearity such as the boiler-turbine
unit of a thermal power unit, the establishment of a model that is suitable for control is indispensable
for the operation and the economics of the process. In this study the form of the nonlinear model
after linearization at the steady-state point has been fully considered and an improved subspace
identification method, which is based on the steady-state point deviations data, was proposed in order
to identify a piecewise affine model. In addition, the construction of the excitation signal in practical
applications has been fully considered. The identification results demonstrate that this method has
a better adaptability to strong nonlinear systems. The identification normalized root mean square
errors of each working condition were almost all less than 10%. On this basis, a framework that is
widely applicable to complex system control has been established by combining with the mixed logic
dynamic (MLD) model. The canonical form realization was performed in order to transfer the local
models into the same state basis. The predictive control was carried out on the boiler-turbine system
of a 660-MW ultra-supercritical circulating fluidized bed unit that was based on the above framework.
The results indicate that the predictive control performance is closely related to the setting value of
the ramp rate and, therefore, prove the effectiveness of the framework.

Keywords: 660-MW ultra-supercritical circulating fluidized bed boiler unit; data-driven model; MLD
model; model predictive control; subspace identification

1. Introduction

In order to achieve the goal of “carbon emissions would peak by 2030 and be neutral-
ized by 2060 [1–3], and the proportion of non-fossil energy in primary energy consumption
will reach about 20%”, and considering that the installed capacity of clean energy will
continue to increase substantially during the “14th Five-Year Plan” period in China, it
is imperative to vigorously develop circulating fluidized bed (CFB) boiler units and to
transform pulverized coal (PC) boiler units into CFB boiler units, which has been strongly
supported by the government.

Compared to PC boilers, the CFB boiler has developed into one of the most successful
clean coal combustion technologies, with strong fuel adaptability [4] and low pollution con-
trol cost [5]. However, at the current stage, most of China’s CFB units only have subcritical
parameters, which have no obvious advantages in achieving lower coal consumption for
power supply. At the end of 2018, 24 supercritical boiler units, including the Baima 600-MW
CFB boiler, were put into operation. In addition, in early 2019, two projects with 660-MW
ultra-supercritical (USC) CFB boilers have been approved and are under construction in
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China. One is the Weihe 660-MW USC CFB boiler project, which burns anthracite with high
sulfur content in the Guizhou province. Another one is the Binchang 660-MW USC CFB
boiler project, which burns slime, gangue, and raw coal in the Shanxi province [6]. The
power generation efficiency of the supercritical units reaches 45–47% [7], which is about
2.5% higher than the subcritical units, while the USC units can reach 49% [8]. At the same
time, the CO2 and SO2 emissions of the USC units can be reduced by 145 [g/kWh] and
0.4 [g/kWh], respectively [9]. Before carbon capture and storage technologies can truly be
promoted and applied, and nuclear or renewable energy power generation can become
predominant, it is important to further develop more efficient and ultra-low emission USC
units on the basis of leveraging the strengths of CFB technology.

The operation control system is one of the main research topics of CFB units at present,
especially in the period when the thermal power units are transformed from the main
power supply to the basic power supply, providing deep peak shaving [10]. The frequent
and large-scale variable operating conditions aggravate the nonlinear impact of the thermal
power unit and put forward higher requirements for the control system of the unit. At the
same time, the equipment retrofit and changes in the coal quality also will cause significant
changes in the dynamic characteristics of the unit, which will increase the difficulty of the
control of the unit [11]. First of all, as far as the boiler is concerned, the capacity and the bed
material of the 660-MW USC CFB units is much larger than that of the 300-MW subcritical
CFB units, which accounts for the increased thermal inertia. Secondly, the USC CFB boilers
are once-through boilers. In comparison with drum boilers, the heat storage on the steam
side is greatly reduced, the rigidity of the working medium is improved, and the dynamic
process is accelerated. Therefore, a faster control speed, a shorter control period, and a
stronger coordination are required. Finally, the increase in the amount of coal slime leads to
large fluctuations in the quality of the blended coal, which is also an enormous challenge
in regard to the increasingly strict tracking ability assessment of the automatic generation
control (AGC) and the frequency regulation.

Due to the fact that few supercritical CFB boiler projects have been put into production,
and moreover, the Binchang 660-MW USC CFB boiler project is planned to be put into
operation in July 2022, the mature and stable operation control strategy of this type of unit
has largely been an under-explored domain. The design of the coordinated control system
of the supercritical CFB boiler units draws on the control strategy of the supercritical PC
boiler units. There have been some studies involving the design and optimization of the
coordinated control system of the subcritical CFB boiler units and the supercritical PC boiler
units that have reported [12,13]. However, the following non-negligible issues still exist in
the design of the coordinated control system of USC CFB boiler units: (1) The combustion
characteristics of CFB boilers are not taken into consideration, and the “three inputs-three
outputs” form is employed as the coordinated control system model. In fact, the coal
particles are not directly or fully burned in the CFB boiler, instead of going through the
complicated process [14–16], which results in the heat that is generated by the coal particles
that are newly fed into the furnace being unable to satisfy all of the energy requirements
of the boiler, while the heat that is released by the carbon combustion that is stored in the
furnace is dominant. (2) Simplicity of the distributed control structure with PID technology
limits the load control rate to be formidable to settle for the 1 [%/min] assessment index of
the power grid. (3) The control strategy of PID + feedforward decoupling cannot achieve
the anticipative effects, especially considering the problems of large thermal inertia and
multi-variable coupling. As a result, the deep peak shaving potential of the unit is limited,
the automatic generation control (AGC) rate and the accuracy are reduced, and parameters,
such as the steam temperature and the pressure, fluctuate greatly.

Compared to the other advanced control methods, the reason why predictive control
has great engineering application value is that it can predict the change in the controlled
object, can move ahead of time, and can deal with both soft and hard constraints. For the
nonlinear object of CFB boiler units, a direct method is to establish a nonlinear model of
the object through mechanism analysis, and achieve the control goal through nonlinear
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predictive control. However, Zhu H [17] has pointed out that although nonlinear predic-
tive control has the same principles as linear predictive control (i.e., model prediction,
rolling optimization, feedback correction), the optimization problem has a large amount
of calculation involved and cannot meet the requirements of real-time computing in the
industrial processes.

