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Abstract: State estimation (SE) is regarded as an essential tool for achieving the secure and efficient
operation of distribution networks, and extensive research on SE has been conducted over the past
three decades. Nonetheless, the high penetration of distribution generations (DGs) is accompanied
by uncertainties and dynamics, and the extensive application of intelligent electronic devices (IEDs)
is associated with data processing issues, all of which raise new challenges, and these issues must
be taken care of for further development of SE in smart distribution networks. This paper attempts
to present a comprehensive literature review of numerous works that address various issues in SE,
examining key technical research issues and future perspectives. Hopefully, it will be able to meet the
needs for the development of smart distribution networks.

Keywords: state estimation; smart distribution network; distribution generation; uncertainty; smart
meter; big data; energy internet

1. Introduction

Power system SE is defined as “a data processing [system] for transforming system
network parameters, redundant real-time measurements (e.g., meter reading and other
available information) and pseudo-measurements into an estimate of the state of an electric
power system.” It has become an essential tool for the operation, control, and management
of electric networks worldwide since the initial development of this concept in 1970 [1].
It has strengthened the SCADA systems and eventually led to the development of the
EMS [2]. Since its introduction as a way to improve power transmission network reliability
and stability by monitoring real-time operation and control, SE has been a hot research
topic [3].

Over the past few decades, the discussions and applications of SE at the distribution
level have not been of significant interest, mainly because distribution networks have
traditionally been designed and operated passively, where power flows are unidirectional
and relatively simple to manage [4]. More recently, the reduced cost of instruments required
for real-time monitoring, impending deregulation, and a desire to improve power customer
services have driven interest and motivation for developing SE at the distribution level. In
particular, as noted in related works [5,6], the smart grid’s promotion of DERs, such as DGs
based on wind and solar generation, PHEVs, and distributed storage units, is transforming
passive distribution systems into smart distribution networks with bidirectional power
flows (see, Figure 1). The transition calls for advanced monitoring [7,8], control and
protection, which must be based on situation awareness of the system conditions [9,10],
and a real-time SE technology is becoming increasingly significant in this context [11].
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of electricity customers [18]. Therefore, it is an arduous task to extend traditional SE mod-
els to the smart distribution networks due to the following main challenges: 
• High network imbalances and high line impedance ratios. The distribution network 

generally has unbalanced three-phase power lines and loads, and the high penetra-
tion of DGs further aggravates the imbalance of system operations. In addition, the 
line impedance parameter (R/X) ratio is high at the distribution level, resulting in the 
decoupling relationship between the power and the voltage no longer existing. These 
factors make simplifying the SE problem to a single-phase model no longer applica-
ble in the distribution network. 

• Large-scale networks and intense uncertainty of system parameters. The distribution 
network has many feeders and dense buses. DGs output and power load demand are 
uncertain, and the distribution network has many topologies, such as radial and 
weak-loop. Additionally, the line parameters are susceptible to changes due to the 
influence of the climate environment. These factors lead to problems such as low cal-
culation efficiency and the low robustness of estimated results in the analysis distri-
bution network SE model. 

• Observability problem. Due to the lack of real-time measuring devices, the distribu-
tion network is highly unobservable, which requires higher accuracy of the distribu-
tion network SE model. 
Fortunately, various quality works have been conducted in recent years focusing on 

improving SE models for the secure and effective operations of smart distribution net-
works. To the best of the authors' knowledge, there are not many review publications that 
succeed in combining different strategies while also discussing the suitability of such 
models and techniques for smart distribution networks. This paper attempts to broadly 
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Pioneer works on SE and its related technical issues for distribution networks were
conducted in the 1990s [12–14], and multifunctional estimators, adopting branch–current or
node–voltage variables in polar or rectangular forms as state variables, were tested [15–17].
Within the background of smart distribution networks, especially given the growing pop-
ularity of uncertain DGs, SE processing is also easily affected by the random behavior of
electricity customers [18]. Therefore, it is an arduous task to extend traditional SE models
to the smart distribution networks due to the following main challenges:

• High network imbalances and high line impedance ratios. The distribution network
generally has unbalanced three-phase power lines and loads, and the high penetration
of DGs further aggravates the imbalance of system operations. In addition, the line
impedance parameter (R/X) ratio is high at the distribution level, resulting in the
decoupling relationship between the power and the voltage no longer existing. These
factors make simplifying the SE problem to a single-phase model no longer applicable
in the distribution network.

• Large-scale networks and intense uncertainty of system parameters. The distribution
network has many feeders and dense buses. DGs output and power load demand are
uncertain, and the distribution network has many topologies, such as radial and weak-
loop. Additionally, the line parameters are susceptible to changes due to the influence
of the climate environment. These factors lead to problems such as low calculation
efficiency and the low robustness of estimated results in the analysis distribution
network SE model.

• Observability problem. Due to the lack of real-time measuring devices, the distribution
network is highly unobservable, which requires higher accuracy of the distribution
network SE model.

