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Highlights:

What are the main findings?

• Machine learning algorithms perform more efficiently than deep learning methods in classifying
gas-liquid flow regimes in pipelines.

• Extreme gradient boosting is the best-performing algorithm for the six-class flow regime classifica-
tion problem.

What is the implication of the main findings?

• The current model can be implemented for the accurate classification of gas-liquid flow patterns
in industrial pipelines with greater confidence.

Abstract: Gas–liquid flow is a significant phenomenon in various engineering applications, such as
in nuclear reactors, power plants, chemical industries, and petroleum industries. The prediction of
the flow patterns is of great importance for designing and analyzing the operations of two-phase
pipeline systems. The traditional numerical and empirical methods that have been used for the
prediction are known to result in a high inaccuracy for scale-up processes. That is why various
artificial intelligence-based (AI-based) methodologies are being applied, at present, to predict the
gas–liquid flow regimes. We focused in the current study on a thorough comparative analysis of
machine learning (ML) and deep learning (DL) in predicting the flow regimes with the application of
a diverse set of ML and DL frameworks to a database comprising 11,837 data points, which were
collected from thirteen independent experiments. During the pre-processing, the big data analysis
was performed to analyze the correlations among the parameters and extract important features.
The comparative analysis of the AI-based models’ performances was conducted using precision,
recall, F1-score, accuracy, Cohen’s kappa, and receiver operating characteristics curves. The extreme
gradient boosting method was identified as the optimum model for predicting the two-phase flow
regimes in inclined or horizontal pipelines.

Keywords: multiphase flow; prediction; pipeline; artificial intelligence; modelling

1. Introduction

Gas–liquid two-phase flow in horizontal or inclined pipelines is one of the common
issues encountered in several engineering applications, such as nuclear reactors, power
plants, chemical industries, and petroleum industries. It is a complicated phenomenon due
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to the different types of phasic interactions, for example, interfacial structures, flooding,
and deposition. A two-phase flow system can generate a number of geometrical and
operational shapes, which are very important in determining the system properties [1].
Predicting the flow regime is a complex process as its formation is dependent on different
process parameters. However, identification and prediction of the flow patterns created by
the fluids are of great importance in analyzing and designing the operations of the pipeline
systems used for the transmission of the gas–liquid multiphase flow. Most of the numerical
and empirical methods that have been traditionally utilized to predict the flow patterns are
capable of providing reasonably accurate predictions for the laboratory scale operations.
Using such models to scale-up a lab-scale application to a field-level operation inevitably
results in unknown degrees of uncertainties, i.e., imprecisions [2–5]. Different artificial
intelligence-based (AI-based) modelling approaches have been previously adopted to mini-
mize these prediction errors [6–12]. For the present study, the focus was on analyzing the
comparative performance of machine learning (ML) and deep learning (DL) in predicting
the two-phase flow regimes.

The multiphase flow patterns are usually detected by either visual observation or
processing flow signals [13]. Even though the gas–liquid flow regimes are known to be
strong functions of fluid properties, flow rates, and tube geometries, no universal functional
relationship has been established as of now. That is, a flow regime map that was developed
using lab-scale data cannot be used directly for designing field-scale pipeline systems.
Only a prospective flow regime can be determined from the existing data and it should
be modified using the pilot-scale data to establish a finalized flow regime map. In certain
industrial operations, such as multiple pipe passages in oil-well sites or power plants, it is
difficult, if not impossible, to measure the flow rates accurately. This kind of measurement
requires involving expensive and complex multiphase flowmeter technology that is used
to measure the critical flow attributes by integrating nodal analysis or data-driven methods
with the measurement devices, such as a gamma-ray densitometer, Venturi meter, dual
gamma-ray detector, and infra-red spectroscopic meter. Therefore, the automatic flow
regime identification using ML models has attracted considerable research interest.

The gas–liquid two-phase flow regimes were classified in upward vertical pipes
based on an experimental study [14]. The basic flow patterns were categorized as bubble,
slug, churn, and annular flows. Later models were developed to identify the transition
boundaries between these four basic flow regimes [15]. Compared to vertical and horizontal
flow, fewer studies have been carried out on two-phase flow in inclined pipes. In one of
the earliest studies that covered flow pattern classification in inclined pipes, the two-phase
flow regimes were classified into the major categories of dispersed, stratified, intermittent,
and annular bubbles [16,17]. They also proposed a unified model for the whole range of
upward and downward pipe inclinations. Two-phase flows in a large pipe with a diameter
of 15 centimeters were investigated by varying its inclinations from 0◦ (vertical) to 92◦ [18].
The flow pattern maps for water/gas, oil/water, and oil/water/gas systems were also
generated as part of this study. A unified model that can predict liquid holdup, slug
characteristics, pressure gradient, and flow patterns in upward and downward inclined
pipes was proposed later [19]. The model was validated with experimental observations.