Generally, the linear model of the controlled object is obtained by local linearization of
the nonlinear model near the steady-state condition. However, it is important to establish
an accurate nonlinear mechanism model (white box model) for the CFB boiler units. In prac-
tical applications, a hybrid model (gray box model) that combines the mechanism model
and the data-driven model is mostly used. In the hybrid model, the unknown parameters
are identified from the actual data. When the model is complicated, the essence of the
multi-parameter identification may be able to solve the non-convex optimization problem,
which will cause the model parameters to vary widely under different identification data,
resulting in low model generalization ability. Moreover, the white box model and the gray
box model are usually not suitable for the design and the implementation of the controller,
due to the complex equations that are involved. Another way to obtain the linear model of
the object system is through identification. The model identification method determines the
model form. Several studies have documented that piecewise affine (PWA) models can be
used in order to approximate nonlinear systems that do not exhibit discontinuous or switch-
ing behaviors with arbitrary accuracy [18–20]. Several identification methods that are used
for the linear time-variant (LTI) system, such as the prediction error method (PEM), the
instrumental variable method (IVM), and the least-squares method, are based on optimiza-
tion ideas and the system parameters are obtained by minimizing the difference between
the model output and the actual output. Such methods have the following drawbacks:
(1) The iterative solution of the nonlinear optimization is complicated. (2) The non-convex
optimization is sensitive to the initial values, resulting in easily falling into a local optimum.
(3) It is difficult to apply these methods to multiple input and multiple output problems. In
contrast, the subspace identification methods (SIM) combining system theory, linear alge-
bra, and statistics directly identify the LTI model from the input and output data without
optimization and iteration. In addition, by only using the simple linear algebra tools, the
SIM have strong robustness without regard to algorithm convergence. The SIM have not
only enjoyed tremendous development in the last 30 years in theory [21–30], but also have
caught up unremittingly in their practical application. Navalkar ST et al. [31] have applied
subspace identification technology to the control of wind power generation systems. In
addition to this, the SIM have also been widely used in blast furnace ironmaking [32], in
nuclear reactors [33], in seismic response monitoring [34], in damage assessment [35], and
so on. However, the SIM cannot be directly applied to identify PWA models, due to the
existence of affine terms. In this work, the steady-state point deviations of each working
condition are used as the identification data in order to obtain the PWA model based on
the SIM.

After obtaining the PWA model of the research object, another core issue of the multi-
model approach that needs to be focused on is the “weighting/switching rules”, that is,
the “model/controller combination”. The methods of model/controller combination in
the multi-model methods can be divided into the following two types: (1) soft switching,
in which the global model is obtained by weighting and summing the local linear mod-
els/controllers by weighting the coefficients; (2) hard switching, in which only one of the
local linear models/controllers take effect at each sampling time, according to the switching
conditions. There are quite a few methods of determining the weight coefficients that are
critical in soft switching, including the Gaussian local model validity function [36], Bayesian
weighting [37], the gap metric [38], the trapezoidal functions [39], and so on. Likewise,
multitudes of researchers have studied the switching rules in hard switching, such as the
predicted feedback control error [40], the estimation error [41], the output error [42], the
value function [43], and so on. When using the soft switching methods, the system runs
smoothly, and model/controller switching will not result in a large range of output jumps
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at the expense of low control accuracy and unprovable stability. When compared to soft
switching, the disadvantage of hard switching is that a wide range of output jumps occur
during model switching, which leads to system oscillation. Consequently, a mixed-logical
dynamic (MLD) model is proposed as a combination method of the models that are de-
scribed in this paper in order to avoid the serious consequences that are caused by soft
or hard switching. The MLD model is mainly used in order to model the hybrid system,
which is described by the interacting physical laws, the logical rules, and the operational
constraints. Furthermore, the equivalence between the PWA model and the MLD model,
or the other hybrid dynamical models, has been proved [44,45]. In recent years, a host of
scholars have conducted in-depth research on the MLD theory. Mahboubi H et al. [46]
have analyzed the complexity of the MLD model. Di Cairano S et al. [47] have developed
a class of continuous-time hybrid dynamical models for the expansion of discrete-time
MLD models. Relying on the energetic development of the theory, MLD modeling ideas
have also been extensively used in practice. However, these practical applications mainly
focus on transportation deployment [48,49], energy dispatch [50,51], sewage treatment [52],
and welding [53]. According to the characteristics of the MLD model that are expressed
by linear dynamic equations that are subject to linear mixed integer inequalities, and fully
considering that various inequality constraints can be handled conveniently and effectively
by model predictive control (MPC), the MLD–MPC method will be employed in order to
control the boiler-turbine unit. Compared with the other multi-model predictive control
algorithms, the MLD–MPC method demonstrates the following superiorities: (1) the ap-
proximate linear model set can ensure the closed-loop stability of the system; (2) since the
linear sub-models work under a unified performance criteria, which makes the controlled
variables become globally optimized in the optimization horizon, the global optimal perfor-
mance of the system can be guaranteed; (3) the mixed integer programming problem can
be solved simply, and it is promising to realize the real-time calculation; (4) it is beneficial
to eliminate the problem of oscillation that is caused by models/controllers switching.

If the local models are combined by the MLD modelling method, there are still promi-
nent problems, to which urgent solutions are required. The reason why it is almost im-
possible for the state variables of each local model to be on the same basis is that the
state variables of the models, which are identified by using the subspace method, have no
practical significance. The use of the MLD models that are composed of the local models
with a different basis may contribute to infeasible solutions. In addition, it is most credible
to base the switching criteria directly on the state variables. The idea of state transformation
was first proposed [54,55] for piecewise linear systems and jump linear systems. However,
the method cannot be directly extended to transform the same basis of the local linear
model. In this work, all of the local models are transformed into an observable canonical
form in order to establish the local models with same basis.

To sum up, one hand, the research on the coordinated control system of USC CFB
units is imminent. On the other hand, a considerable number of scholars have conducted
both theoretical and practical research on SIM and MLD models. However, the focus
of most practical research was on other fields, instead of the USC CFB units. Moreover,
a standard linear state space model, instead of the linear affine model, can be obtained
directly by using the input and the output data based on SIM. In addition, there is much
discussion on the theoretical construction requirements of the excitation signal for system
identification, while very few studies involve the construction of the pragmatic excitation
signal in practical applications.