Fortunately, various quality works have been conducted in recent years focusing
on improving SE models for the secure and effective operations of smart distribution
networks. To the best of the authors’ knowledge, there are not many review publications
that succeed in combining different strategies while also discussing the suitability of such
models and techniques for smart distribution networks. This paper attempts to broadly
present various models in SE, review the current status of SE models in smart distribution
networks, and highlight some of the most advanced theories currently available for the
further development of SE models.
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This paper is organized as follows. Section 2 briefly introduces the basic measurement
functions of SE. Sections 3 and 4, respectively, survey static SE and dynamic SE models,
as well as several advanced methodologies and critical issues regarding the two popular
SE models. Section 5 discusses future research directions in this area. Section 6 concludes
this paper.

2. Basic Measurement Functions of State Estimation

From the definition of power system SE, “the SE is a procedure for finding feasible
state variables x that result in measurement functions h(x) which satisfy the measurement
constraints”, the distribution network SE can estimate system states from limited real-
time measurements that may be subject to measurement errors [16]. The measurement
system directly affects SE results. Without losing generality, a state vector is identified as
x = [x1, x2, · · · , xn]T, where xi = [Vi,θi], i = 1, 2, · · · , n, n is the number of buses and Vi, θi
are, respectively, the voltage magnitude and phase angle at bus i. Two main categories
are commonly used for the choice of state variables, namely three-phase bus voltage and
three-phase branch current, both of which can be formulated in polar and rectangular
coordinates [19]. A measurement vector is identified as z = [z1, z2, · · · , zm]

T , where m
is the number of system measurements, including real-time measurements and pseudo-
measurements [20,21]. Since there exists an error of measurement, the formulation of
system measurements can be expressed as

z = h(x) + v (1)

where v ∼ N(0, R) is the measurement noise, with a Gaussian distribution of zero mean
and covariance matrix R. It is defined based on the variances of various measurements,
such as R = diag(σ2

1 , σ2
2 , · · · , σ2

m), where σ2
τ is the covariance value of the τth measurement,

τ = 1, 2, · · · , m. h(x) is a non-linear function vector relating the system measurements to
the state variables, for instance, the three-phase bus power injection measurement equations
in the polar coordinates form can be expressed as

Pϕ
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i

(
n
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c
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k yϕγ
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where Pϕ
i and Qϕ

i are the active and reactive power injections at bus i, phase ϕ, respectively.

Uϕ(γ)
i(k) is the voltage magnitude at bus i(k), phase ϕ(γ). θ

ϕ(γ)
i(k) is the voltage phase angle

at bus i(k), phase ϕ(γ). yϕγ
ik and δ

ϕγ
ik are the magnitude and angle of the (ϕγ)th element

of the (ik)th admittance sub-matrix, respectively. Similarly, the three-phase current flow
measurement equations of the power line in the rectangular coordinates form can be
expressed as 

Iϕ
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ij

(
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)) (3)

where Iϕ
ij,re and Iϕ

ij,im are the real and imaginary parts of the current flow on line ij, phase

ϕ, respectively; Vγ
i(j),re and Vγ

i(j),im are the real and imaginary parts of voltage at bus i(j),

phase γ, respectively; and Gϕγ
ij and Bϕγ

ij are the conductance and susceptance of the (ϕγ)th

element of the (ij)th admittance sub-matrix, respectively.
The following sections present the two popular SE models in power distribution

networks, namely the static SE model and the dynamic SE model, for the various purposes
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of the specific measurement function. Several methodologies and critical issues concerning
the two SE models are thoroughly examined and discussed.

3. Static State Estimation Models

The static SE focuses on describing the system operating status at the considered
instant of time. The following three research aspects, namely, the WLS-based static SE,
the LAV-based static SE, and the AI-based static SE, are highly concerned, and scholars
worldwide study the corresponding methodologies and issues. It should be mentioned
that these static SE models and their related research topics are analyzed as some typical
cases, which does not mean that these problems are only involved in the field of static SE.
They also exist in the context of research conducted on dynamic SE models.

3.1. Weighted Least Square-Based Static SE

The WLS algorithm is the most widely accepted approach for obtaining static SE in
distribution networks, and it aims at minimizing the objective function as

min J(x)=vTv = [z− h(x)]TW[z− h(x)] (4)

where W = R−1 is the system measurement weight matrix, with gradient

∂J(x)
∂x

= −2HT(x)W[z− h(x)] = 0 (5)

where H(x) = ∂h(x)/∂x is the non-linear Jacobian matrix obtained by taking partial
derivatives of h(x) with respect to x. Along with an initial value of x, the step at each
iteration ρ becomes

∆xρ =
[
G(xρ)

]−1HT(xρ)W
[
z− h(xρ)

]
(6)

xρ+1 = xρ + ∆xρ,
∣∣xρ+1 − xρ

∣∣ < ε (7)

where G(xρ) = HT(xρ)WH(xρ) is the so-called gain matrix, and the diagonal elements of
this matrix can be used to characterize the accuracy of state estimation.

Due to the high penetration of DERs and their participation in extensive applications
of IEDs, various works in recent years have focused on methods to improve the traditional
WLS-based static SE models for the secure and effective operations of future distribution
networks. The state-of-the-art on research issues and solutions and are presented as follows.