Traditionally, the two-phase flow regimes were identified directly through visual obser-
vation obtained with a camera or other imaging techniques [13,20]. However, the reliability
of this method depends on the subjective judgement of the observer, particularly for flow
pattern transitions [21]. Therefore, the method is also known as the subjective method. Con-
versely, in the objective or indirect determination method, the flow regimes are identified
based on flow signal processing, statistical analysis, or experimentally measured raw data.
The objective methods can be manual and automatic. Experiments are performed in manual
methods to obtain data, which are then analyzed to extract features that are typical of each
flow regime and the flow regimes are identified based on those features. For example, slug,
plug, and separated flow regimes were identified by measuring the maximum velocity,
maximum velocity difference ratio, and other parameters using ultrasound Doppler ve-
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locimetry (UDV) [22]. A flow regime map was proposed based on the image-processing
techniques to calculate the void fraction and the corresponding probability density function
(PDF) from the images recorded with a camera [23]. The characteristics of different flow
regimes were obtained by employing the pressure and conductivity signals measurement,
PDF, fast Fourier transform (FFT), and standard deviations (STD) analysis [24]. However, a
significant amount of data needs to be analyzed and processed to find the suitable features
of parameters for an accurate flow regime identification. Analyzing the difference between
different flow regimes requires greater effort. Therefore, the manual determination method
has a lower identification efficiency, which hinders its wider applications.

The development of AI facilitated the adoption of ML in the identification of two-
phase flow regimes [25–27]. It utilizes the experimental data to realize and identify the flow
regimes automatically. Application of ML for data classification is typically conducted in
three main steps:

(1) Data acquisition and pre-processing;
(2) Feature extraction;
(3) Model training and testing.

The ML method can further be divided into two categories:

(1) Unsupervised learning;
(2) Supervised learning.

In the unsupervised method, pre-existing labels are not required by the input data.
Thereby, it eliminates the errors caused by the subjective judgement in classifying the
flow regimes manually. An example of a typical unsupervised ML for two-phase flow
regime identification is the self-organizing map-based (SOM-based) artificial neural net-
work (ANN) [28,29]. SOM-ANN can provide greater accuracy by using PDF, such as
statistical features extracted from void fraction signals, impedance meter signals, or sta-
tistical pixel features extracted from images for flow regime identification [30–32]. For
supervised learning, input and output data pairs are contained in the training database.
Flow regimes are considered as output data, which are determined by the researcher. One
of the predominant supervised learning method is the supervised neural network, which
is widely adopted for two-phase flow regime identification [21]. Neural networks can
understand intricate relationships between input and output datasets, independent of
the complex physics. Various types of neural networks, such as the back-propagation
neural network (BPNN), radial basis function network (RBFN), and probabilistic neural
network (PNN) were used for flow regime identification in the field of gas–liquid multi-
phase flow [33–36]. Attempts were also undertaken to capture the intricate input–output
relationships that represent complex multiphase-flow dynamics by using physics-informed
neural networks (PINNs) and interaction neural networks (INNs) [37,38]. PINNs incorpo-
rate numerical solvers for the main equations of state into the loss function optimization,
while INNs learn physics-based representations of spatio-temporal fluid dynamics and
interactions with governing medium when modelled and encoded as network graphs.
However, the implementation of such complex algorithms is computationally expensive.
Another effective classification algorithm is a support vector machine (SVM) that classifies
data by finding linear decision boundaries or hyperplanes. This algorithm can be appropri-
ately trained for two-phase flow regime identification by using different features, such as
ultrasonic Doppler signals, ECT signals, or recorded images [25,39–42].

An ANN model was employed to determine flow patterns in horizontal air–water
flows in one of the earliest studies on two-phase flow regime prediction with ML [43].
It was trained by stochastic features derived from turbulent absolute pressure signals
under 366 measurements. The flow patterns identified by the network were claimed to be
consistent with visual observations. Another ANN model was found to produce effective
predictions based on conductivity probe signals [44]. ANN model was also developed
using the measurements of an electrical resistivity probe for identifying the flow regimes to
achieve a prediction accuracy of 96% [45]. A similar accuracy was attained by using power
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spectral density (PSD) from pressure difference data as inputs to train the ANN model [46].
The ANN model provided the best performance with a back-propagation algorithm in
predicting the flow regimes in vertical two-phase flow tests, where two conductivity probes
were installed for input data collections [47]. An ANN model capable of producing 80%
accurate predictions was developed by extracting acoustic attenuation data as inputs
from vertical oil-continuous multiphase flows [48]. By using signals from an ultrasonic
Doppler sensor as inputs, an ANN model was trained and it scored 87–96% accuracy in
flow patterns testing against a multilayer perceptron neural network [49]. The gas–liquid
flow regimes were classified into three major categories of unstable, irregular, and stable
flow regime using a SVM classifier and taking the input variables from the combination of
multiple differential pressure signals at the different positions of a riser [50]. A visualization
experiment was performed in swirling gas–liquid flow where the liquid holdup was
measured with the image processing technique [51]. The data were statistically analyzed
using PDF and cumulative PDF (CPDF). The CPDF was then utilized along with a self-
organizing neural network (SONN) to develop the swirling flow regimes maps. A neural
network was used based on the multi-scale wavelet analysis of differential pressure signal
to investigate the recognition of two-phase flow regimes in a pipeline-riser system [52].
ANN was also applied on the dimensionless variables to develop a model by analyzing
9029 datasets [27,53]. The predicting accuracy was significantly improved by using ML on
the dimensionless variables.