In this article, which is based on the previous research content and objects about the
SIM and the MLD–MPC, the novelties are listed as follows:

• The steady-state point deviations of each working condition are employed as the
identification data;

• The PWA model of a 660-MW USC CFB boiler unit is developed using the SIM;
• The construction of the excitation signal for identification in practical applications is

fully considered;
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• The MLD–MPC method is exploited in order to realize the control of the 660-MW USC
CFB boiler unit.

The remainder of the paper is organized as follows: Section 2 is devoted to describing
the 660-MW USC CFB boiler unit and proposes the corresponding coordinated control
issues. Section 3 introduces the overall framework of the complex system/process control
and the related algorithms in detail, respectively. Section 4 takes data from the simulation
laboratory of Chongqing University and uses the framework that has been mentioned in
Section 3 to obtain the results of the predictive control for the boiler-turbine unit, then the
results are summarized and analyzed. Section 5 provides the conclusions and the future
directions of research.

2. Process Description

The USC CFB boiler unit is a nonlinear MIMO dynamic system that is characterized
by large inertia, a long time lag, and is time-variant. The key control task of a thermal
power unit is to regulate the output power of the unit in order to meet the load demand
of the grid while maintaining various parameters within a given range. Unfortunately,
it is arduous to simultaneously control the highly coupled variables in the boiler-turbine
unit. Due to the diversity in the speed of the boiler-turbine unit in the energy conversion
process, the fast and slow links have to be coordinated under the premise of considering
the dynamic characteristics of the boiler and turbine in the meantime. This paper focuses
on the research of the Weihe 660-MW USC CFB boiler unit, which is under construction. A
schematic diagram of the boiler-turbine unit is shown in Figure 1.

Figure 1. Schematic of a USC CFB boiler unit.

The USC once-through boiler, which was designed by Oriental boiler Limited by
Share Ltd., adopts a single furnace, trouser legs structure. The primary air enters the
furnace from the air distribution plate at the bottom, so that the bed at the bottom of the
furnace is in a fluidized state. Under the action of the primary air, the bed material moves
upward from the bottom of the furnace. As the furnace rises, the upward moving speed
of the solid gradually decreases, and moves downward near the furnace wall, forming a
material circulation process in the furnace. The particles at the outlet of the furnace are
captured by the cyclone and enter the external bed, then they return to the furnace from
the returner, forming an external circulation of the material. In addition, the feed water,
which is preheated by the economizer, enters the waterwall, in which the fluid absorbs
the heat that is released by the combustion of the fuel and becomes saturated a mixture
of steam and water. Then, the mixture is separated after entering the steam separator.
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Next, the steam leaves the separator and passes through the multi-stage superheaters in
order to become superheated steam, preparing for entering the high-pressure turbine (HP).
The steam from the HP passes through the intermediate-pressure turbine (IP) and the
low-pressure turbine (LP) in turn, after being reheated by the multi-stage reheaters, and
is then finally discharged into the condenser. Eventually, the steam that is working in the
turbine drives the synchronous generator to produce the electric power. Finally, the fuel,
the bed material, and the preheated air are sent into the furnace for cycle combustion by
the coal bunker, the limestone bunker, and the forced-draft fan.

Compared with the PC boiler, the coal particles cannot be directly or fully burned. First,
under the action of the fully fluidized high-temperature bed material, the coal particles
are mixed with the high-temperature bed particles and are heated and dried. Then, the
coal particles undergo pyrolysis with the burning of volatiles, and the coal particles are
expanded, resulting in primary crushing. Finally, the remaining unburned carbon particles
accumulate in the bed material in order to participate in the circulation and are sent back
to the furnace through the cyclone for multiple combustion. It takes about 8 to 10 min
to completely burn the carbon particles. If the heat storage of the burning carbon can be
directly used to meet the load change in the unit, it will be more direct and rapid than
changing the fuel command in order to respond to the load change. In the early stage of
the load change, it is not essential to consider the corresponding relationship between the
load, the wind, and the coal, and over-adjusting the air flow or fuel flow is permitted. In
the middle of the load change, the heat balance principle is employed in order to gradually
adjust the fuel flow and the air flow. The factors affecting the released heat of the furnace
in the CFB boiler unit is illustrated in Figure 2.

Figure 2. Factors affecting the released heat of the furnace in the CFB boiler unit.

As an indispensable part of the AGC system, the coordinated control system (CCS)
accomplishes exactly maintaining the energy balance between the boiler and the turbine.
The control-oriented model of boiler-turbine unit is obtained by simplifying the system-
level model, rather than the component-level model of the specific equipment. A large
number of works [56–58] have suggested that the model of the boiler-turbine unit can be
simplified to a three inputs-three outputs (or even less) nonlinear model, on the condition
that correctness is ensured. However, as mentioned above, the heat that is released by
the burning carbon should be considered as the main heat of the boiler. The air flow
has an enormous impact on the combustion of the burning carbon, which suggests that
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the main steam temperature and pressure respond to the change in air flow rapidly. If
the combustion characteristics of the CFB boiler can be reasonably utilized in the control
system, it is sufficient to improve the stability of the unit and the response rate of the unit
to the load command. Consequently, a boiler-turbine unit model with a “four inputs-three
outputs” form was established. The four input variables are the governor opening value
of the steam turbine uT, the fuel command uB, the feed water flow uW, and the air flow
uA. The three output variables include the output power Ne, the main steam pressure PST,
and the intermediate enthalpy hm. Compared to the steam parameters at the outlet of the
superheater, the intermediate point temperature and enthalpy of the steam-water separator
are more advanced, which can reflect the boiler’s energy fluctuation, the load change, and
the coal-water ratio signals at the earliest stage, and the working fluid parameters in the
steam-water separator are easy to measure. The CCS model that is composed of the main
control system and the other sub-control systems is shown in Figure 3.

Figure 3. The working principle and the model structure of CCS.

3. Proposed Methods
3.1. Overall Framework

As described above, the problem that is addressed in this article is to design a predic-
tive controller for a complex system whose control-oriented model is difficultly built by
mechanism analysis. The framework for solving the problem and methods that have been
used in this work are shown in Figure 4.
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Figure 4. The overall framework of methods.

In the model deployment stage, the linear models of the plant under different working
conditions are established in the form of standard state space or as an affine item through the
subspace identification method. In the model combination stage, the linear sub-models will
be integrated by the MLD method, at the cost of introducing linear inequality constraints.
In the predictive control stage, the predictive controller is designed by relying on the
MLD model.