(1) Analysis of the grid connection mechanisms of multiple types of DGs. In order
to obtain the full view of distribution networks in terms of sufficient real-time measure-
ments, it is necessary to take the reasonable modeling of unmonitored DGs outputs into
consideration and add them to the SE models in the form of novel pseudo-measurements.
However, the problem encountered in the smart distribution network SE process is how
to reasonably analyze the grid connection mechanisms of multiple types of DGs. Two
methods (see Figures 2 and 3) for the connection of different types of DGs to the grid are
considered in Reference [22]. Namely, DGs are directly connected to distribution networks
and DGs are integrated into distribution networks via a pulse width modulation (PWM)
based converter. In Figure 2, P0 and Q0 are the total active and reactive outputs of DGs,
respectively. Pin and Qin are the three-phase total active and reactive powers injected
into the AC system, respectively. In Figure 3, P0 and Q0 are the total active and reactive
outputs of PWM converters, respectively. M0 represents the modulation coefficient of
PWM converters. According to the different DG models and connection methods men-
tioned above, the operating system states considering DGs are included in state variables
as:xAC = [x, Uabcδabc]. Let zDG denote the pseudo-measurements setting for DGs, then the
augmented measurements vector on the AC side becomes zAC = [z, zDG].
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Further research works on the different types of DGs and methods for their connection
to the grid are presented in References [23–25].

(2) Modeling of pseudo-measurements’ uncertainty. The measurement errors of
pseudo-measurements and real-time measurements are thought to follow the normal
distribution in the conventional distribution network SE model. However, the fluctuation
of DGs’ output no longer obeys the normal distribution, for example, the output of pho-
tovoltaics may obey the beta distribution, and the output of wind power may obey the
Weibull distribution. In this context, the intermittent connection of DGs’ output necessitates
the inclusion of more uncertain factors in system pseudo-measurements. The traditional
SE model faces significant challenges, and the accuracy of the estimated results may not be
sufficient to meet dispatching requirements. This is an urgent problem to be solved. Reason-
able mathematical modeling of pseudo-measurements’ uncertainty should be considered in
the SE model of a smart distribution network. To date, probability-based studies [7,26–30]
and fuzzy logic-based studies [31–33] based on a large number of historical datasets have
been investigated for the WLS-based SE model in order to eliminate the effect of the stochas-
tic nature of unmonitored DGs’ outputs and load power demands on the accuracy of the
estimated results. The need for uncertainty models of DG outputs for the WLS-based SE
model in distribution networks is stated early in References [7,26]. The statistical profiles
of DG and energy prosumers can be different with respect to typical probability density
distribution (PDF), and a GMM method is used to represent the mixture of τ Gaussian
distribution components (i.e., τ systematic measurements). A simple illustration of the
GMM is shown in Figure 4. The PDF f (y) for a random variable modeled by a Gaussian
mixture can be expressed as

f (y) =
m

∑
τ=1

ωτN(y
∣∣∣µτ , σ2

τ) , τ= 1, 2, · · · , m (8)

where ωτ , µτ , and σ2
τ are the weight, mean, and variance of the τth component, respectively.

µ f (y) and σ2
f (y) of the Gaussian mixture distribution in Equation (8) are

µ f (y) =
m
∑

τ=1
ωτµτ

σ2
f (y) =

m
∑

τ=1
ωτ

(
σ2

τ + (µτ − µ f (y))
2
) (9)
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A new WLS-based SE model based on Bayes’ rule which aimed to perfectly match
the uncertainty description of the available input data, is presented in [28]. The method
effectively handles the uncertainty of hybrid real-time measurements and takes into account
any potential correlations between various DG types and loads. The CMCGD is used in
Reference [29] to propose a non-iterative method for SE in distribution networks, and
the mean and standard deviation of state variables are obtained in a single step while
taking uncertainty, measurement errors, and load correlations into account. A probabilistic
approach to observability is proposed in Reference [30], which takes the uncertainty of the
WLS-based SE into account and assesses distribution network observability depending on
the accuracy of the estimated state variables. A novel SE based on hybridized conventional
CSS algorithm with fuzzy logic is proposed in Reference [31] to best handle the problem
of high non-linearity and uncertainty in distribution networks. Moreover, an alternative
approach to the uncertainty modeling of loads’ demand power in the context of WLS-based
SE is presented in Reference [33], and these pseudo-measurements are generated from a
few real measurements using ANNs in conjunction with typical profiles.