A new method was proposed for the quantitative two-dimensional assessment of
fluid mixing in slug flow using the volume of fraction (VOF) algorithm [54]. The method
could quantitatively distinguish the differences in the fluid-mixing capabilities among the
systems. Both SVM and ANN were used to recognize stable flow and severe slugging in a
pipeline-riser system [55]. The experiment used accelerometer signals for differentiating
the flow regimes. The neural network was adopted to identify the four flow patterns of
the stable state, two types of severe slugging, and an irregular transition state between
severe slugging and dual-frequency severe slugging. Six different algorithms were tested
to analyze the data obtained from two-phase experiments conducted using a horizontal
30 mm pipeline [56]. All the evaluated algorithms were reported to provide over 90%
recognition accuracies. It was recommended to use the signals from scintillation detectors
in gamma-ray absorption as inputs for creating ML models. While applying multiple ML
algorithms in classifying two-phase flow regimes based on the measurement of pressure
drops, the recognition rate of the flow regimes was found to be influenced by the positions
of the pressure sensors in a 1657 m long pipeline consisting of horizontal, vertical, inclined,
and S-shaped riser section [57–59].

The ML provides potential solutions in non-linear systems by generating its own rules
for learned examples. One of its branches is DL that was developed by assembling the
connected nodes comparable to the arrangement of neurons in biological systems. Similar
to ML models, different DL models, such as convolutional neural network (CNN), fully
convolutional network (FCN), theory guided neural network (TgNN), and deep neural
network (DNN) were applied in classifying gas–liquid flow regimes based on the process
conditions [60–65]. Table 1 summarizes a list of related studies on flow regime identification
with ML and DL.
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Table 1. Summary of ML applications to predict gas–liquid two-phase flow regimes.

ML Algorithm Instrument Experimental
Measurement References

ANN

Pressure Transducer Pressure [43]

Electrical Conductivity Probe Void Fraction [44]

Electrical Resistivity Probe Void Fraction [45]

Pressure Transducer Pressure [46]

Electrical Conductivity Probe Void Fraction [47]

Doppler Ultrasonic Sensor Ultrasound Signals [48]

Doppler Ultrasonic Sensor Ultrasound Signals [49]

Pressure Transducer Pressure [50]

Camera Image [51]

Pressure Transducer Pressure [52]

SOM

Impedance Meter Void Fraction [30]

Neutron Radiography Images [31]

Conductivity Probe Bubble Chord Length [28]

Impedance Meter Void Fraction [29]

Impedance Meter Void Fraction [32]

BPN

Impedance Void Meter Void Fraction [33]

Neuron Radiography Images [34]

Pressure Transmitter Pressure [58]

SVM

Electrical Resistance Tomography Tomography Image [39]

Pressure Transducer Pressure [50]

Camera Image [25]

Accelerometer Signal Superficial Velocity [55]

Optical Probe Optical Probe Signals [26]

Doppler Ultrasonic Sensor Ultrasound Signals [42]

CNN

Camera Image [60]

Electrical Capacitance Tomography Tomography Image [61]

Ultrasound Transducer Superficial velocity [62]

DNN Ultrasound Transducer Superficial Velocity [65]

TgNN None Theoretical Data [22]

SONN Camera Image [51]

FCN Pseudo-image Feature Image [63]

VOF Camera Image [54]

Even though a number of studies were conducted earlier in the field of classifying gas–
liquid two-phase flow regimes, a significant fraction of those investigations targeted similar
types of flow patterns. The ML models were trained by feeding input features generated
from the signals of advanced measuring instruments. The majority of the previous studies
employed different types of ANN and SVM for automatic flow regime identification. In
most cases, the process of selecting the ML model was not validated; rather, the process
was subjectively dependent on the features of the selected algorithm. Only a few of the
previous studies reported the details of the validation. However, they compared limited
sets of analogous models’ performances for the validations. A thorough comparative study
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with the application of ML and DL models for identifying gas–liquid flow regimes was not
focused earlier. It should also be mentioned that the sizes of the experimentally measured
data samples that were used for the previous studies were typically small. In the present
study, a diverse set of algorithms were applied on a large dataset in predicting two-phase
flow regimes to identify the best performer. The best performing algorithm was then
applied to classify the flow regimes based on input parameters. The research contributions
of this study are as follows:

(1) The effectivity of the state-of-the-art ML models for classifying flow regime patterns
into three different classification frameworks were investigated for the original dataset
without any attempt of incorporating artificial data points in order to balance the class
distribution.

(2) The database used for the current study comprises 11,837 experimental measurements.
(3) Six ML and three DL frameworks were designed and tested to model the flow patterns.
(4) The feature importance analysis was performed thoroughly.
(5) The best performing model was compared to the relevant models available in the

literature.