3.2. Subspace Identification
3.2.1. MON4SID Method

Subspace identification-related concepts and symbolic definitions are presented in
Appendix A. The detailed process of the MON4SID algorithm refers to Appendix B.

3.2.2. SIM for Linear Affine Model Identification

It can be seen from the above theory that the subspace identification method is most
suitable for the identification of the standard state space model, while the nonlinear model
can be approximated by a set of linear affine models. The idea of applying the SIM
to identify linear affine models originates from the traditional linearization method of
nonlinear models on the basis of Taylor expansion. Suppose a discrete nonlinear dynamic
system is represented as follows:

xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
(1)

where wk∈Rl and vk∈Rn represent the process and measurement noise, respectively, which
are independent of the input and output data. Linearizing at the steady-state point (xs, us)
using Taylor expansion, the following formula can be developed:

xk+1 = f (xs, us) + Jx
f

∣∣∣(xs ,us) (xk − xs) + Ju
f

∣∣∣(xs ,us) (uk − us) + wk

yk = g(xs, us) + Jx
g

∣∣∣(xs ,us) (xk − xs) + Ju
g

∣∣∣(xs ,us) (uk − us) + vk
(2)

where Jx
f and Ju

f represent Jacobian matrixes that demand f (x, u) on the x and u partial
derivatives and Jx

g and Ju
g represent Jacobian matrixes that demand g(x, u) on the x and u
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partial derivatives. If we assume ∆xk = xk − xs, ∆yk = yk − ys and ∆uk = uk − us, the above
formulation can be transformed as follows:

∆xk+1 = Jx
f

∣∣∣(xs ,us) ∆xk + Ju
f

∣∣∣(xs ,us) ∆uk + wk

∆yk = Jx
g

∣∣∣(xs ,us) ∆xk + Ju
g

∣∣∣(xs ,us) ∆uk + vk
(3)

In terms of thermal power units, the steady-state point is generally the design con-
dition, the deviation sequence is constructed according to the observation data and the
steady-state point data, and four Jacobian matrixes (A, B, C, and D) can be calculated using
SIM. After the system matrixes are obtained, Equation (2) is expanded and simplified to
the linear affine model as follows:

xk+1 = Axk + Buk + [−(Axs + Bus) + f (xs, us)]︸ ︷︷ ︸
Af f ine f

+ wk

yk = Cxk + Duk + [−(Cxs + Dus) + g(xs, us)]︸ ︷︷ ︸
Af f ineg

+ vk
(4)

3.3. State Transformations

When the local models have been obtained, Equation (A2) can be applied to derive
the state estimation at any time. However, the reason why it is almost impossible for the
state variables of each local model to be on the same basis is that the state variables of the
models, which are identified using the subspace method, have no practical significance.
The switching criterion is determined by the output variable rather than time, which is
related to the input variables and the evolution of the state variables, and as the result, the
state of the switching points from the aspect of time scale will not be taken into account.
In addition, the output variables are bound up with the observation matrix. When the
feedthrough matrix is not considered, in order to obtain sub-models with the same basis,
we must transform the sub-models into an observable canonical form as follows:

yk = Cxk =
[
Ol×n−l Il×l

]
xk, (5)

where Il×l is the identity matrix of order l. This also means that the output variables are a
subset of the state variables, which guarantees that the basis of the local sub-models is the
same, and the output variables can be directly employed as switching criteria.

3.4. MLD Model

Hybrid systems are dynamic systems that involve the interaction of continuous dy-
namics (the state space sub-models under different operating conditions) and discrete
dynamics (switching rules for different sub-models). There are a host of different methods
of modeling for the hybrid system, namely the piecewise affine model, linear complemen-
tarity, and max-min-plus-scaling. The MLD model, which is described by interdependent
physical laws, logic rules, and operation constraints, is also a kind of hybrid system model.
Compared with other methods, the MLD method is more common and has less complexity.

A prominent characteristic of the MLD model is that it contains mixed integer in-
equalities, which are described by a set of linear dynamic inequalities. The establishment
of mixed integer inequalities is based on the conversion of logical propositions to linear
inequalities. In Table 1, the fundamental conversion is summarized.
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Table 1. Fundamental conversion rules of logical propositions to linear inequalities [59].

Logical Proposition Type Logical Expression Linear Inequalities

Operation events
caused by continuous

dynamic characteristics

[ f (x) ≤ 0] ∧ [δ = 1] f (x)− δ ≤ −1 + m(1− δ)

[ f (x) ≤ 0] ∨ [δ = 1] f (x) ≤ Mδ

[ f (x) > 0] f (x) ≥ ε

[ f (x) ≤ 0]⇒ [δ = 1] f (x) ≥ ε + (m− ε)δ

[ f (x) ≤ 0]⇔ [δ = 1]

{
f (x) ≤ M(1− δ)

f (x) ≥ ε + (m− ε)δ

Multiplication of
logical variables

δ3 = δ1δ2


−δ1 + δ3 ≤ 0

−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 0

Multiplication of
logical variables

and continuous variables
z = δ f (x)


z ≤ Mδ

z ≥ mδ

z ≤ f (x)−m(1− δ)

z ≥ f (x)−M(1− δ)

Where f is an affine function over a bounded set X of the input variable x; the constants
m and M represent lower and upper bounds of the function f over X; δ∈{0,1} denote binary
dummy variables; ε is an error tolerance, which is typically the machine precision; z is the
auxiliary real variable. Therefore, using the basic rules, the system is modeled as an MLD
through the following linear relations, and it should be emphasized that k, representing the
time series, is used in brackets instead of subscript in order to avoid confusion:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)
E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

x =
[
xc xl

]T , xc ∈ Rnc , xl ∈
{

0 1
}nl

y =
[
yc yl

]T , yc ∈ Rpc , yl ∈
{

0 1
}pl

u =
[
uc ul

]T , uc ∈ Rmc , ul ∈
{

0 1
}ml

(6)

where xc, yc, and uc denote continuous variables; xl, yl, and ul denote discrete variables; A,
B1, B2, B3, C, D1, D2, D3, E1, E2, E3, E4, and E5 represent appropriate coefficient matrices.

3.5. MLD–MPC

The idea behind the design of the model’s predictive controller is mainly to establish
a predictive model, and the design optimization criteria are based on the control task.
Then, the predictive control variables are determined in order to optimize the performance
criteria in the future prediction time domain, and repeated online calculation is carried
out in order to optimize the control rate. It is noteworthy that only the first sample of the
optimal sequence is applied to the plant at time step k, and at time step k + l, the whole
optimization procedure is repeated with new plant measurements.