(3) Multi-area WLS-based SE models. The distribution network has the characteristics
of a large-scale network and three-phase asymmetry. The grid connection of DGs and the
access of controllable loads further increase the dimension of system state variables, which
causes the application of traditional centralized SE models to face severe challenges in terms
of estimation accuracy and computational efficiency. In order to improve the performance
of large-scale smart distribution network SE models, a multi-area computing approach is
introduced into the SE models, which can further improve the computational efficiency
while ensuring the accuracy of the estimated results. Multi-area schemes are one of the key
tools used to improve the efficiency of WLS-based SE models in a large-scale distribution
network [6,22,34–39]. A large distribution network can be divided into smaller-sized zones
using the overlapping zone approach (OZA), which is proposed in Reference [34]. Each
zone executes a local WLS-based SE process on a regular basis, and data exchange and
coordination take place as each local SE approaches its near-optimal point. For a distributed
real-time measurement system in a multi-area framework, a designed two-step procedure to
estimate the status of a large-scale distribution network is presented in Reference [35]. The
first step is to divide the network into subareas according to topological constraints and the
available measurements. In the second step, data provided by local estimators are further
processed in order to refine the knowledge on the operating conditions of the network.
Further, a newly designed second step is proposed in Reference [36] in order to further
improve the accuracy of the estimated results while reducing the computational burden
of the multi-area estimator. To design an interconnected optimal filtering algorithm for a
distributed SE algorithm in future power distribution networks, a novel consensus filter-
based dynamic SE algorithm with its convergence analysis is proposed in Reference [39],
and the optimal local gain is computed after minimizing the mean squared error between
the true and estimated states.

(4) Fast-decoupled WLS-based SE models. In addition to adopting a multi-area com-
puting approach, the computational efficiency could also be further improved by reducing
the dimensionality of the complex matrix in the WLS-based SE model. A fast decoupled
state estimation (FDSE) model for distribution networks is proposed in Reference [40] with
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fast convergence and high computational efficiency. The branch ampere measurements
are reformulated as active and reactive branch loss measurements directly in the proposed
FDSE model. Utilizing the so-called complex pu normalization technique and specially
chosen system state variables, the performance of the proposed FDSE model can be guar-
anteed. In Reference [41], a novel formulation of the WLS-based SE model based upon
the system voltage drop formula and the system quasi-symmetric matrix is presented,
which is suitable for a large-scale distribution network. The system state variables are ob-
tained by using a convenient matrix reduction technique, and the size of the WLS-based SE
model is considerably reduced concerning the Jacobian formulation H by considering the
exploitation and elimination of interconnecting buses. Meanwhile, a three-phase improved
admittance matrix-based (AMB) SE is proposed in Reference [42], and the method features
constant coefficient matrices, thus resulting in reduced computational times.

(5) Three-phase linear WLS-based SE models. Moreover, the calculation efficiency
could be further improved by linearizing the non-linear measurement function in the
WLS-based SE model. An alternative way to improve the computational efficiency of the
WLS-based SE model is the so-called linear approach for the non-linear Jacobian matrix H
owing to the development of novel measuring devices, for instance, the phasor measure-
ment unit (PMU) and µPMU [43–45]. The estimator follows a complex variable formulation
and is intended to incorporate PMU data into SE. A linearized WLS-based SE model for
unbalanced distribution networks is first presented in Reference [43]. Afterwards, the
performance of different types of linear WLS-based SE models in a large-scale distribution
network is assessed in Reference [44]. As a main component of a distribution area monitor-
ing system (DAMS), a novel linear SE is presented in Reference [45], which uses only PMU
measurements to calculate complex-valued bus voltages.

(6) Novel representation methods for WLS-based SE gain matrix G and measurement
errors. The physical meaning of the gain matrix G in the traditional WLS-based SE model
is not clear enough, which makes it difficult to implement the improvement strategy of
SE in smart distribution networks. Driven by this motivation, a circuit-based approach
that uses an admittance circuit is presented in Reference [46] to represent the effects of
measurement accuracies on WLS-based SE errors, and it evaluates the effects of different
types of measurements according to the defined indexes of source intensity and relational
intensity. Set the measurement Jacobian matrix in Equation (5) as H = (hτi)m×n, where hτi

is a relationship between the τth measurement and the ith state variables, then the (τi)th

component of the gain matrix dij is represented as

dij =
m

∑
τ=1

hτihτ j

σ2
τ

(10)

As the gain matrix G is also a sparse matrix, it can be described by a reduced and
graphical circuit representation. An analytical method for multiple measurement gross
error detection, identification, and correction for WLS-based SE in the distribution network
is proposed in Reference [47], and extended formulation for Jacobian matrix elements
calculation, relating to different load models, is also taken into account.

(7) Novel IEDs-based and informatics-based schemes for WLS-based SE models. Mul-
tiple types of IEDs-based and informatics-based schemes have been presented to run the
WLS-based SE models in distribution networks [48–55]. The high penetration of DGs
may generate unforeseen dynamics which require estimation obtained with the necessary
accuracy and updating rate. In this respect, the application of PMU looks promising. Novel
WLS-based SE models are proposed in References [48,50], which allow for the synchronized
phasor measurements provided by PMU. Meanwhile, an efficient WLS-based SE model
to handle the issue of non-synchronized measurements coming from SM is discussed in
Reference [51]. Additionally, in order to investigate whether a conflict exists between the
SM data access and the functional requirements, the impact of the SM data aggregation
restriction on the WLS-based SE performance in terms of the SE accuracies is assessed in
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Reference [53]. Simulation results show that the restriction yields an indifferent impact on
the estimated voltage magnitude. A straightforward SE based on the CS technique and
l1-norm minimization is proposed in Reference [55] by solving linear equations without
any iterative process.

