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Abstract: Integrating inverter-based generators in power systems introduces several challenges to
conventional protection relays. The fault characteristics of these generators depend on the inverters’
control strategy, which matters in the detection and classification of the fault. This paper presents a
comprehensive machine-learning-based approach for detecting and classifying faults in transmission
lines connected to inverter-based generators. A two-layer classification approach was considered:
fault detection and fault type classification. The faults were comprised of different types at several
line locations and variable fault impedance. The features from instantaneous three-phase current
and voltages and calculated swing-center voltage (SCV) were extracted in time, frequency, and time–
frequency domains. A photovoltaic (PV) and a Doubly-Fed Induction Generator (DFIG) wind farm
plant were the considered renewable resources. The unbalanced data problem was investigated and
mitigated using the synthetic minority class oversampling technique (SMOTE). The hyperparameters
of the evaluated classifiers, namely decision trees (DT), Support Vector Machines (SVM), k-Nearest
Neighbors (k-NN), and Ensemble trees, were optimized using the Bayesian optimization algorithm.
The extracted features were reduced using several methods. The classification performance was
evaluated in terms of the accuracy, specificity, sensitivity, and precision metrics. The results show
that the data balancing improved the specificity of DT, SVM, and k-NN classifiers (DT: from 99.86%
for unbalanced data to 100% for balanced data; SVM: from 99.28% for unbalanced data to 99.93% for
balanced data; k-NN: from 99.64% for unbalanced data to 99.74% for balanced data). The forward
feature selection combined with the Bag ensemble classifier achieved 100% accuracy, sensitivity,
specificity, and precision for fault detection (binary classification), while the Adaboost ensemble
classifier had the highest accuracy (99.4%), compared to the other classifiers when using the complete
set of features. The classification models with the highest performance were further tested using
a new dataset test case. They showed high detection and classification capabilities. The proposed
approach was compared with the previous methodologies from the literature.

Keywords: machine learning; fault detection; fault classification; inverter-based generators; power
system protection; renewable energy; Bayesian optimization

1. Introduction

The integration of inverter-based generators in modern power systems produces
several challenges in power systems control, protection, operation, planning, and stability.
Asymmetrical fault current has typically been represented as having positive, negative,
and zero-sequence components in conventional rotating-machine power systems. This
was based on the assumption that the positive and negative sequence networks are fully
decoupled [1]. However, this is not the case for inverter-based generators (IBGs) that
attempt to maintain a balanced current for unbalanced faults.

The fault detection and classification problem in power systems penetrated with IBGs
has become a significant challenge for the following reasons:
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• Only the positive current sequence is available for symmetrical and asymmetrical faults
for fully converted renewable sources, like photovoltaic (PV) and type-4 wind turbines.
The absence of a negative sequence current presents a challenge for the operation of
protection devices that rely on negative sequence components. This challenge can be
mitigated by specifying the requirement of negative sequence injection in the grid
code using the decoupled sequence control mode of the inverter [2]. Furthermore,
the difference between the phase angles of the negative-sequence voltage and current
measured by a relay after an asymmetrical forward fault occurred was lesser for the
system integrated with IBGs than the conventional power system with synchronous
generators. This comparison was discussed in [3].

• The IBGs do not contribute to zero-sequence components because they are not grounded.
In contrast, the coupling transformer grounding can obtain the zero-sequence component,
a potent source supplying a high magnitude of zero-sequence current [4]. As a result, the
zero-sequence component depends on the inverter, the IBG type, and the transformer
connection [1].

• The stiffness of power systems with IBGs is reduced compared with conventional
generation systems [5]. System stiffness (strength) can be evaluated by calculating
the short circuit ratio (SCR). A power source is described as a weak system in the
presence of IBGs (weak source means high SCR) [6]. IBGs have unique short circuit
characteristics because of the integration of power electronics connected to the grid.
When a short-circuit fault occurs, the inverter is switched to current-controlled mode
(CCM), and the inverter behaves as a current source until the short-circuit fault is
cleared by the protection devices [7]. Furthermore, the IBG output current increases as
the voltage drops during faults to regulate it back to its P–Q setpoint. In this condition,
the IBG becomes a current source [8].

Several protection strategies were proposed in the literature to enhance the ability of
fault detection, classification, and localization for power systems connected with IBGs.

• Adaptive protection schemes: They are defined as the online protection schemes used to
adapt relay settings and characteristics according to the system’s current state [9]. Dif-
ferent adaptive schemes for microgrids were reviewed in [10]. The adaptive protection
scheme depends on the communication infrastructure to exchange information in the
form of measured network parameters such as voltage, current, and power. Therefore,
the reliability of a viable adaptive protection scheme depends upon the redundancy of
the communication system with the cybersecurity hazards [11,12]. Moreover, adaptive
protection requires complex algorithms [13], which significantly increases the cost.

• Modification of fault current level: Fault contribution by IBGs could be modified by
adding auxiliary devices on the IBG side to improve its performance during faults. Ex-
amples are crowbar rotor circuit (CRC), superconducting fault current limiter (SFCL),
superconducting magnetic energy storage (SMES), and series dynamic braking resistor
(SDBR). CRC was used to improve the stability of DFIG during faults and protect the
rotor side converter [14]. SFCL aims to improve the low voltage fault ride-through
(LV-FRT) capability [15]. SDBR was introduced to improve the LV-FRT capability of
large wind turbines and the transient stability of DFIG during faults [16]. SMES stores
the energy and handles its transfer caused by DFIG power fluctuation or grid fault to
improve the LV-FRT [17]. As realized by the authors in [18], fault current-limiting de-
vices introduced several challenges in the power system that require further analysis,
such as interfering with communication lines, finding optimal design parameters, coor-
dinated control design between these devices and other protective devices, feasibility
analysis, field tests, and real-time grid operation.