If k is the current time step, N is the prediction horizon, Nu is the control horizon, x(k)
is the current state, x(k + j|k) is the predicted state at time step k + j under the influence
of x(k), and input sequence uNu k = {u(k), u(k + 1), . . . , u(k + Nu) and y(k + j|k), δ(k + j|k),
z(k + j|k) are similarly defined, j = 1, 2, . . . , N, the optimal control problem, based on MLD,
is established as follows:
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min
{uNu

k }
J
[
uNu

k , x(k)
]

=
Nu
∑
0
‖u(j)− ur‖P

Q1
+

N−1
∑
0

(
‖y(k + j|k)− yr‖P

Q2
+ ‖x(k + j|k)− xr‖P

Q3

+‖δ(k + j|k)− δr‖P
Q4

+ ‖z(k + j|k)− zr‖P
Q5

) (7)

s.t.


x(N|k) = xe
x(j + 1|k) = Ax(j|k) + B1u(j) + B2δ(j|k) + B3z(j|k)
y(j|k) = Cx(j|k) + D1u(j) + D2δ(j|k) + D3z(j|k)
E2δ(j|k) + E3z(j|k) ≤ E1u(j) + E4x(j|k) + E5
. . .

, (8)

where Qi = QT i > 0, i = 1, . . . , 5, are the weighted matrices and ur, yr, xr, δr, and zr are the
set values or referenced values. Moreover, other constraints, such as boundary constraints,
can also be added to Equation (8).

According to the stability proof in Ref. [60], it is known that the optimal input sequence
solved by Equations (7) and (8) can guarantee the stability of the MLD model.

The optimization problem is essentially a mixed integer programming problem, and
the value of P makes the optimization problem more subdivided. When P = 1 or ∞, the
problem is turned into a mixed integer linear programming (MILP) problem. When P = 2,
the problem is turned into a mixed integer quadratic programming (MIQP) problem.

4. Simulation Experiments and Results

Generally speaking, the data that are used by performing identification should be
collected from the actual physical plant. However, the use of a complicated excitation
signal to fully stimulate the dynamic characteristics of the plant is in conflict with safety
in actual production. In addition, there may be the intractable issue that the real physical
system has not yet been put into operation, resulting in the inability to collect the data in
the design stage. Consequently, using simulation models that are based on a mechanism
instead of an actual plant in order to realize the data collection is an effective method. The
industrial process simulation models that are required for implementing the data collection
can be established manually by using flowsheet-based simulation environments or by other
methods. In this paper, the mechanism model of the Weihe 660-MW USC CFB boiler unit,
which was established by the simulation laboratory of Chongqing University, is the basis
of collecting the data. The model form is derived from Ref. [12], and the unit parameters
are re-tuned according to the design data. The accuracy of the simulation model dynamic
characteristics have been validated by the designer [61].

4.1. Excitation Signal

The selection of a suitable excitation signal contributes to the identification result. For
the SIM, how to apply the best input signal is still a thorny issue. However, it is universally
acknowledged that a first-class excitation signal must meet several requirements. First of
all, the excitation signal must be a quasi-stationary signal. Secondly, the system should be
continuously and fully stimulated by the excitation signal. The last, but not least important
requirement, is that the excitation signal must make the system outputs as uncorrelated
as possible. The M sequence is a selectable excitation signal on account of the effortless
implementation. Unfortunately, the spectral analysis shows that the M sequence contains
the direct current component causing “net disturbance” to the identification system, which
is not usually desired. The inverse M sequence overcomes this shortcoming and is more
ideal than the M sequence.

When the excitation signal is applied in the actual system, the safety and the operability
should be considered first. While applying it in the simulation system, it should be
considered that it may cause a numerical calculation problem etc. Compared to the inverse
M sequence, the simplicity and the security of the step signal make it more feasible to be
used as an excitation signal. For a single-input system, a single-channel step signal can be
directly used as the excitation signal. However, for multi-input systems, the reason why the
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step signal is not feasible to be used is that the identification algorithm may not be able to
effectively separate the effects of each input on the output. Therefore, a non-simultaneous
step multi-channel signal is proposed as the excitation signal. The design principle of a
multi-channel step excitation signal is shown in Figure 5.

Figure 5. Multi-channel step signal construction scheme.

How to determine the step time point of each channel of the multi-input system is
a crucial issue. In order to ensure that the dynamic characteristics of the system to the
input change in each of the channels are fully reflected, the step time interval between the
input of the different channels should be at least greater than that of the step response
time of each output of the system. Therefore, before designing the excitation signal of the
system, it is necessary to perform several step response experiments on the system in order
to determine the step response time of the system to the input of each channel.

In this work, by taking full account of the pure delay and the step response time of the
different inputs, a four-channel step signal has been designed as the excitation signal, with
the purpose of adapting to the application in the actual system in six working conditions.
The working conditions of the USC CFB unit are shown in Table 2. In order to make the
model fit the actual process as much as possible, and to prevent any model corruption that
may be caused by the excessive step up/down of the inputs, the amplitudes of the governor
opening value of the steam turbine uT, the fuel command uB, the feed water flow uW, and
the air flow uA do not exceed 5% of the current stable value. Moreover, the four-channel
inverse M sequence, whose time interval is 5000 s of the BMCR working conditions, is
supposed to be control subject.
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Table 2. The working conditions of the 660-MW USC CFB unit.