3.2. Least Absolute Value-Based Static SE

When the systematic measurement noise has a Gaussian distribution with zero mean,
the solution to WLS-based SE will be an unbiased estimator of the state vector x. However,
when gross errors exist, the result can be heavily biased [56]. In order to repress the impact
of gross errors on the systematic state, several robust SE models are presented, including
the well-known LAV-based SE [57–60] and M-estimators [61], which are expressed in the
following Equation (11) and Equation (12), respectively. min

m
∑

τ=1
‖vτ‖1

s.t. z = h(x) + v
(11)

where ‖ · ‖1 is the basic l1 norm, and the simplex method is commonly used to solve the
LAV-based robust SE.  min

m
∑

τ=1
Φ(vτ)

s.t. z = h(x) + v
(12)

where Φ(vτ) is a chosen function of the measurement residual vτ . Newton’s method is
commonly used to solve the M-estimator [62].

More recently, in order to prevent the effect of measurement errors, the different types
and locations of measurements, as well as temporary failure of the meter communication
system, several improved approaches for LAV-based SE models haven been introduced. A
framework of a robust SE model is proposed in Reference [63] at the medium distribution
level. A new machine learning algorithm is also developed that is able to provide reliable
pseudo-measurements for SE models instead of conventional forecasts. Subsequently,
a robust SE model for power distribution networks is proposed in Reference [64], and
the uncertainty modeling of pseudo-measurements is described using PDF approaches.
Additionally, network parameters are considered within a confidence interval. Recently, a
novel robust SE model is proposed to estimate the voltage at specific low-voltage buses
using NNs trained on buses’ pseudo-measurements from the substation level only [65].
Numerical simulation results all show that the proposed model is not sensitive to the level
of PV generation.

3.3. Artificial Intelligence-Based Static SE

The use of AI algorithms to calculate static state variables in distribution networks
has been rarely presented in References [66–70]; for instance, an HPSO-based SE model
is proposed in Reference [67], and the SE model can estimate the load and DG output
values at each bus by minimizing the difference between the measured and the calculated
voltages and currents. In order to improve pseudo-measurements within the prior hy-
pothesis and compensate for limited measuring instruments at the distribution level, an
NN-based SE model is proposed in Reference [69] so as to obtain better results from a static
state estimator.

Future distribution networks will have the issue of rapid voltage fluctuation due to
the DGs’ output power being unpredictable. The OLTC in the primary substation is an
important subject of voltage control actions. It is important to include the tap position as an
estimated variable in the static SE models in order to perform network control more effec-
tively [71,72]. A full three-phase static SE model combining discrete and continuous state
variables (e.g., voltage magnitudes and phase angles, as well as tap positions) is proposed
in Reference [71]. An HPSO method is applied in order to obtain the solution of an optimiza-
tion problem. The contribution lies in handling the complexity of the unbalanced network
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and correctly computing the discrete values of the tap as additional system-estimated
variables. However, the HPSO method always takes an unacceptably longer solution time
for a reasonably sized distribution network model. In later research [72], the OO method is
replaced with the HPSO method for static SE models including discrete and continuous-
state variables. An ANN-based static SE model is presented in Reference [73], which
can estimate voltage amplitude and phase angle with high accuracy and take different
switch states as input. The author’s contributions include proposing a solution to generate
useful training data by the scene generator and the super parameters of NN architecture.
The authors in Reference [74] use historical data to train an NN to “learn initialization
in Gauss-Newton” of the static SE model. The simulation results show that a reasonable
design of the NN training cost function could improve the accuracy of the estimated results.
After that, a new learning NN with consideration of the network structure is proposed in
Reference [75], and it could reduce the number of coefficients needed by the device for
system measurements of network state. This can prevent the excessive planning stage and
reduce the complexity. In Reference [76], the authors develop a method for a harmonic SE
model of a distribution network based on Bayesian learning framework, which utilizes
SM and µPMU measurement data. It includes procedures such as analysis of power flow,
demand forecasting using recurrent NN, and sparse Bayesian learning for SE calculations.

4. Dynamic State Estimation Models

DySE, also treated as FASE, is a recursive estimation methodology based on several
measurement snapshots in a time sequence [77]. The EKF algorithm, which evolved from
the basic KF, is often used to determine the probable consecutive state of distribution
networks [77–80]. The EKF defines the relationship between the states and the measure-
ments and the state transition function via the following non-linear functions, h(x) and
f(x), respectively.

zt = h(xt) + vt, xt = f(ut, xt−1) + ϑt (13)

where ut is a set of control variables of the system at time step t, and ϑt ∼ N(0, B) is the
uncertainty introduced by the transition. The aim of EKF is to approximate the exact belief
bel(xt) via a Gaussian distribution described by mean µt and covariance σt carried out in
the following two stages.

- Prediction

xt = xt−1, σt = σt−1 + B (14)

- Estimation

Kt = σtHT(xt)
[
H(xt)σtHT(xt) + R

]−1
(15)

xt = xt + Kt[zt − h(xt)], σt = [I −KtH(xt)]σt (16)

where Kt is the so-called Kalman gain matrix. The EKF can be utilized instead of the WLS
method if there is a priori knowledge about the system state, and this foreknowledge is
incorporated by the covariance matrix B.