• Meta-heuristic techniques: These are search algorithms capable of solving complex
optimization problems. They include Genetic Algorithm, Annealing algorithm, Tabu
Search, and Local Search algorithm. These techniques are high-level heuristics used
to guide others for a better evolution in the search space [19]. Several researchers
used the meta-heuristics for protection relay coordination to find the optimum relay



Energies 2022, 15, 5475 3 of 23

setting according to the system topology. Dynamic and flexible protection approach
considering different grid operation modes of microgrids for earth and phase overcur-
rent coordination using charged system search (CSS) and Teaching-Learning-Based
Optimization Algorithm (TLBO) was proposed in [20]. The studied microgrid was
connected to a distributed generator without defining the type of generator technology.
The inefficient numerical search is always a limitation of these techniques, especially
for high-dimensional problems [21].

• Machine learning techniques: Many researchers proposed artificial intelligence tech-
niques that utilize machine learning (ML) in power system protection for fault de-
tection, classification, and localization. The implementation of machine learning for
power system fault diagnosis was reviewed in [10,22,23]. The ultimate advantages
of these techniques are the accuracy, self-adaptiveness, and robustness to parameter
variations [24]. Existing ML techniques comprise the following stages: preprocess-
ing, feature extraction, feature reduction, classification, and performance evaluation.
For our focus, transmission line fault detection, classification, and localization using
machine learning techniques are reviewed in this article.

Fault detection and classification for mutually coupled transmission lines using Dis-
crete Wavelet Transformation (DWT) for three-phase current signals were proposed in [25].
ANN, k-NN, and DT classifiers were used to classify twenty-one classes for phase iden-
tification and four for ground faults identification. The accuracy was the classification
metric used to evaluate the performance. The best performing classifier was the ANN,
with 100% accuracy. The study did not consider the integration of IBGs and did not re-
port the data balancing. With the same feature extraction technique (i.e., discrete wavelet
transformation), the authors in [26] used three-phase currents and voltages to detect and
classify the transmission line faults using k-NN and DT classifiers. The DT outperformed
the k-NN with an accuracy of 100%. That study did not consider the IBGs integration,
feature reduction, and data balancing. P. Ray et al. in [24] utilized the wavelet packet
transformation to extract the features from three-phase voltages and currents to classify and
localize the faults. The dataset consisted of eleven classes: one for non-fault events and ten
for different fault types. The data samples were reported to be balanced and reduced using
the forward feature selection technique. The accuracy and the absolute error were used to
evaluate the SVM classifier. The results showed that the classification accuracy was 99.21%,
and the fault localization absolute error was less than 0.21%. The incremental quantity of
current signals was calculated as features to detect the faults during power swing in [27]
using the Random Forest (RF) classification model. The reported accuracy was 99.8%. The
authors in [28] compared different classifiers to detect symmetrical faults during power
swing using the change in current magnitude, voltage magnitude, current angle, voltage
angle, active power, reactive power, and apparent impedance. The mutual information
feature selection algorithm was used to find the optimum subset of features. The boost
ensemble outperformed the k-NN, DT, SVM, and Random Forest with an accuracy of
98.2%, and receiver operating characteristic (ROC) equals 1.0. In both studies, the IBG
integration was not considered, and the data balancing was not used. Principal Component
Analysis (PCA) was used in two studies for feature extraction and feature selection. PCA
scores for three-phase line currents in [29] were used to detect and classify the faults. The
Probabilistic Neural Network (PNN) was the best classifier and yielded 100% accuracy.
The other study in [30] proposed the PCA indices to localize the faults by putting them as
thresholds for different types of faults. The absolute deviation from the actual fault location
was the performance metric of the proposed approach. The average absolute deviation was
0.1271%. None of these two PCA-based techniques considered the integration of IBGs. The
percentage error (%) of fault location was reported as less than 1% when using Fast Fourier
transform (FFT) and traveling wave frequencies for three-phase current signals with the
Extreme learning machine (ELM) in [31]. The modal transformation was implemented in
several research articles to extract the features from current and voltage for fault detection,
classification, and localization. The mean vector of the voltage out of Clarke transformation
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was proposed by [32] for fault classification. Fuzzy logic with Clarke transformation for
ground fault detection and Generalized Neural Network for fault classification. In addition
to Clarke transformation as a feature, the FFT for phase angle calculation is another feature.
The authors in [33] proposed the entropy with fast discrete orthogonal S-transform (FDOST)
for fault detection, classification, and localization on hybrid transmission lines (cables and
overhead) with Support vector regression (SVR) for fault localization and SVM for fault
detection and type classification. The SVM achieved a detection and classification accuracy
of 98.2% and SVR with localization error between 0 and 0.47 km.

From the literature survey related to fault detection and classification in transmission
lines, we can observe the following:

• Few feature selection techniques were investigated to find the optimum feature subset.
In most cases, filter types (Information gain, Mutual information, etc.), wrapper type
(forward feature selection), and feature transformation (PCA) were considered, but
none of the researchers considered the embedded-type feature selection techniques.

• The issue of data imbalance was not highlighted, and the impact on the detec-
tion/classification performance was not investigated.

• Insufficient research addresses the problem of fault detection and classification in the
presence of inverter-based renewables.

• The classification accuracy was dominantly used as the only metric to evaluate the
classifier’s performance, which could not be sufficient if the data was unbalanced.

• The classifiers’ hyperparameters tuning with optimization algorithms were not considered.

This paper proposes a two-layer classification scheme using extracted features from
different domains and several feature selection algorithms for transmission line fault
detection and classification. The aim is to find the optimum combination of feature selection
and classification model that results in the best classification performance. More specifically,
the aims of this study are:

• to conduct a comprehensive study of ML-based transmission line fault classification
involving many features extracted from different domains (time, frequency, and time–
frequency), different feature selection/transformation algorithms, and many widely
used ML-based classification models;

• to investigate the critical problem of data imbalance as faults are relatively rare events
in power systems. The class unbalancing is addressed using the synthetic minority
class oversampling technique (SMOTE) and by

• optimization of the classifiers’ hyperparameters.