2. Materials and Methods
2.1. Data Classification

The current database was compiled based on the results of 12 different experimental
studies [53,66,67]. The experiments were conducted in different geographical locations
around the world, starting from 1982. The major fraction of the current database was col-
lected from 10 independent experimental investigations [53]. Two other sets of experiments
were conducted using similar setups [66,67]. The details of the data with statistics are
presented in Table 2. The current database consists of 11,837 data points (DP) with six basic
flow regime features:

(1) Dispersed bubble (DB): 830 DP;
(2) Stratified smooth (SS): 638 DP;
(3) Stratified wavy (SW): 1516 DP;
(4) Annular (A): 2138 DP;
(5) Intermittent (I): 6354 DP;
(6) Bubble (B): 362 DP.

We further classified the data points by aggregating the categorization into three
and two classes based on the flow characteristics. In a three-class problem, the ‘SS’, ‘SW’,
and ‘A’ are combined to form the ‘stratified flow’ (‘ST’) class, the ‘DB’ and ‘B’ classes are
aggregated to form the ‘dispersed flow’ (‘DS’) class. Using this categorization, 4292 samples
belong to ‘ST’, the ‘DS’ class has 1192 samples, and the ‘I’ class has 6354 samples. For the
two-class problem, all the classes except ‘I’ (intermittent flow) are combined to form the
‘non-I’ (non-intermittent flow) regime. The ‘non-I’ class has 5484 samples, while the ‘I’ class
has 6354 samples. The distributions of flow regime samples for six, three, and two class
problems are depicted in Figure 1.
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Table 2. Summary of the experiments conducted to produce the current database.

Reference Institution, Location Parameters (Inputs: Maximum—Average—Minimum) and Fluids

[53]

TelAviv University, Israel
University of Tulsa, USA
University of Alberta, Canada
University of Ohio, USA
NASA, USA
Intevep, Venezuela
Waseda University, Japan
SINTEF, USA

ρL: 1059—953—77 kg/m3

ρG: 102.5—4.183—0.125 kg/m3

µL: (483—6.62—0.01) × 10−3 Pa.s
µL: (6.96—1.43—0.05) × 10−5 Pa.s
σ: 238.07—3.30—0.01 N/m
ID: (189—47—9) × 10−3 m
Vsl: 25.517—0.792—0.0002 m/s
Vsg: 200.61—5.93—0.004 m/s
Inclination angle (θ): 90◦—3.7◦—−90◦

Liquid:
Water
Nitrogen
Hydrogen
Kerosene
Oil
Naphtha

Gas:
Air
Nitrogen
Hydrogen
Carbon dioxide
Natural gas

[66]
King Fahd University of
Petroleum and Minerals
(KFUPM), Saudi Arabia

Liquid density (ρL): 805—795—790 kg/m3

Gas density (ρG): 10.08—5.08—2.14 kg/m3

Liquid viscosity (µL): (1.98—1.50—1.30) × 10−3 Pa.s
Gas viscosity (µL): (1.95—1.91—1.85) × 10−5 Pa.s
Surface tension (σ): (2.63—2.45—2.35) × 10−2 N/m
Internal diameter (ID): (50.8—50.8—50.8) × 10−3 m
Superficial liquid velocity (Vsl): 0.556—0.101—0.0006 m/s
Superficial gas velocity (Vsg): 14.91—3.90—0.06 m/s
Inclination angle (θ): 0◦ (Horizontal pipe)

Liquid: Kerosene Gas: Air

[67] KFUPM, Saudi Arabia

ρL: 1510—1081—1000 kg/m3

ρG: 1.225—1.225—1.225 kg/m3

µL: (3.10—1.54—1.00) × 10−3 Pa.s
µL: (1.81—1.81—1.81) × 10−5 Pa.s
σ: 0.071—0.057—0.032 N/m
ID: (25.4—25.4—25.4) × 10−3 m
Vsl: 2.653—0.833—0.049 m/s
Vsg: 18.64—6.38—0.008 m/s
θ: 0◦ (Horizontal pipe)

Liquid:
Water
Water + Surfactants
Water + Glycerine
Water + Calcium bromide +
Surfactant

Gas:
Air
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Figure 1. (A) Class distribution of flow patterns for six classes; (B) Class distribution of flow patterns
for three classes (ST stands for segregated flow, ST = SS + SW + A; DS stands for dispersed flow,
DS = DB + B; I denotes intermittent flow); (C) Class distribution of flow patterns for two classes
(Non-I denotes non-Intermittent flow, Non-I = SS + SW + A + DB + B).

2.2. Feature Normalization

Data normalization is an important step in feature pre-processing. The dataset was
normalized for the current study using z-score standardization. It enables different features
to be represented on the same scale. Each column, i.e., feature, in the dataset is normalized
such that the mean and standard deviation of all the values become zero (0) and one (1),
respectively. The z-score normalization of the features is expressed with x′ = (x− µ)/σ,
where, x′ is the new normalized value, x is the original value, µ is the mean of the column,
and σ is the standard deviation of the column. A positive normalized value indicates the
data are above the mean, whereas a negative value indicates that the corresponding data
are below the mean.