For future power distribution networks, the increasing development of multiple
dynamic, active components has posed new challenges to the system’s reliability and
stability, and more enhanced dynamic and real-time monitoring infrastructures are required.
Driven by this motivation, the following two aspects are highly studied, and scholars
worldwide study the corresponding issues and methodologies. Similarly, these related
researches are analyzed as some typical cases for the analysis of dynamic SE models.

Although EKF could solve several nonlinear DySE issues, the accuracy would decrease
with the increase of the system nonlinearity. Therefore, the UKF is proposed to improve the
estimated accuracy on highly nonlinear power systems [81], where the system nonlinearity
is seized by the unscented transformation (UT) approach. UT needs to randomly generate
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a set of sigma points distributed near the current estimation point symmetrically, and each
sigma point has its own weights on the mean matrix and the covariance matrix. Assuming
that a total of 2n+1 sigma points are treated as X, it can be obtained from the columns of
the
√

ηP as 
X0 = m
Xi = m +

√
ηP, i = 1, 2, · · · , n

Xi = m−
√

ηP, i = n + 1, n + 2, · · · , 2n
(17)

with weights 
Wm

0 = λ
n+λ

Wc
0 = λ

n+λ + (1− α2 + β)

Wc
i = Wm

i = 1
2(n+λ)

i = 1, 2, · · ·, 2n
(18)

where P is a semidefinite matrix; Wm and Wc are weights matrix of the mean and the
covariance, respectively; λ is a scaling; α and β are parameters and are constants.

A SR-UKF method is improved from the basic UKF and has better numerical stability;
it generates sigma points by directly estimating the square root of the covariance matrix,
thus avoiding the semi-definite constraint of the covariance matrix [82].

4.1. Novel Dynamic State Estimation Models under the Influence of Communication Network

Although several dynamic SE models based on KF and EKF methodologies have
been proposed at the distribution level, most of these prior efforts do not consider a
particular fact, namely that SE is dependent on real-time or quasi real-time measurements,
which are typically transmitted through a communication network [83–87]. This issue
is addressed in Reference [83] by establishing a specific communication platform based
on the information-centric networking concept. The proposed C-DAX enables flexible
and scalable (re)configuration of PMU data communication for the seamlessness and full
observability of network conditions in dynamic scenarios. Subsequently, a novel dynamic
SE model is proposed in Reference [83]. The SE model is localized within an automation
platform which performs real-time numerical system stability, computational efficiency,
and bad data processing. An EKF-based dynamic SE model for distribution networks is
presented in Reference [85], considering time-varying and stochastic properties of a selected
system model. Conditions of the communication network are quantified for the stability
of the error covariance matrix and the original Kalman filter equations. Subsequently,
the feasibility of implementing dynamic SE for future distribution networks in FPGAs
by presenting a SDKF-based operational prototype is presented in Reference [87], and
the suitability of the SDKF for an FPGA implementation by means of a computational
complexity analysis is highlighted.

4.2. Dynamic State Estimation Models for Both Radial and Weakly Meshed Power
Distribution Networks

The topological configuration of distribution networks may also transition from a
mainly radial to a more weakly meshed topology in order to minimize the power loss
and improve the voltage profile, etc. However, most of the existing works on dynamic SE
models only apply to radial networks and do not consider the application of these models
to a weakly meshed network [88–91]. Under this background, the development of a DQSE
based on hybrid measurement data (e.g., SM data as well as traditional SCADA data) in
distribution networks is proposed in Reference [88]. In particular, the proposed DQSE
implementation can work for both radial or weakly meshed distribution networks, as
distribution networks may be reconfigured following the clearing of a fault. Furthermore,
a novel dynamic SE model for meshes practically available in distribution networks is
presented in Reference [89], which is accessed by embedding the power flow equations
of the buses which are part of the loops. A real-time monitoring tool implemented on a
Brazilian distribution utility is presented in Reference [91]. The implemented tool comprises
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two steps to provide load values for service restoration software in multiple situations and
different topological networks.

5. Future Directions

In the sections above, the state-of-the-art for popular SE models in power distribution
networks has been examined. The transition to more intelligent and sustainable distribution
networks yields more complex and dynamic results, so more efficient monitoring situa-
tions and control systems for distribution networks would be required. To date, multiple
SE models have been increasingly complicated, not only as a result of special network
characteristics and low redundancy of real-time measuring instruments but also due to
the geographical extension of system networks, the wide application of IEDs, and the
high number of integrations of DGs. Hence, challenges remain and novel monitoring
solutions are required. In what follows, various new research areas for SE models in future
distribution networks are discussed, and potential solutions are shared.

5.1. Distributed Interval-Based State Estimation Models in Smart Distribution Networks

To date, solutions have been explored for WLS-based SE models in balanced dis-
tribution networks considering uncertainty, and these solutions are typically dependent
on pre-defined PDF parameters or fuzzy information on uncertainty modeling for non-
monitored DGs and loads. However, it may be difficult for DSO to obtain detailed and
precise data in most practical situations [92]. Additionally, these approaches could provide
probabilistic solutions for system reliability [93].