The remainder of this paper is organized as follows: Section 2 explains the system
study, the simulation scenarios, data setup, and ML approach details. Results and discus-
sion of the performance of classification models are discussed in Section 3. The conclusion
is given in Section 4.

2. Methodology

This section describes the different steps used in fault detection and classification.
These steps are preprocessing, feature extraction, feature reduction, decision making, and
performance assessment.

2.1. System Study and Data Preparation

The 39 Bus New England System [34] shown in Figure 1 was used to generate the data
in the present study. The system was modified by including a large-scale PV plant and
a DFIG wind farm at bus 2. The protected line is line 01–02, and the signals are acquired
from Bus 2. The dataset was constructed according to different generation types available
at Bus 2. Five different combinations of generators were considered: G10 only, PV plant
only, wind farm only, G10 with PV plant, and G10 with the wind farm.



Energies 2022, 15, 5475 5 of 23

Figure 1. Modified 39- Bus New England Power System.

The models of the PV plant and wind farm were WECC large-scale PV plant,
300 MVA, 60 Hz [35], and WECC Type-3 Wind Turbine Generator (DFIG), 2.0 MVA, 60 Hz,
and 150 units [36], respectively. The rated output of these plants was carefully selected
to ensure the numerical stability of the system simulation. The simulation was generated
using the Power Factory DigSilent software package (Power Factory 2019 SP6, DigSilent
GmbH, Gomaringen, Germany). The different scenarios considered in lines 1–2 involved
the following types of faults: phase-ground, two phases, two phases-to-ground, and three-
phase faults at several locations (10, 50, and 90%) and different fault impedance (0 and
100 ohms).

The fault was incepted at 1.0 s and cleared after 100 ms. The power swing condition
was simulated for post-fault events, as shown in Figure 2. At every generation connection
status in Bus 2, sixty fault scenarios were created, as described in Table 1. The current signal
of one simulated signal is similar to the one shown in Figure 2. The time frame of each
simulated event was three seconds, which comprised normal, fault, and swing conditions.

Figure 2. Phase A current signal of 3-ph fault at 50% with G10 only connected to Bus 2.
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Table 1. Fault event scenarios description.

Fault Cases Generator Type
Connected to Bus 2 Fault Location (%) Fault Impedance (ohms) Fault Types

Cases from 1 to 10

G10, PV, WF *,
G10 & PV, and G10 & WF

10 Zero
A-G, B-G, C-G, A-B,

A-C, B-C, A-B-G,
A-C-G, B-C-G

and A-B-C

Cases from 11 to 20 50 Zero
Cases from 21 to 30 90 Zero
Cases from 31 to 40 10 100
Cases from 41 to 50 50 100
Cases from 51 to 60 90 100

(* WF: Wind Farm).

The acquired signals at the measurement point in Bus 2 were the three-phase instan-
taneous currents (ia, ib, ic), the three-phase instantaneous voltages (va, vb, vc), the phasor
voltage, and the angle between voltage and current. The phasor voltage magnitude and an-
gle were used to calculate the swing center voltage (SCV) as detailed in [37]. The sampling
frequency considered in the simulation was 2 kHz.

Following the ML approach presented in Figure 3 and using the created dataset,
the number of features extracted from the dataset was reduced using feature reduc-
tion algorithms reduce the computational burden of training the classification models.
Four classification models were then used to classify the events: DT, K-NN, SVM, and
Ensemble trees.

Figure 3. Machine learning approach for fault detection and classification.

The classifiers’ hyperparameters were tuned using the Bayesian optimization algo-
rithm. The performance of the classification models was evaluated using four classification
metrics: accuracy, sensitivity, specificity, and precision. Further details of the proposed
methods and algorithms are discussed in the following subsections.

The protection scheme suggested in this study is illustrated in Figure 4. There are
two classification levels: fault detection (binary classification) and fault type classification
(multi-class classification) models. The first classifier is intended to differentiate fault
events from non-fault events. The non-fault events consisted of normal events and power
swing events. If the first classifier detects a fault, the second classifier is used to classify
it into one of the seven types of faults: A-G fault, B-G fault, C-G fault, A-B and A-B-G
faults, A-C and A-C-G faults, C-B and C-B-G faults, and A-B-C faults. Identifying the
fault type is vital for auto-reclose function activation or blocking. The input signals of
the fault detection classifier are the three-phase instantaneous voltage and current signals
and the SCV. On the other hand, the instantaneous current signals are the only input
signals for the fault-type classifier. Many researchers proposed the current-only fault type
classification method [38,39]. This scheme prioritizes fault detection, which is the ultimate
action required to discriminate between faults and non-fault events. Then, the second layer
is activated if the output of the first layer is “1”.
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Figure 4. ML-based protection scheme.

2.2. Feature Extraction

All signals have been segmented in 8 ms (16 samples) epochs. Features were then
extracted from the voltage (va, vb, vc), current (ia, ib, ic), and SCV signals represented in
the time domain, frequency domain, and time–frequency domain as shown in Table 2.
These epochs extracted statistical features, including root-mean-square (RMS), maximum,
minimum, mean, median, variance, standard deviation, kurtosis, and skewness. These
time-domain features were extracted from the original signals and their first-order differ-
ences. In addition, the same statistical features were obtained from the measured signals’
spectrograms (time-frequency representation). The statistical features were also extracted
from the DWT’s first and second detail coefficients. In addition, the estimated instanta-
neous frequency obtained from the Hilbert transformation algorithm was also extracted.
The extracted frequency domain features spectral entropy and the mean and median fre-
quencies. The total number of features was 49 for each signal epoch. As a result, the total
number of extracted features was 343. A detailed description of these features is presented
in Appendix A.