Working
Conditions

Input Variables Output Variables

uB [kg/s] uA [Nm3/s] uW [kg/s] uT [×100%] Ne [MW] PST [Mpa] hm [kJ/kg]

BMCR 81.7 475.6 527.8 0.91 655.0 29.2 2753.0
BECR 78.1 458.2 513.5 0.92 620.9 27.3 2721.7

THA100% 72.2 423.2 470.5 0.84 575.4 27.7 2738.0
THA75% 55.0 321.3 360.7 0.82 422.9 20.9 2726.0
THA50% 37.6 225.7 241.2 0.82 279.7 13.8 2765.0
THA40% 31.6 221.3 200.4 0.81 233.1 11.7 2790.0

4.2. Identification Effects

The simulation is carried out with a sampling period of 1 s and 105 data points are
generated using the step signals in each working condition. Each sub-model is identified by
the above illustrated MON4SID algorithm. The identification results with step excitation
signals are shown in Figure 6. In addition, 1.55 × 105 data points are generated using the
inverse M sequence in the BMCR working condition, with purpose of comparison. The
identification result with the inverse M sequence signals is illustrated in Figure 7. It can be
acknowledged that the overall effect of the identification that is based on the step signals is
more outstanding than that of the inverse M sequence. In fact, for the well-conditioned
systems, the separation may not be clear-cut when the data for the model identification are
generated from standard experiments with pseudo-random binary sequence (PRBS) inputs
exciting the process, which will be identified. This is due to the fact that multiple inputs
may change at the same time, which can result in the impossibility to determine the effect
of a certain input on the output. In order to ensure the accuracy of the identification sub-
models, we must restore the identification sub-model to the linear affine models according
to the above method, and the inverse M sequence can be used as the verification signals
and the outputs of the identification sub-models and the simulation model can be observed.

The normalized root mean square error (NRMSE) is designed as an indicator, which
aims to achieve more intuitively measuring of the deviation between the identification
model and the simulation model. Though there is no consistent approach of normalization
in the literature, a common choice is the range (defined as the maximum value minus the
minimum value) of the measured data. The NRMSE of the six working conditions is shown
in Table 3. The NRMSE of the three output variables the in the six working conditions is
almost lower than 10%, which shows that the high-fidelity of the local sub-models can
be guaranteed.

Table 3. The NRMSE of identification sub-models with the inverse M sequence verification signal in
the six working conditions.

Working
Conditions

Output Variables

Ne [MW] PST [Mpa] hm [kJ/kg]

BMCR 6.48% 7.16% 5.17%
BECR 6.58% 6.81% 5.35%

THA100% 15.99% 10.05% 6.13%
THA75% 6.81% 7.03% 5.27%
THA50% 10.19% 8.26% 5.35%
THA40% 10.01% 9.13% 5.52%
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Figure 6. Identification results with step excitation signal. (a) BMCR; (b) BECR; (c) THA100%;
(d) THA75%; (e) THA50%; (f) THA40%.
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Figure 7. Identification result with inverse M sequence under the BMCR working condition.

4.3. State Transformations Effects

Transforming the local identification sub-models into the same basis can be achieved
by transforming the sub-models into the same canonical form, such as the modal canon-
ical form or the companion canonical form. Transforming the models into the form of
Equation (5) means that the output variables can be directly employed as switching criteria,
which is beneficial to MLD transformations.

4.4. MLD Transformation

In fact, it is completely feasible to perform MLD transformation on the small-scale
sub-models manually. However, for the large-scale sub-models, especially the models
that contain complicated logical deductions, manual MLD transformation is impossible.
HYSDEL language that enables the transformation of information about the modeled
system to the HYSDEL code is specifically used to describe the hybrid models. Once the
HYSDEL code is available, it is then further processed for other purposes, such as the
process simulation. Bemporad et al. [60] developed the HYSDEL compiler in 2004, which
can transform the various models into an MLD model. It is for this reason that the HYSDEL
compiler is applied in this work.

The prepared HYS file is directly generated through the HYSDEL compiler to the
corresponding MLD model. The MLD model appears to be a linear model, but is essentially
a nonlinear model, and its nonlinear characteristics are implicit in the binary variables.
The MLD model is theoretically equivalent to the PWA model. In order to validate the
MLD model, three sets of validation experiments were performed in this paper. The
(a) experiment was performed in order to step from the BMCR to the THA40% working
condition at 20,000 s. The (b) experiment was performed in order to step through the
BMCR, the BECR, the THA100%, the THA75%, the THA50%, and then to the THA40%
working conditions per 3000 s. The (c) experiment took a sine function with a frequency
(8 × 10−4 [rad/s], 4 × 10−4 [rad/s], 8 × 10−4 [rad/s], 12 × 10−4 [rad/s]) and an amplitude
(13, 60 [Nm3/s], 80 [kg/s], 0.025 [×100%]) as the input in order to perform the simulation
at the steady-state point (uB = 56.65, uA = 348 [Nm3/s], uW = 364.1 [kg/s], uT = 0.865
[×100%]). The comparison results are shown in Figure 8. It is observed that the error
between the output power, the main steam pressure of the MLD model, and simulation
model is minimal. Although the intermediate enthalpy of the MLD model deviates from
the simulation model at some of the working conditions, the change trends are absolutely
the same. Therefore, the MLD model is capable of expressing the simulation model or the
actual system.



Energies 2022, 15, 5476 16 of 26

Figure 8. Comparison between the MLD model and the simulation model of 660-MW ultra-
supercritical circulating fluidized bed boiler unit. (a) step from the BMCR to the THA40% working
condition; (b) step through the BMCR, BECR, THA100%, THA75%, THA50%, and then to the
THA40% working condition; (c) a sine function with frequency (8 × 10−4 [rad/s], 4 × 10−4 [rad/s],
8 × 10−4 [rad/s], 12 × 10−4 [rad/s]) and amplitude (13, 60 [Nm3/s], 80 [kg/s], 0.025 [×100%])
is taken as the input at the steady-state point (uB = 56.65, uA = 348 [Nm3/s], uW = 364.1 [kg/s],
uT = 0.865 [×100%]).

4.5. Control Effects

According to control requirements, the performance criteria of the predictive control
rolling optimization can be divided into the performance of the regulator and the tracker.
Regulating the performance means that when the system deviates from the steady state
due to a disturbance from the outside or from system noise, the system returns to the
steady state by defining the index function. The tracking performance refers to the index
function that the system outputs in order to track the reference trajectory. The above two
criteria are both reflected in Equation (7). Since the model that was obtained by the SIM
was performed with canonical form realization, this section of MLD-predictive control was
mainly carried out based on the state variables criterion.

In addition to the inequalities that were introduced by establishing the MLD model,
some actual constraints need to be declared. These constraints, and other parameters that
are related to the predictive control, are illustrated in Table 4.
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Table 4. The related information of coordinated system predictive control.