In many circumstances, although the exact values or comprehensive PDF informa-
tion on measurements are unknown due to noise, the lower and upper bounds of these
measurements can be specified [94,95]. On the other hand, the increasing penetration of
DGs and new types of loads will further extend the dimensions of distribution networks,
affecting the computational burden of SE models. Considering the above limitations, the
interval arithmetic (IA) approach will be referred to as an effective alternative to resolve
uncertain descriptions, and the distributed IA-based SE models for smart distribution
networks considering measurement uncertainty will be worth investigating in addition to
the hypothetical framework (see Figure 5).
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As shown in Figure 5, in order to meet the demand for improving the calculation
efficiency of the SE model for large-scale distribution networks, it is necessary to first divide
the distribution network into several sub-areas. The process of achieving the optimal
partitioning of a large-scale distribution network refers to the existing partitioning method
of the transmission network by defining the equivalent electrical distance and abstracting
load buses, power lines, DGs, etc. On this basis, the edge division and community discovery
algorithm are used to define the value of extended modularity. The number of sub-areas is
clarified in order to realize the decoupling of large-scale distribution networks into several
small areas. The data acquisition process mainly includes pseudo-measurement data in
the sub-area, the FTU, the µPMU, and other real-time measurement data, thus forming
a multi-source measurement dataset and taking it as the input of ISE. The uncertainty
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modeling and transformation process is aimed at the sub-area, mainly including the
interval modeling of measurement data in different sub-areas and the transformation
of multi-source measurement data. At this point, it is of great significance to note that
if the these multi-source measurement data are used for SE process without integration,
issues such as data incompatibility will occur, and even the accuracy of integration SE will
be reduced. The problems of and solutions to the interval state estimation (ISE) model
are based on the interval modeling and analysis of multi-source measurement data in
different sub-areas combined with the line impedance parameters expressed in the form of
interval numbers, all to establish multi-type real-time measurement data simultaneously.
A mathematical model for local ISE of the distribution network is established, where the
pseudo-measurement data such as PV output and load are taken into account. In order to
improve the solution efficiency of the overall SE model and reduce the conservatism of the
interval results, each sub-area is used as the basic analysis unit to form the distribution
network ISE subtask, and the improved interval optimization method is used to solve the
proposed ISE model. Completing the effective interaction of interval information between
adjacent sub-areas, and the global interval state information of the distribution network
under the interference of multiple uncertain factors could be outputted.

For smart distribution networks, the representation of measurement uncertainty as
confidence intervals can offer advantages over the previous approaches with probabilistic
and fuzzy noises. Obtaining the interval bounds of state variables under uncertain envi-
ronments could provide system operators the confidence that the real status of the smart
distribution network is not exceeding the interval, which is useful, as it provides great
insights for operation.

5.2. Data-Driven State Estimation Models in Distribution Networks

The construction of distribution networks encourages a growing number of intelligent
sensors to be installed [96], which can cause DSO to perform high-density monitoring
and control on the user side. On the other hand, an unprecedentedly large amount of
data is contained. It will be a challenge to use these multi-source data to effectively and
accurately achieve full network observation. Advanced big data analytic tools and ap-
proaches (e.g., cloud computing platforms [97–99] and multi-dimensional data fusion
techniques [100–102], etc.) need to be developed for in-depth data mining of the massive
amount of collected data, including the unified capture, filtering, and integration of struc-
tured data (e.g., SCADA data, µPMU data, network parameters, and topological data)
and non-structured data (e.g., power user behavior analysis information, environmental
data, wind speed, and solar radiation value). For the identification and processing of
multi-source bad data, the effective information needed for SE could be extracted as much
as possible so as to further enhance situational awareness. Data-driven SE models in future
distribution networks are roughly divided into the following parts:

• Filtering and preconditioning the original data uploaded by multiple types of sen-
sors by means of data clustering and classification, generating the initial feature
matrices (e.g., admittance matrix Y) required by the SE program according to the
network parameters.

• Merging feature matrices with single characteristics at different time instants into ones
with multiple characteristics employing data fusion methods, which is the bottleneck
for the application of the current big data concept, can be specifically applied to
practical power systems’ engineering.