Table 2. Extracted features from selected signals in different domains.

Domain Features Number of Features for Each Signal

Time
Statistical features of original signals [40] 9

Statistical features of first-order difference of the
original signals [40] 9

Time-frequency

Statistical features of spectrogram [41] 9
Statistical features of wavelet decomposition of first

and second detail coefficients [42] 18

Estimated instantaneous frequency [43] 1

Frequency Spectral entropy [44] 1
Mean and median frequency [45] 2

It is worth noting that the proposed fusion of the selected features was not considered
in any previous study for transmission line fault detection and classification. All extracted
features from current, voltage, and SCV signals were used for fault detection problems,
whereas the extracted features from current signals are only used for the fault type classi-
fication stage. This was because the fault type classification requires the identification of
faulty phases, which can be identified only by the current signals.

2.3. Data Balancing

Fault events in power systems form a minority class compared to normal conditions.
Using unbalanced data tends to bias the classifier outputs toward the majority class. Two
widely used approaches to balancing the datasets are under-sampling the majority class
and over-sampling the minority one. Oversampling can be achieved by duplicating the
samples in the minority class or synthetically adding new data samples. This approach is
preferred when the majority class is not big enough or the minority class is too small. The
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most widely used oversampling method, the Synthetic Minority Over-sampling Technique
(SMOTE), is based on the k-nearest neighbor algorithm [7]. This method is considered in
this research.

2.4. Feature Reduction

The number of features in the dataset is reduced to avoid the overfitting problem and
the “curse of dimensionality”. This can be done using either feature transformation or
feature selection techniques. Feature transformation aims to transform the feature set into a
lower dimension space without eliminating existing features. On the other hand, the feature
selection methods rank the features by assigning them weights indicating their importance
and selecting the ones with the highest weights. Feature selection techniques are of three
types: filter, wrapper, and embedded. Filter methods are independent of any learning
method and focus on the general characteristics of the data. Conversely, wrappers and
embedded methods require a learning method to judge the importance of the features [46].
Figure 5 shows the different techniques used for feature reduction [40].

Figure 5. Proposed feature reduction algorithms.

2.5. Classification Models

In this paper, we selected five among the widely used classification models, namely
decision trees [47], Support Vector Machines with Gaussian Kernel [48], k-nearest neigh-
bors [49], and Ensemble trees [50]. The classifiers’ hyperparameters can be tuned manually
or automatically using different optimization algorithms like grid search, random search,
and Bayesian optimization, among others. The objective of the optimization scheme is
to minimize the classification error. The Bayesian optimization technique is proposed
in this study. It is a sequential model-based optimization algorithm that uses the re-
sults from the previous iteration to decide on the following hyperparameter values. This
process is performed until it converges to the optimum values or reaches a stopping crite-
rion [35]. Bayesian optimization tends to converge faster to an optimal solution compared
to grid/random search algorithms [51]. The optimizable classifiers with hyperparameter
search options are presented in Table 3.

Table 3. Optimization search options of optimizable classification models [52].

Model Hyper-Parameters Search Options Remarks

Optimizable Tree
Maximum number of splits Search among integers log-scaled in

the range [1, max(2, n − 1)]

Specify the maximum number
of splits or branch points to
control the depth of the tree.

Split criterion Gini’s diversity index, Towing rule,
and Maximum deviance reduction

This is to decide when to split
the nodes.
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Table 3. Cont.

Model Hyper-Parameters Search Options Remarks

Optimizable GSVM

Box constraint level Range [0.001,1000]
This is to keep the allowable
values of the Lagrange
multipliers in a box.

Multiclass method
Standardize data Search between true and false

If predictors have widely
different scales, standardizing
can improve the fit.

Optimizable k-NN

Number of neighbors Search among integers log-scaled in
the range [1, max(2, n − 1)]

A fine kNN uses fewer
neighbors, and a coarse kNN
uses higher neighbors.

Distance metric

Euclidean, City block, Chebyshev,
Minkowski (cubic), Mahalanobis,
Cosine, Correlation, Spearman,
Hamming, Jaccard

These are metrics to determine
the distance to points.

Distance weight Searches among Equal, Inverse, and
Squared inverse.

Specify the distance weighting
function.

Standardized data Search between true and false
Standardizing the data can
improve the fit if predictors
have widely different scales.

Optimizable Ensemble

Ensemble method Search among AdaBoost, RUSBoost,
LogitBoost, GentleBoost, and Bag

Maximum number of splits Search among integers log-scaled in
the range [1, max(2, n − 1)]

Specify the maximum number
of splits or branch points to
control the depth of the tree.

Number of learners Search among integers log-scaled in
the range [10, 500]

Many learners can produce
high accuracy but can be
time-consuming to fit

Learning rate Search among real values log-scaled
in the range [0.001, 1]

If the learning rate is set to less
than 1, the Ensemble requires
more learning iterations but
often achieves better accuracy.

2.6. Evaluation Metrics

In many previous related works, authors commonly used the accuracy as the only
metric to evaluate the performance of the proposed classifiers. However, the accuracy met-
ric is not always good, especially for imbalanced data [53]. The classification performance
metrics used in this paper are accuracy, sensitivity, specificity, and precision [54] defined in
Table 4.

Table 4. Performance Metrics Definition.

Metric Defined as Confusion Matrix
Accuracy (TP + TN)/(TP + FN + FP + TN) * Predicted Class
Sensitivity TP/(TP + FN) Class 0 Class 1
Specificity TN/(TN + FP)

Actual Class
Class 0 TP FN

Precision TP/(TP + FP) Class 1 FP TN
* TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative.

• Accuracy is the ratio of the number of correct predictions (fault and non-fault events)
to the total number of input samples in the test dataset.

• Sensitivity is the percentage of true positives (non-fault events) that are correctly
identified by the classifier.