2.3. Feature Relevance and Importance Analysis

We performed feature importance analysis using two different techniques:

(a) Feature importance analysis by extra tree (ET) classifier;
(b) Principle component analysis.

The ET classifier performs feature selection while fitting the data to the model. It
assigns the numerical importance in the range between 0 and 1 to the features playing
the most significant role in predicting the output labels. The reported feature importance
scores by the ET classifier are listed in Figure 2 in descending order. The heat map, as
presented in Figure 3, shows the output of the principle component analysis (PCA) of
flow-regime features.
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Analyzing the relationships among features and outcome variable(s) is an essential
step for ML modelling. It is usually followed by the feature importance study. The features
that correlate well with the outcomes have a higher probability to be found as important
predictors. These features also reveal the linearity nature of the problem. Therefore, the
correlation between the flow regime features and flow pattern is analyzed, followed by
the feature selection step. The heat map that is presented in Figure 4 shows the outcomes
of the correlation coefficient analysis using Pearson’s method. The higher the correlation,
the stronger the linear relationship among the variables. The positive correlation indicates
the values of the variables are developing in the same direction, whereas the negative
correlation indicates the development to go in the opposite direction. The correlation
coefficient range [−0.27, 0.20], in the resulting analysis, indicates that a weak linear trend
exists between the features and the flow pattern outcome. A pair-plot analysis was also
performed using ET classifier reported top four features (Figure 5). As an exploratory data
analysis technique, the pair-plot is used to explain the relationship between the variables
and the univariate distribution for each attribute is shown as a histogram in the main-
diagonal subplots. This pair-plot analysis indicates that the assumption of linearity among
features in the context of flow pattern multi-class outcome is not practical, rather that the
features are non-linearly related.
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2.4. Machine-Learning Algorithms

We have used six state-of-the-art supervised machine-learning algorithms to model
the flow regime pattern using nine different features. The algorithms are random forest
(RF), extra tree (ET), Extreme Gradient Boosting method (XGBoost), support vector machine
(SVM), k-nearest neighbor (KNN), and AdaBoost (AB).

2.4.1. RF

The RF algorithm is an ensemble of decision trees (DT), which creates a forest with sev-
eral individual trees [68]. In this forest, each tree is constructed in parallel on bootstrapped
training samples using a random subset of features with information gain or the Gini index
approach as the learning criterion. Based on the training on a subset of attributes, each tree
produces a classification and the forest yields the class, with the majority votes as the final
result of the classifier. The randomness in RF often yields better accuracy than traditional
DT and helps to avoid overfitting by improving model generalization performances.

2.4.2. ET

The ET classifier works in a similar manner as RF by fitting several randomized DTs
on various sub-samples and subset of features of the dataset. Additionally, it has more
randomness in selecting decision thresholds for individual features during the model
training. The ET model uses averaging to produce better accuracy and to regulate over-
fitting [69].

2.4.3. Extreme GBM

The general concept of boosting is to use an ensemble of weak learners sequentially
in order to create a more accurate predictor. In GBM, many individual decision trees are
combined in a series, and each tree attempts to minimize the prediction errors made by the
previous tree. The GBM algorithm is usually slower to learn due to its sequential nature;
however, it yields moderately accurate predictions [70]. The Extreme GBM (XGBoost) is an
efficient and effective implementation of the GBM algorithm.

2.4.4. SVM

The SVM is a popular ML algorithm for solving linear and non-linear classification
problems. The basic strategy is to find a decision hyperplane that can separate the data
points while keeping the boundary as far as possible from the closest data points [71]. For
solving a non-linear classification problem, it uses kernel functions for feature mapping,
and then finds a linear separator between classes in the modified feature space. The
SVM creates a number of binary classifiers and uses a majority voting scheme to solve a
multi-class classification problem.

2.4.5. KNN

The KNN is a supervised algorithm to address classification and regression problems.
It works by calculating the distances between a query and all other data points, picking a
set of examples (K), defining a neighborhood that is closest to the query, and, finally, voting
for the most frequent label to be assigned to the query [72].

2.4.6. AB

The AB or adaptive boosting works by fitting a sequence of base learners on different
weighted training data. It starts predicting the original dataset by assigning equal weight to
each observation. If there is a misprediction by the initial learner, a higher weight is assigned
to the corresponding sample. As an iterative algorithm, it keeps adding the learners until
the desired accuracy is achieved or a specific number of models has reached [73].
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2.5. Deep-Learning Algorithms

In addition to six general ML algorithms, three DL algorithms were also used for the
present study. The algorithms are deep neural network, convolutional neural network, and
bi-directional long-short-term memory (Bi-LSTM) recurrent neural network (RNN).