• Processing high-dimensional and spatiotemporal feature matrices of SE on low-
dimensional platforms via analytical schemes of multiple time scales. With this, the
detection of multi-source bad data and the real-time monitoring of system operating
status could be achieved smoothly.
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5.3. Global State Estimation Models Integrating Transmission and Distribution Networks

The high penetration of DGs makes the smart distribution network more flexible and
changeable, and the connection between the transmission network and the distribution
network is increasingly close. In order to realize the accurate estimation of the development
trend of the operation state, it is urgent to improve the state awareness of the distribution
network under the background of transmission and distribution coordination and lay a
technical foundation for the situation security assessment and preventive control under var-
ious uncertain scenarios. In the EMS, transmission network SE models are often treated as
the backbone of advanced power applications, such as bad data identification, contingency
analysis, and reactive power optimization analysis. While in the DMS, SE can provide state
variables data for voltage regulation control, and active load sharing, etc. It is significant to
notice that different voltage levels often belong to different grid operators, and there is the
question of how to break this barrier from the technical and algorithm perspectives. Until
recently, SE in T&D networks has been separately analyzed, and the boundary between
T&D networks is often ignored. In fact, T&D networks are connected by a large number
of electrical apparatus and interact with each other, and the evolutions in the smart grid
operation and control sector will require a closer interaction between EMS and DMS. In
this respect, attention from both academia and industry towards a state estimator that
includes MV distribution feeders and high voltage transmission networks for estimating
the consistent global state of the whole power system is urgently needed [103]. A potential
feasibility framework is shown in Figure 6. Before this, an appropriate modeling solution
and a communication channel considering the boundary conditions for integrated T&D
networks should be developed.
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Due to the physical features of T&D networks, a mixed three-sequence/three-phase
modeling approach for integrated T&D networks’ SE and dynamic simulation is worth
developing. In the meantime, the fusion methods of measurement data collected by PMU
and remote terminal units (RTU), etc., at the transmission level, and µPMU, FTU, and smart
meters, etc., at the distribution level also need to be considered. Speeding up the related
research of global SE models integrating T&D networks helps to acquire more accurate and
real system state information and provides better service for other advanced applications
in smart grids.

5.4. False Data Injection Attacks on Urban Cyber–Physical Energy System

Conventionally, energy systems such as electricity, heat, and gas, have been oper-
ated and optimized independently. However, the concepts of IoT and EI make the in-
teraction between urban (distribution) electricity, heat, and gas networks increasingly
common [104,105]. In this context, hackers can take loopholes in the integrated energy
systems’ bad data detection and identification program, maliciously tamper with the SE
results, and seriously endanger safe and reliable system operation. Therefore, it is impor-
tant to analyze the data loopholes and formulate FDIAs when building a secure and smart
energy system.

In general, the methods of FDIAs can be classified into two categories: manipulating
data collection and disrupting data communication. After that, based on the defense
capability of the existing grid defense measurement, the defensive measures against FDIAs
are divided into three categories, which are the detection process, the identification process,
and the containment process. Due to the challenges of high network imbalance, high line
impedance ratio, and the great difference between measuring data at the distribution level,
especially for the urban area, determining how to resist the influence of FDIAs on the SE
process and ensure the reliability of the estimated results while taking into account the
accuracy of SE for different types of energy networks is one of the issues that needs to be
considered in the field of SE models in future.

6. Conclusions

In smart distribution networks, power flows are more complex and bi-directional
due to the high penetration of DGs and the extended applications of IED, which requires
extending the monitoring and control circle. The SE technique will play an essential role
in the DMS of smart distribution networks. This paper has presented a survey of the
fundamentals, models, and state-of-the-art of SE in distribution networks. Furthermore, it
has outlined a few brief possible future research directions, including distributed interval
arithmetic-based SE models in distribution networks, data-driven SE models in distribution
networks, global SE models coordinated with transmission networks, and SE models for
cyber-physical energy systems. SE, as one of the most fundamental technologies, can track
the state of smart distribution networks and provide reliable data for advanced applications
such as optimal scheduling, network reconfiguration, and the fault recovery, which is a nec-
essary precondition for secure and reliable system operation. New technological challenges
and issues in the 21st century require new SE models and application breakthroughs. This
is indeed an exciting research field to get into.
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SE State Estimation DERs Distributed Energy Resources
DGs Distribution Generations PHEVs Plug-in Hybrid Electric Vehicles
IEDs Intelligent Electronic Devices AMI Advanced Metering Infrastructure

SCADA
Supervisory Control and

FTU Feeder Terminal Units
Data Acquisition

EMS Energy Management System µPMU Micro-Phasor Measurement Units
DSO Distribution System Operators VM Voltage Magnitude
WLS Weighted Least Square LAV Least Absolute Value
AI Artificial Intelligence SG Synchronous Generator
IG Induction Generator GMM Gaussian Mixture Model

PDF Probability Density Function CMCGD
Conditional Multivariate Complex
Gaussian Distribution

CSS Charged System Search OZA Overlapping Zone Approach
FDSE Fast Decoupled State Estimation AMB Admittance Matrix-based
DAMS Distribution Area Monitoring System CS Compressive Sensing
NNs Neural Networks HPSO Hybrid particle swarm optimization
OLTC On-Load Tap Changer OO Ordinal Optimization
DySE Dynamic State Estimation FASE Forecasting-Aided SE
EKF Extended Kalman Filter KF Kalman Filter
FPGAs Field-Programmable Gate Arrays SDKF Sequential Discrete Kalman Filter
DQSE Distributed Quasi-Dynamic SE IA Interval Arithmetic
DMS Distribution Management Systems T&D Transmission and Distribution
IoT Internet of Things EI Energy Internet
FDIAs False Data Injection Attacks UKF Unscented KF
UT Unscented Transformation SR-UKF Square-Root UKF
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