• Specificity is the percentage of true negatives (fault events) that are correctly identified
by the classifier.

• Precision indicates the percentage of instances the classifier detected as positives
compared to the total positive instances.
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3. Results and Discussion of Results

This section is divided into three main parts: the classification performance of the
proposed two-layered classification scheme, the performance evaluation to detect and
classify new fault scenarios, and a comparative analysis of previous studies in the literature.
The classification performance is measured using the above-mentioned four performance
metrics. More details about the setting of the proposed algorithms and techniques can be
found in the Appendix B.

3.1. Performance of Fault Detection Model

The fault detection model was designed to classify fault from non-fault events. The
performance evaluation covers the effect of data balancing on the classification models and
the performance when using feature reduction techniques.

3.1.1. Performance of Balanced versus Unbalanced Datasets

First, the classification of the datasets discussed in Section 3 with all extracted features
is considered. Figure 6 shows the classification performance of both balanced and unbal-
anced datasets using the complete set of features and the classifiers’ hyperparameters are
presented in Table 5 with the required training time. The following could be observed from
these results:

• The classification performance of the four proposed classifiers was generally high. The
Bag Ensemble and decision trees achieved better performance than k-NN and SVM.

• Balancing the dataset improved the specificity and sensitivity of the SVM and
k-NN classifiers.

• The training time for the balanced dataset increased dramatically as the number of
observations of the minority class (fault events) increased. In addition, the training
time for the classifiers with more tuned parameters was higher, as in the case of tuning
the k-NN and Ensemble.

Figure 6. Classification performance of unbalanced/balanced datasets with a complete set of features.
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Table 5. Classifiers’ hyperparameters of unbalanced/balanced datasets.

Classifier
Unbalanced Dataset Balanced Dataset

Hyperparameters Training Time (s) Hyperparameters Training Time (s)

DT
Maximum number of splits:

428, Split criterion: Maximum
deviance reduction

188
Maximum number of splits:

34,833, Split criterion:
Maximum deviance reduction

227

SVM Box constraint level: 47.0829,
Standardize data: false 2058 Box constraint level: 995.6227,

Standardize data: false 21,324

K-NN
Number of neighbors: 1,
Distance weight: Inverse,

Standardize data: true
5390

Number of neighbors: 1,
Distance metric: Euclidian,

Distance weight: Equal,
Standardize data: true

15,187

Ensemble

Ensemble method: Bag,
Maximum number of splits:

30,209, number of learners: 13,
number of predictors to

sample: 60

819

Ensemble method: Bag,
Maximum number of splits: 16,

number of learners: 228,
number of predictors to

sample: 145

17,680

3.1.2. Performance of Reduced Dataset

Table 6 presents the classification performance for each feature reduction technique.
The best classifier selected for each method was the one with the best classification metrics.
The selected features by the different feature reduction methods are shown in Figure 7. The
selected features depend on each feature’s weight score according to each method’s criteria.
The non-zero score selection is fundamentally used to choose the features. If the scores of
all features are non-zeros (example of ReleifF), then the average score of all features was
considered a threshold. Those which were greater than or equal to the average value were
selected. The following notes could be highlighted from the results:

• With only 163 features selected using the sequential forward feature selection method,
the classification performance was the highest using the Bag ensemble classifier. How-
ever, the training time was high.

• In the embedded-type feature selection methods (Fit trees and Fit Ensemble), sin-
gle and two features were selected, respectively, with remarkable classification per-
formance. The training time was low compared with others because of the small
dimension of the training data.

• The mRMR feature selection algorithm with the k-NN classifier achieved the lowest
performance.

• The chi-square test selected only 34 features, but the training time to tune the hyperpa-
rameters of the k-NN classifier was the highest. Its performance was quite good but
less than NCA and ReleifF techniques.

• The Ensemble and DT classifiers were the best classifiers with most types of feature
selection except for mRMR algorithm, where the k-NN was the best performer.

• The SVM with Gaussian kernel gave relatively poor results with all feature
reduction algorithms.

• The PCA with GentleBoost Ensemble classifier performed well using 95% of the
variance explained, but the training time was considerably high.
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Table 6. Performance of reduced features for fault detection model.

Feature Reduction
Method Best Classifier Number of

Selected Features
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
Precision

(%) Hyperparameters Training Time (s)

NCA Ensemble 8 99.98 99.98 100.00 100.00

Ensemble method: GentleBoost,
Maximum number of splits: 283,

number of learners: 274, Learning
rate: 0.007819

804

Chi-square test Ensemble 34 99.55 99.75 96.72 99.77

Ensemble method: AdaBoost,
Maximum number of splits: 1087,
number of learners: 136, Learning

rate: 0.66932

14,327

ReliefF DT 122 100.00 100.00 99.93 99.99 Maximum number of splits: 86,022,
Split criterion: Gini’s diversity index 104

mRMR KNN 3 91.02 91.51 84.21 98.77
Number of neighbors: 28,

Distance metric: Euclidean,
Distance weight: Equal

552

Forward Sequential
feature Ensemble 163 100.00 100.00 100.00 100.00

Ensemble method: Bag, Maximum
number of splits: 15,701, number of
learners: 17, number of predictors to

sample: 39

1223

Fit classification
ensemble Ensemble 1 99.63 99.61 99.86 99.99

Ensemble method: RUSBoost,
Maximum number of splits: 1,

number of learners: 10, Learning
rate: 0.0073088

146

Fit classification trees DT 2 99.99 100.00 99.78 99.98
Maximum number of splits: 49,

Split criterion: Maximum
deviance reduction

31

PCA Ensemble 6 components 98.92 99.13 95.94 99.71
Ensemble method: GentleBoost,
Maximum number of splits: 57,

number of learners: 210
12,037
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Figure 7. Feature reduction algorithms results for fault detection model (detailed description of the
features is in Appendix A).