2.5.1. DNN

The DNN refers to the ANN system with multiple layers. It consists of several dense
or fully connected (FC) layers followed by a classification or an output layer. Each of the
FC layers contains several hidden neurons. The DNN used for this study is similar to the
fully connected layers employed in the CNN architecture, as shown in Figure 6.
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2.5.2. CNN

The CNN is a deep-learning framework that is primarily used in the task of pattern
recognition within images. However, it can also be used to encode and feed numerical
features into the architecture, making the network suitable for binary or multi-classification
tasks. A one-dimensional (1D) CNN framework comprises neurons organized in two, rather
than three, dimensions. A feature extraction stage and a classification stage are generally
the parts of the framework [74]. The feature extraction stage, made of 1D convolution layers
with several filters, can extract meaningful features at a deeper level. The classification stage
includes one or several FC layers and an output layer. The proposed CNN architecture that
is designed for six-class classification of flow patterns is depicted in Figure 6.

2.5.3. Bi-LSTM RNN

The RNN is another deep-learning framework suitable for sequence data [75]. How-
ever, it is used in the current study for non-sequence data of numerical features. The
long short term memory (LSTM) is a variant of RNN that is capable of learning long-term
dependencies among the input data by maintaining a memory state over time. In the
Bi-LSTM network, each input row is presented forward and backward as two separate
RNNs, leading to the same output layer. The current Bi-LSTM RNN model is constructed
using several LSTM units, pooling and flatten layer, FC layers with batch normalization,
and the classification layer in sequence. The activation functions used are ‘ReLU’ and
‘softmax’ in the dense and the classification layers, respectively. A similar architecture, like
CNN (Figure 6), was used to design the custom RNN model for the six-class classification
problem. However, the convolution layers were replaced with the Bi-LSTM layers having
the similar number of hidden units.
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2.6. Machine-Learning Model Training

The flow regime pattern classification models were trained through the hyperparam-
eter optimization of six different ML models. A grid search was applied within specific
ranges for a set of hyperparameters corresponding to each ML algorithm in order to find
their optimal values that can best predict the flow regime class using either all or a selected
set of features. This training was performed in a threefold cross-validation (CV) framework.
After the models were trained, they were assessed on an independent dataset using a set
of evaluation metrics suitable for an imbalanced multi-class classification problem. The
training and testing framework of the ML models is explained with a flow diagram, as
presented in Figure 7.
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2.7. Evaluation Metrics for Model Assessment

The performances of the multi-class classification models in the present study was as-
sessed with a set of evaluation metrics: accuracy, precision, recall, F1-score, Cohen’s kappa,
confusion matrix (CM), and area under the curve (AUC)—receiver operating characteristics
(ROC) curve. The values of the statistical parameters were calculated as weighted average
using four parameters: true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). The micro average form of all the evaluation metrics was considered
to ensure an unbiased assessment of the models. In a multi-class classification problem,
the micro average is preferable in the existence of an imbalance class. This approach takes
the class distribution into account and weighs the evaluation measure according to the
corresponding distribution.
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2.7.1. Accuracy

The accuracy can be measured as the ratio of the correct predictions over the total
number of samples as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

2.7.2. Precision

Precision indicates the fraction of correctly predicted true patterns from the total
predicted true classes. The following equation was used to calculate it:

Precision =
TP

TP + FP
(2)

2.7.3. Recall

Recall calculates the fraction of true classes that are correctly predicted. It is also
known as the sensitivity and is a useful metric for an imbalanced class problem. It can be
defined as follows:

Recall =
TP

TP + FN
(3)

2.7.4. F1-Score

F1-score represents the harmonic mean between precision and recall. It is a recom-
mended metric to evaluate the models for imbalanced class problem. It is calculated
as follows:

F1− score = 2× Precision× Recall
Precision + Recall

(4)

2.7.5. Cohen’s Kappa

Cohen’s kappa, or simply the kappa-score, measures the observed agreement for
categorical data. This metric can handle both multi-class classification and imbalanced
class problems. It can be calculated as follows:

=
po − pe
1− pe

(5)

where, po is the observed agreement and pe is the expected agreement. The kappa-score
can be less than 0 and equal to 1.

2.7.6. Confusion Matrix

The CM shows the number of actual and predicted patterns in each class in a tabulated
form. The tabular layout provides the summary of the classification performances of the
models and contains the prediction results, such as TP, FP, FN, and TN to calculate the
various evaluation metrics. The CM is also used to realize which classes are being predicted
correctly and the types of errors being made by the classifier.

2.7.7. AUC-ROC Curve

The AUC-ROC curve is a performance measurement technique for multi-class clas-
sifiers at various threshold settings. ROC is a probability curve, and AUC represents the
degree of separability. It helps to visualize how well models are capable of distinguishing
different classes. In the AUC-ROC graph for the multi-class classifier, a curve is plotted
with true positive rate (TPR) against the false positive rate (FPR) for each class along with
the AUC score for a specific confidence interval (CI).
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3. Results
3.1. Feature Importance and Non-Linearity

One of the important aspects of the classification problem is to identify important
features, which usually play the most significant role in predicting the output labels. The
objective is to exclude the least significant variables from the dataset without hindering
the performance of the ML model and to utilize the most relevant variables in building the
model. We used the ET classifier reported feature importance score to rank the features in
descending order. The higher the rank, the more important the feature is. As we can see in
Figure 2, the top four important features reported by the ET classifier were the superficial
velocity of liquid (Vsl), superficial velocity of gas (Vsg), inclination angle of the pipeline
(Ang), the and internal diameter of the pipe (ID). The PCA analysis of the features is also
presented in Figure 3. The correlation coefficient and pair-plot analyses (see Figures 4 and 5)
of these features confirm that the classes are non-linearly separable in the dataset.