Expression Value

Objective

min
{UNu

k }
J
[
UNu

k , x(k)
]

=
Nu
∑

j=0
‖u(j)− uref‖P

Q1

+
N−1
∑

j=0

(∥∥∥y(k + j|k)− yre f

∥∥∥P

Q2
+
∥∥∥x(k + j|k)− xre f

∥∥∥P

Q3

+
∥∥∥δ(k + j|k)− δre f

∥∥∥P

Q4
+
∥∥∥z(k + j|k)− zre f

∥∥∥P

Q5

)

P = 2

Q1 =
[
1 0.1 10 10

]
Q2 =

[
1 0.2 1

]
Q3 = 0
Q4 = 0
Q5 = 0
N = 20
Nu = 1

MLD Constrains
x(j + 1|k) = Ax(j|k) + Buu(j) + Bδδ(j|k) + Bzz(j|k)

y(j|k) = Cx(j|k) + Duu(j) + Dδδ(j|k) + Dzz(j|k)
E2δ(j|k) + E3z(j|k) ≤ E1u(j) + E4x(j|k) + E5

Actual Constrains

uBmin ≤ uB ≤ uBmax,
.
uBmin ≤

.
uB ≤

.
uBmax

uBmin = 0
uBmax = 90

.
uBmin = −1 [min−1]

.
uBmax = 1 [min−1]

uAmin ≤ uA ≤ uAmax,
.
uAmin ≤

.
uA ≤

.
uAmax

uAmin = 0 [Nm 3 · s−1]

uAmax = 500 [Nm 3 · s−1]
.
uAmin = −1 [Nm 3 · (s ·min)−1]

.
uAmax = 1 [Nm 3 · (s ·min)−1]

uWmin ≤ uW ≤ uWmax,
.
uWmin ≤

.
uW ≤

.
uWmax

uWmin = 0 [kg · s−1]

uWmax = 550 [kg · s−1]
.
uWmin = −1 [kg · (s ·min)−1]

.
uWmax = 1 [kg · (s ·min)−1]

uTmin ≤ uT ≤ uTmax,
.
uTmin ≤

.
uT ≤

.
uTmax

uTmin = 0 [%]

uTmax = 100 [%]
.
uTmin = −1 [% ·min−1]

.
uTmax = 1 [% ·min−1]

PSSmin ≤ PSS ≤ PSSmax
PSSmin = 10 [MPa]
PSSmax = 32 [MPa]

Under the above constraints, 3000 [kW/min], 6000 [kW/min], 9000 [kW/min], and the
step ramp rate were respectively used as the tracking objective of the predictive control, and
the MIQP-based predictive control method was employed in order to obtain the predictive
control results, which are shown in Figure 9.

The simulation result shows that when the unit begins to reduce the load, the fuel
command and the air flow decrease. The heat release in the furnace decreases rapidly,
resulting in the precipitously diminished intermediate enthalpy. In order to keep the
intermediate enthalpy stable, the feed water flow is controlled in order to decrease it, and
the intermediate enthalpy increases again. In addition, the governor opening value of
the steam turbine is reduced in order to maintain the main steam pressure tracking effect.
When the output power is reduced to the set value, the feed water flow and air flow rise so
that the intermediate enthalpy drops to the set value. The dynamic process of the increasing
load is opposite to that of the decreasing load.
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Figure 9. Results of coordinated predictive control for a 660-MW USC CFB unit with: (a) 3000 [kW/min];
(b) 6000 [kW/min]; (c) 9000 [kW/min]; (d) step ramp rate as control objective.

When the ramp rate is small, the predictive control has a satisfactory performance, the
output power deviation of the unit is low, the tracking effect of the main steam pressure is
good, the intermediate enthalpy is stable, and the main steam pressure can be maintained
at a normal level. When the ramp rate increases, the output power deviation of the unit
increases gradually, the tracking effect of the main steam pressure becomes negative,
the intermediate enthalpy fluctuates greatly, and the maximum value of the main steam
pressure most likely exceeds that of the safety threshold, which is unfavorable for the
operation of the unit. In general, the prediction controller of the 660-MW USC CFB unit
that is based on the MLD model can successfully complete the task of coordinated control.

5. Conclusions and Future Work

In view of the complex system that is similar to the boiler-turbine unit of a thermal
power unit, a multi-model predictive control method that is based on the SIM and the MLD
model has been established. First, the SIM is employed in order to obtain the sub-models
of the different operating conditions. Aiming at the disadvantages and the difficulty of
the original SIM that was applied in the nonlinear model identification, the SIM that was
based on the steady-state point deviations of the operating conditions was developed.
The identification results have manifested the advantages of the method that is based
on the steady-state point deviations. Then, multiple identification linear sub-models are
transformed into the MLD models by introducing mixed integer linear inequalities. By
combining the canonical form realization, the local models are transformed to the same
basis, with the purpose of avoiding the problem of infeasible solutions in the MLD that are
caused by different bases. The MLD model avoids the serious consequences that are caused
by soft and hard switching, such as low control accuracy, unprovable stability, and a wide
range of output jumps. Finally, the MIP problem is studied in order to lay the foundation
for model predictive control based on the MLD model. Moreover, relying on the MLD
model, the predictive control of the boiler-turbine system of a 660-MW USC CFB unit has
been achieved and the desired control effects have been obtained.

The following major conclusions can be drawn from the simulation results:

• The SIM that was based on the steady-state point deviations of the operating conditions
has a better adaptability to strong nonlinear systems. The identification normalized root
mean square error of each of the working conditions were almost all less than 10%;

• The canonical form realization can be performed in order to transfer the local sub-
models that were obtained by the SIM into the same state basis, which is a prerequisite
for MLD model building;

• The SIM-based MLD–MPC method is effective for nonlinear system control;
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• The set value of the unit ramp rate is a key factor affecting the performance of predic-
tive control.

In this paper, the orders of the sub-models that were identified at the six operating
conditions are exactly coincident, which provides a prerequisite for MLD model trans-
formation. The MLD transformation for the sub-models of the different orders is more
complicated. In addition, for some systems with high security requirements, the step signal
may not be able to be applied in the actual plant, which may result in an unexpected
accident. Smoother and safer multi-input excitation signals need to be designed in an actual
system, while the identification signal is required in order to maintain a certain amplitude
of excitation, trade-off must be deliberate. Finally, the meaningless state variables in the
subspace identification model have an essential impact on the establishment of the logical
relationships during the MLD transformation. The MLD model is likely to have no feasible
solution due to over-constraint. Thus, the implementation of finding the inner relationship
between the state variables of the subspace identification model is expected.