3.2. Performance of Fault Classification Model

The fault type classification model was designed to classify the type of fault after
detecting it using the fault detection classification model, as illustrated in Figure 4. The
optimum classification model was achieved by following the same ML approach stated in
Figure 3 except for the data balancing because the groups were considered balanced during
the fault simulation. The description of the dataset is presented in Appendix B.

3.2.1. Performance with a Complete Set of Features

The classification accuracy using the proposed classifiers with the complete set of
extracted features of three-phase instantaneous current signals is presented in Figure 8. The
maximum accuracy was 99.4% using the Ensemble classifier, whereas the lowest was 91.6%
with k-NN.

Figure 8. Classification accuracy of fault type classification model with the complete set of features.

The hyperparameters of the best classifier were as follows: Ensemble method: Ad-
aBoost, the maximum number of splits: 5, the number of learners: 465, and the learning
rate: 0.70288.
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3.2.2. Performance of Reduced Dataset

The proposed feature-reduction algorithms presented in Figure 5 were also used
with the proposed machine learning classifiers for the fault type classification model. The
selected features using the proposed techniques are shown in Figure 9. It can be noticed
that the number of features was reduced to 147, which represents the extracted features
from three-phase current signals (3 signals × 49 features). The accuracy will be considered
as the only classification performance metric as the fault type classes were considered
balanced. Table 7 shows the detailed results of each feature-reduction method. The results
showed that some selection techniques have classification accuracy close to the accuracy of
a complete set of features. For example, the Fit ensemble method yielded an accuracy of
99.0% with 24 features. However, none of the feature-reduction algorithms could better
improve the classification accuracy than using the complete set of features.

Table 7. Classification performance of reduced features for fault type classification.

Feature Reduction
Method Best Classifier Number of

Selected Features
Accuracy

(%) Hyperparameters Training Time
(s)

NCA DT 103 98.5
Maximum number of splits: 2643,

Split criterion: Maximum
deviance reduction

23

Chi-square test Ensemble 87 97.5

Ensemble method: AdaBoost,
Maximum number of splits: 14,

number of learners: 24, Learning
rate: 0.0023388

145

ReliefF Ensemble 41 98.2

Ensemble method: AdaBoost,
Maximum number of splits: 7,

number of learners: 449, Learning
rate: 0.99393

324

mRMR Ensemble 5 70.9

Ensemble method: Bag,
Maximum number of splits: 618,
number of learners: 245, number

of predictors to sample: 2

236

Forward
Sequential feature Ensemble 57 98.8

Ensemble method: RUSBoost,
Maximum number of splits: 112,
number of learners: 11, Learning

rate: 0.73117

133

Fit classification
ensemble Ensemble 24 99.0

Ensemble method: Bag,
Maximum number of splits: 36,

number of learners: 95, number of
predictors to sample: 8

148

Fit classification
trees Ensemble 14 98.9

Ensemble method: Bag,
Maximum number of splits: 220,

number of learners: 12, number of
predictors to sample: 5

68

PCA Ensemble 3 components 74.6

Ensemble method: Bag,
Maximum number of splits: 2619,
number of learners: 473, number

of predictors to sample: 3

202

Moreover, the lowest performance was with the selected features using mRMR, which
resulted in around 80% accuracy. The highest training time was with the ReliefF selection
technique and Adaboost ensemble classifier. In most cases, the Ensemble classifier with
different ensemble methods was the best performer with the highest accuracy, except for
NCA, where the DT was the best classifier.
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Figure 9. Feature reduction algorithms results for fault type classification model (detailed description
of the features is in Appendix A, considering current signals only).

3.3. Performance Evaluation Using New Fault Scenarios

The performance of the classifiers was further evaluated using newer fault scenarios
not included in the training and testing datasets. The classification models used for
evaluation were Bag ensemble classifier with the complete set of features (343 features)
for fault detection and the Adaboost ensemble classifier with the complete set of features
(147 features) for fault classification.

The following lines describe the different fault scenarios and the results obtained
using the proposed two-layer classifier (fault detection and fault type classifiers). Moreover,
Figure 10 shows the output signals of detection and classification models.

Scenario 1: Three cascaded in-zone faults at 70% of the protected line (Line 1–2) from the
measurement point were simulated. The first fault was A-G at 1.0 s, the second was A-B
at 2.0 s, and the third was A-B-C fault at 3.0 s. The fault duration was 0.1 s. The generation
connected to Bus 02 was G10 and PV plant. The faults were correctly detected and classified
except for A-G fault, where the classifier was confused between class 1 (A-G) & class 2 (B-G).
Scenario 2: Out of zone fault in the line (1–39) at 50%. The fault was A-B-C fault incepted
at 1.0 s for 100 ms. The generation connected to Bus 02 was G10 and Windfarm. The fault
was detected. The fault type was initially detected as A-B-C fault at the inception of the
fault, and then, during the fault, it was classified as A-C fault. Out-of-zone detection could
be mitigated by introducing fault detection with ML for each line in the system.
Scenario 3: Out of zone fault in the line (2–25) at 50%. The fault was A-B fault incepted
at 1.0 s for 100 ms. The generation connected to Bus 02 was G10 and Windfarm. The fault
was detected and classified accurately, although the fault was not located at the protected
line. Similar to Scenario 2, out-of-zone detection could be mitigated by introducing fault
detection with ML for each line in the system.
Scenario 4: High impedance fault with fault resistance of 200 ohms was incepted at 70% of
the line (01–02). The fault was A-B-C fault. The generation connected to Bus 02 was G10
and PV Plant. The fault was correctly detected.
Scenario 5: Fault during power swing was created at 2.0 s, and the power swing occurred
due to fault clearance that happened at 1.0 s. Both faults were A-B-C faults created at 50%
of the line (01–02). The generation connected to Bus 02 was G10 and PV Plant. The faults
were correctly detected and classified.
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Figure 10. Fault detection and classification results related to the new fault scenarios.