3.2. Machine-Learning Model Training

Finding the optimal values of hyperparameters that best learn the patterns in the
training data is an important step in statistical model learning. The optimization of selected
hyperparameters with a specific range of values was performed on the training data
(consists of 80% of samples) in a threefold cross-validation framework for three multi-class
classification problems. The best hyperparameters were recorded when the model achieved
the best accuracy on the validation set during the training. The different hyperparameters of
the ML models and their optimized values which were obtained during the cross-validated
training and are listed in Table 3. The models were then fitted with the training data using
optimized hyperparameters. The fitted models were finally evaluated with the test data
(comprising 20% of samples). The test accuracy and the cross-validated training accuracy
of the models are presented in Tables 4–6. All ML model trainings were performed in the
Google Colab non-GPU environment.

Table 3. A set of hyperparameters for six ML models, the ranges used for model optimization, and
the best values obtained for three classification problems.

Model Hyperparameters Range Six-Class Three-Class Two-Class

XGBoost

colsample_bytree (0.5, 5) 0.9 0.9 0.9

max_depth (100, 200) 10 25 25
200

n_estimators (10, 25) 200 200

ET
n_estimators (1, 150) 101 111 141

min_samples_split (2, 100) 2 7 2

RF
criterion (‘gini’, ‘entropy’) entropy entropy gini

n_estimators (1, 150) 111 131 121

SVM
C (1, 10) 9 9 9

gamma (0.001, 1.0) 0.9 0.9 0.9

KNN

leaf_size (1, 100) 4 1 99

n_neighbors (2, 100) 7 7 2

weights (‘uniform’) uniform uniform uniform

p (1, 2) 1 1 1

AB
n_estimators (20, 100) 100 50 70

learning_rate (0.0001, 0.3) 0.2 0.2 0.3
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Table 4. Machine-learning model performances on training and test sets for six-class classification
using all the features. The best performances are highlighted in bold.

Model Train Accuracy Test Accuracy Precision Recall F1-Score Cohens Kappa

XGBoost 0.934 ± 0.74 0.943 0.943 0.943 0.943 0.913

RF 0.931 ± 0.82 0.938 0.938 0.938 0.938 0.905

ET 0.929 ± 1.02 0.932 0.932 0.932 0.932 0.897

SVM 0.871 ± 0.93 0.874 0.874 0.874 0.874 0.806

KNN 0.861 ± 0.83 0.868 0.868 0.868 0.868 0.802

AB 0.624 ± 1.05 0.597 0.493 0.597 0.520 0.294

Table 5. Machine-learning model performances on training and test sets for three-class classification
using all the features. The best performances are highlighted in bold.

Model Train Accuracy Test Accuracy Precision Recall F1-Score Cohens Kappa

XGBoost 0.946 ± 0.84 0.955 0.955 0.955 0.955 0.921

RF 0.945 ± 0.72 0.945 0.945 0.945 0.945 0.904

ET 0.946 ± 0.78 0.932 0.932 0.932 0.932 0.897

SVM 0.899 ± 0.87 0.90 0.902 0.90 0.90 0.823

KNN 0.887 ± 0.63 0.892 0.892 0.892 0.892 0.811

AB 0.703 ± 0.95 0.704 0.745 0.701 0.685 0.441

Table 6. Machine-learning model performances on training and test sets for two-class classification
using all the features. The best performances are highlighted in bold.

Model Training Accuracy Test Accuracy Precision Recall F1-Score Cohens Kappa

XGBoost 0.944 ± 1.10 0.95 0.95 0.95 0.95 0.90

RF 0.942 ± 0.83 0.941 0.942 0.941 0.941 0.882

ET 0.944 ± 0.72 0.943 0.944 0.943 0.943 0.90

SVM 0.90 ± 0.92 0.891 0.891 0.891 0.891 0.781

KNN 0.895 ± 0.88 0.901 0.901 0.901 0.900 0.799

AB 0.798 ± 0.95 0.779 0.785 0.779 0.778 0.555

3.3. Deep-Learning Model Training

The proposed CNN model has three 1D-convolutions with 256, 128, and 64 filters
made of kernels of size three and ‘ReLU’ as the activation function. A max pooling layer and
a flatten layer were used to reshape the features to feed to the FC layer in the classification
stage. The ‘ReLU’ and ‘Softmax’ activation functions were used in the FC and output layer
of the multi-class classification stage of the CNN. The RNN has a similar configuration
as the CNN for feature extraction and classification stage, except the 1D-convolutions
substituted with the bi-directional LSTM layers. The DNN is basically the classification
stage of CNN, which was trained separately without the feature extraction stage of CNN.