Author Contributions: Conceptualization, T.Z.; methodology, C.Y. and T.Z.; software, C.Y., T.Z. and
L.S.; validation, C.Y. and T.Z.; formal analysis, C.Y.; investigation, C.Y.; resources, C.Y.; data curation,
T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, T.Z., C.Y., L.S. and Z.Z.;
visualization, T.Z.; supervision, C.Y.; project administration, C.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by The National Natural Science Foundation of China, grant
number 51876011.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Consider a time discrete LTI dynamic system that is described by the state space
models in the following innovation form:

xk+1 = Axk + Buk + Kek
yk = Cxk + Duk + ek

(A1)

where uk∈Rm and yk∈Rn represent the input and output series, respectively; xk∈Rl is the
state series; ek∈Rn denotes the Gaussian zero mean white noise, which is independent of
input and output data; A, B, C, and D are the system matrices; K is defined as Kalman filter
gain matrix.

The state space model (A1) is converted into one single linear matrix equation by
successive iterations. The linear matrix equations are written as follows:

Yf = ΓN X f + Hd
NU f + Hs

N E f

Yp = ΓN Xp + Hd
NUp + Hs

N Ep

X f = ψYYp + ψUUp + AN Xp

(A2)

where subscript p and f stand for the past and future data horizons indices, respectively;
superscripts d and s denote deterministic and stochastic indices, respectively.

With ΓN, the extended observability matrix is as follows:

ΓN =
[
C CA · · · CAN−1]T , (A3)

with Hd
N and Hs

N , the lower triangular Toeplitz matrices, being given as follows:
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Hd
N =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAN−2B CAN−3B · · · D

 and Hs
N =


D 0 · · · 0

CK D · · · 0
...

...
. . .

...
CAN−2K CAN−3K · · · D

, (A4)

with ψY and ψU, the reversed extended controllability matrices, being given as follows:

ψY =
[

AN−1K AN−1K · · · K
]

ψU =
[

AN−1B AN−1B · · · B
] (A5)

where A = A − KC and B = B − KD.
The past and future input block Hankel matrices are given as follows:

(
Up

U f

)
=



u0 u1 · · · uj−1
u1 u2 · · · uj
...

...
. . .

...
uN−1 uN · · · uN+j−2

uN uN+1 · · · uN+j−1
uN+1 uN+2 · · · uN+j

...
...

. . .
...

u2N−1 u2N · · · u2N+j−2


, (A6)

where the past and future output and the noise innovation block Hankel matrices Yp, Yf,
Ep, and Ef are defined in the same way, respectively. In addition, the state block Hankel
matrices are defined in a similar way as follows:(

Xp

X f

)
=

(
x0 x1 · · · xj−1

xN xN+1 · · · xN+j−1

)
, (A7)

The above equation is a prerequisite for research on the SIM.

Appendix B

The MON4SID method is an integration of the POMOESP method and the N4SID
method. The POMOESP method is applied in order to solve the extended observability
matrix ΓN, while the N4SID method is employed in order to calculate the means of an
approximation of the past and future Kalman filter state sequence and the matrices (A, B, C,
and D) through the least-squares method. First, it is exceedingly indispensable to eliminate
the last two items of the first formulation in Equation (A2), which is carried out in the
following two steps: (1) performing an orthogonal projection of Yf into the row space of
U⊥f as follows:

Yf /U⊥f = ΓN X f /U⊥f + Hd
NU f /U⊥f + Hs

N E f /U⊥f , (A8)

where (•)⊥ is the orthocomplementation of the matrix (•); (/) represents orthogonal projec-
tion by property of the orthogonal projection, Equation (A8) can be simplified as follows:

Yf /U⊥f = ΓN X f /U⊥f + Hs
N E f /U⊥f , (A9)

(2) defining an instrumental variable Wp as follows:

Wp =

(
Yp
Up

)
, (A10)
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where the multiplication of Equation (A9) by Wp yields the following:

Yf /U⊥f Wp = ΓN X f /U⊥f Wp + Hs
N E f /U⊥f Wp, (A11)

as it is assumed that the noise is uncorrelated with input and output past data, which
results in the following:

Yf /U⊥f Wp = ΓN X f /U⊥f Wp = ΓN X̂ f , (A12)

the left side of above equation can be derived from a simple LQ factorization of a matrix
that is constructed from the block Hankel matrices Uf, Wp, and Yf:Uf

Wp
Yf

 =

L11 0 0
L21 L22 0
L31 L32 L33

Q1
Q2
Q3

, (A13)

The orthogonal projection in Equation (A12) can be computed by matrix L32. Therefore,
ΓN can be obtained by the singular value decomposition (SVD) of L32 as follows:

ΓN X̂ f = L32 =
(
U1 U2

)(S1 0
0 S2

)(
VT

1
VT

2

)
≈ U1S1VT

1 , (A14)

where the order of the system is determined by inspecting the principal singular values in
matrix S1. ΓN is estimated as U1.

Secondly, an orthogonal projection of Yf along the row space Uf into the row space of
Wp is performed as follows:

Y f /U f Wp = ΓN X f /U f Wp + Hd
NU f /U f Wp + Hs

N E f /U f Wp, (A15)

according to the property of the oblique projection and the assumption that the noise is
uncorrelated with input and output past data, Equation (A15) can be simplified as follows:

ΘN= Y f /U f Wp = ΓN X f /U f Wp = ΓN X̃ f , (A16)

where the oblique projection ΘN that is given in Equation (A16) can be computed from
Equation (A13) as follows:

ΘN= L32(L22)
−1(L21 L22

)(Q1
Q2

)
, (A17)

hence an estimate of the state sequence X is given as follows:

X = (ΓN)
†L32(L22)

−1Wp, (A18)

where (•)† represents the Moore-Penrose pseudo-inverse of the matrix (•).
Model (A1) can be written as follows:(

X̃i+1
Yi|i

)
=

(
A B
C D

)(
X̃i

Ui|i

)
+

(
r1
r2

)
, (A19)

where some variables are defined as follows:

X̃i =
[
xi xi+1 · · · xi+j−2

]
X̃i+1 =

[
xi+1 xi+1 · · · xi+j−1

]
Ui =

[
ui ui+1 · · · xi+j−2

]
Yi =

[
yi yi+1 · · · yi+j−2

] (A20)
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Finally, Equation (A19) can be solved by the least-squares method in order to estimate
A, B, C, and D.
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