3.4. Comparative Analysis of Different Methods in the Literature

This section compares the proposed two-layer classification model (fault detection
then fault classification) with the previous classification methods in the literature. Table 8
shows the comparison of different fault detection and classification methods and the best
model for detection and classification obtained from this study (Bag ensemble with forward-
sequential feature selection for fault detection and Adaboost ensemble with the complete
set of features of current signals for fault classification).

Compared with other methodologies from the literature, the implemented approach
resulted in high detection and classification capability considering the integration of IBGs
and reporting different classification metrics (accuracy, sensitivity, specificity, and precision),
which are essential for the case of the unbalanced dataset. The ‘accuracy’ metric for fault
classification was assumed sufficient as it was assured that the seven fault classes were
created balanced.
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Table 8. Comparative analysis of selected methodologies from the literature.

Reference Objective Methodology IBG Consideration Classifiers Performance Metrics Classification Results

[25]
Fault detection and

classification for mutually
coupled transmission lines

Discrete Wavelet Transformation was used
to extract the features from three-phase
currents. Twenty-one classes were
considered for phase fault identification
and four classes for ground fault
identification. The data balancing was not
considered, and no feature reduction
technique was used.

No ANN, k-NN, and DT. Accuracy Accuracy = 100% (ANN)

[26] Fault detection
and classification

Discrete Wavelet Transformation was used
to extract the features from three-phase
currents and voltages. Twelve classes were
considered for normal events and different
fault types. The data balancing was not
reported, and no feature reduction
technique was used.

No k-NN and DT Accuracy Accuracy = 100% (DT)

[24] Fault classification
and localization

Wavelet packet transformation was used to
extract the features from three-phase
voltages and currents. The data was
reported balanced, and the Forward feature
selection algorithm was used to reduce the
number of features. Ten classes were
introduced for normal conditions and fault
events with different types of faults.

No SVM

Accuracy for
classification, and
absolute error for
fault localization

Accuracy = 99.21%
absolute error < 0.21%

[28] Classification of symmetrical
faults during power swing

Changes in current magnitude, voltage
magnitude, current angle, voltage angle,
active power, reactive power, apparent
resistance, and reactance were considered
the features of Voltage and current
magnitude and angle, active and reactive
power, and apparent impedance signals.
Data balancing was not reported, and the
Mutual information technique was used for
feature selection. Two classes were
considered for fault and swing events.

No
k-NN, DT, k-NN,

Boost ensemble, SVM,
and Random Forest

Accuracy, and receiver
operating characteristic

(ROC)

Accuracy = 98.2%
(Boost ensemble)

ROC = 1.0
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Table 8. Cont.

Reference Objective Methodology IBG Consideration Classifiers Performance Metrics Classification Results

[29] Fault detection and
classification

Principle component scores of three-phase
current signals were used as features. The
dataset was created balanced. Eleven
classes were used, one for non-fault events
and ten for different fault types.

No PNN Accuracy Accuracy = 100% (PNN)

[33]

detection, classification, and
localization of faults on

hybrid transmission lines
(cables and overhead)

Entropy with fast discrete orthogonal
S-transform (FDOST) was used to extract
three-phase fault current signals. Eleven
classes were introduced to represent a
non-fault and different types of faults

No

Support vector
regression (SVR) for

fault localization
SVM for fault
detection and

type classification

Accuracy
Accuracy = 98.2%

Localization
error = 0–0.47 km

Proposed
approach

Fault detection and
classification As described in Section 2.

Yes (Large-scale PV
and DFIG wind

farm)

DT, k-NN, SVM, and
ensembles

Accuracy, specificity,
sensitivity,

and precision

Fault detection: (Bag
Ensemble with forward

feature selection)
Accuracy = 100%,
specificity = 100%,

sensitivity = 100%, and
precision = 100%

Fault classification:
(Adaboost Ensemble)

Accuracy = 99.4%
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4. Conclusions

This study proposes a machine-learning approach to detect and classify faults in
transmission lines connected to inverter-based generators (i.e., PV and DFIG wind farm
plants). A two-layer classification scheme was implemented to detect a fault from non-fault
events and then classify the type of detected faults. The features from measured three-phase
voltages and currents were extracted in the time, frequency, and time-frequency domains.
The main outcomes of this study are:

• The results showed that the data balancing using SMOTE improved the specificity
and sensitivity metrics however the training time increased dramatically.

• Each proposed feature-reduction method developed a different selected subset of
features and resulted in different classification performance.

• The Ensemble and DT classifiers performed better than others in most types of
feature selection.

• The forward feature selection technique with the Bag ensemble classifier improved
the classification metrics to 100% for fault detection using 163 features.

• The Adaboost ensemble classifier had the highest accuracy compared with other
classifiers with 99.4% for fault type classification.

• The prediction capability for fault detection and classification was high using the
complete set of features when tested with new test cases.

• Compared with other methodologies from the literature, the implemented approach
resulted in high detection and classification capability considering the integration
of IBGs.

The proposed approach uses classical machine learning models that learn from static,
identically distributed, and well-labeled training data. That is not necessarily the case for
the non-stationary behavior of power systems. Moreover, the assumption was that the
simulated faults were stationary (time-invariant), which may not be the case in real-life
systems exposed to environmental factors and aging. Tackling these issues requires using
intelligent agents with the ability to continuously learn from real-time data. Incremental
learning could be used to update the faults datasets online. As the new types of faults may
not be identified in an online setting, unsupervised or semi-supervised learning techniques
can be used. These directions are currently being investigated.
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Appendix A

Features Description

(x1 − x9): statistical features * of the squared signal of ia, (x10 − x18): statistical features
of the squared signal of ib, (x19 − x27): statistical features of the squared signal of ic,
(x28 − x36): statistical features of the squared signal of va, (x37 − x45): statistical features
of the squared signal of vb, (x46 − x54): statistical features of the squared signal of vc,
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(x55 − x63): statistical features of the squared signal of SCV, (x64 − x72): statistical features
of the first order difference signal of ia, (x73 − x81): statistical features of the first order
difference signal of ib, (x82 − x90): statistical features of the first order difference signal
of ic, (x91 − x99): statistical features of the first order difference signal of va, (x100 − x108):
statistical features of the first order difference signal of vb, (x109 − x117): statistical features
of the first order difference signal of vc, (x118 − x126): statistical features of the first order
difference signal of SCV, (x127 − x135): statistical features of the first detail coefficients signal
of ia, (x136 − x144): statistical features of the first detail coefficients signal of ib, (x145 − x153):
statistical features of the first detail coefficients signal of ic, (x154 − x162): statistical features
of the first detail coefficients signal of va, (x163 − x171): statistical features of the first detail
coefficients signal of vb, (x172 − x180): statistical features of the first detail coefficients
signal of vc, statistical features of the first detail coefficients signal of vb, (x181 − x189):
statistical features of the first detail coefficients signal of SCV, (x190 − x198): statistical
features of the second detail coefficients signal of ia, (x199 − x207): statistical features of the
second detail coefficients signal of ib, (x208 − x216): statistical features of the second detail
coefficients signal of ic, (x217 − x225): statistical features of the second detail coefficients
signal of va, (x226 − x234): statistical features of the second detail coefficients signal of vb,
(x235 − x243): statistical features of the second detail coefficients signal of vc, statistical
features of the second detail coefficients signal of vb, (x244 − x252): statistical features of the
second detail coefficients signal of SCV, (x253 − x261): statistical features of the spectrogram
of ia, (x262 − x270): statistical features of the spectrogram of ib, (x271 − x279): statistical
features of the spectrogram of ic, (x280 − x288): statistical features of the spectrogram
of va, (x289 − x297): statistical features of the spectrogram of vb, (x298 − x306): statistical
features of the spectrogram of vc, statistical features of the spectrogram of vb, (x307 − x315):
statistical features of the spectrogram of SCV, (x316 − x319): the mean, median, instantaneous
frequency, and spectral entropy of ia, (x320 − x323): the mean, median, instantaneous
frequency, and spectral entropy of ib, (x324 − x327): the mean, median, instantaneous
frequency, and spectral entropy of ic, (x328 − x331): the mean, median, instantaneous
frequency, and spectral entropy of va, (x332 − x335): the mean, median, instantaneous
frequency, and spectral entropy of vb, (x336 − x339): the mean, median, instantaneous
frequency, and spectral entropy of vc, (x340 − x343): the mean, median, instantaneous
frequency, and spectral entropy of SCV.

* Statistical features = [maximum, minimum, mean, median, standard deviation,
variance, kurtosis, skewness, root mean square].

Appendix B

Experimental Settings

39-Bus Power System As Detailed in [34].

PV inverter
10 kVA per inverter, local controller: constant Q, Short circuit model: Dynamic

voltage support, Sub-transient short circuit: 1.21 kVA, R to X” ratio: 0.1, K Factor:
2, Max. current: 1.1 pu, Td” = 0.03 s, Td’ = 1.2 s

Wind Turbine
2 MVA, 1.0 power factor, local controller: constant Q, Short circuit model: Dynamic
voltage support, Sub-transient short circuit: 2.39 MVA, R to X” ratio: 0.1, K Factor:

2, Max. current: 1.1 pu, Td” = 0.03 s, Td’ = 1.2 s
SPECTROGRAM Window size: 16 samples, overlapping: 16 samples

SMOTE Number of nearest neighbors: 5, Oversampling rate: 450%, Random seeds: 100

Optimizer settings
Optimizer: Bayesian Optimization, Acquisition function: Expected improvement

per second plus, Iterations: 10
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39-Bus Power System As Detailed in [34].

Sequential feature selection algorithm
Criterion function: Residual Sum of Squares, Validation method: 5-fold

cross-validation
ReliefF algorithm Number of nearest neighbors: 5

PCA Percentage of variance explained: 95%

Classifier-1 datasets (Fault Detection)

(1) Unbalanced Dataset:

Labels: ‘0’: non-fault events including normal system condition and power
swing condition, and ‘1’: fault events
Training Data:
Number of observations: 3240 (Fault) and 44729 (non-fault)
Testing Data:
Number of observations: 1318 (Fault) and 19239 (non-fault)
Features: 343 features as defined in Table 2

(2) Unbalanced Dataset:

Labels: ‘0’: non-fault events including normal system condition and power
swing condition, and ‘1’: fault events
Training Data:
Number of observations: 28857 (Fault) and 31409 (non-Fault)
Testing Data: (kept same as for Unbalanced dataset)

Classifier-2 datasets (Fault Classification)

Labels: ‘1’: A_G fault, ‘2’: B-G fault, ‘3’: C-G fault, ‘4’: A-B & A-B-G fault, ‘5’: A-C
& A-C-G fault, ‘6’: B-C & B-C-G fault, and ‘7’: A-B-C fault
Training Dataset:
Number of observations: 278 (A-Gfault), 277 (B-G fault), 263 (C-G fault), 521 (A-B
& A-B-G fault), 540 (A-C & A-C-G fault), 524 (B-C & B-C-G fault), and 258 (B-C &
B-C-G fault)
Testing Dataset:
Number of observations: 104 (A-G fault), 104 (B-G fault), 118 (C-G fault), 238 (A-B
& A-B-G fault), 219 (A-C & A-C-G fault), 235 (B-C & B-C-G fault), and 122 (B-C &
B-C-G fault)
Features: 147 extracted features from only current signals (Ia, Ib, and Ic) as defined
in Table 2.
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