All three deep-learning models were trained using 700 epochs with a batch size of
200. An early stopping with the parameter setting as patience = 200, monitor = “val_loss”,
and mode = “min”, was used to avoid overfitting, while the models with the best validation
accuracy were saved at regular intervals. The training of the DDN required 400 epochs,
the CNN model used 323 epochs, and finally, the RNN model fitting used approximately
400 epochs until the loss on the validation set stops decreasing. The accuracy vs. epoch
and loss vs. epoch plots for three DL model trainings are shown in Figures 8–10. All DL
model trainings were performed in the Google Colab GPU runtime environment.
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3.4. Classification Performance

The classification performances of the DL models are summarized in Tables 7 and 8.
Table 9 shows the performances of the ML models using the important features identified
in the feature selection step. The confusion matrix and the classification report for the
XGBoost method, using six classes for the test dataset, are shown in Figure 11.

Table 7. Deep-learning model performances on training and test sets for six-class classification using
all the features. The best performances are highlighted in bold.

Model Training Accuracy Test Accuracy Precision Recall F1-Score Cohens Kappa

CNN 0.961 0.921 0.921 0.921 0.921 0.88

DNN 0.945 0.915 0.915 0.915 0.915 0.87

RNN 0.944 0.913 0.913 0.913 0.913 0.87

Table 8. Deep-learning model performances on training and test sets for three-class classification
using all the features. The best performances are highlighted in bold.

Model Training Accuracy Test Accuracy Precision Recall F1-Score Cohens Kappa

DNN 0.955 0.939 0.939 0.939 0.939 0.894

CNN 0.965 0.931 0.931 0.931 0.931 0.879

RNN 0.966 0.927 0.927 0.927 0.927 0.0872

Table 9. Machine-learning model performances on the test set for six-class classification using the top
four important features. The best performances are highlighted in bold.

Model Accuracy Precision Recall F1-Score Cohens Kappa

ET 0.926 0.927 0.926 0.926 0.887

XGBoost 0.924 0.924 0.924 0.923 0.883

RF 0.921 0.921 0.921 0.920 0.879

SVM 0.807 0.803 0.807 0.801 0.697

KNN 0.921 0.921 0.921 0.920 0.879
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3.5. Hyperparameter Optimization

A set of hyperparameters of the different ML algorithms were optimized for three
classification problems with six (6), three (3), and two (2) classes in a threefold cross-
validation framework. The optimized parameter values are listed in Table 3.

3.6. AUC-ROC Curves with Confidence Interval

The AUC-ROC curves with 95% CI for the two best algorithms from ML and DL
family, XGBoost, and CNN classification models are shown in Figures 12–15.
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3.7. Comparative Analysis

A comparative analysis of the best-performing ML and DL models with the similar
models proposed in [65,76] are presented in Tables 10 and 11.
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Table 10. Comparative analysis of the peer models on the flow regime dataset used in the current
study comprising 11,838 data points. The accuracies are reported for individual model in each column.
The best performances are highlighted in bold.

Classification
[76] [65] Current Study

ML Model DL Model DL Model ML Model DL Model

Six-class 93% 91% 90% 94% 92%

Three-class 94% 92% 93% 95% 94%

Table 11. Comparative analysis of the proposed models on the peer database (Pereyra et al. [61])
consisting 9029 samples. The accuracies are reported for individual model in each column. The best
performances are highlighted in bold.

Classification
[76] [65] Current Study

ML Model DL Model DL Model ML Model DL Model

Six-class 94% 91% 93% 94% 93%

Three-class 96% 93% 94% 96% 95%

4. Discussion

A multi-class classification problem of flow regime identification was investigated
in the current study by selecting important features, designing multi-class classification
systems, finding the best performing ML- and DL-based classifiers, and assessing the
models with appropriate evaluation metrics. As the first step of classification system design,
we analyzed the class distribution of the data points. To the best of our knowledge, the
present database is larger than any other dataset used previously for similar classification
problem. However, it is largely disproportioned in terms of class distribution. As Figure 1
depicts, class ‘I’ is evidently the majority class in the six-class and three-class classification
problems, whereas the classes ‘B’, ‘SS’, and ‘DB’, each consist of less than 10% of the
samples, representing the minority group. For three-class classification, there are less than
half of the data points under the ‘DS’ and ‘ST’ categories, making them minority classes.
This kind of disproportional distribution of data demonstrates the imbalanced nature of
the current dataset.

The classification system design using ML algorithms involves several steps, such
as splitting the data for training and testing, learning the model, i.e., optimizing hyper-
parameters based on the training data, and model evaluation on the test data (Figure 7).
After feature selection and normalization, the flow regime dataset was divided into 80%
training and 20% test for the current classification problems. The ML models were learned
through hyperparameter optimization in a threefold cross-validated training framework.
The optimized algorithmic parameters are reported in Table 3. The training was performed
using all features as well as the top four important features. The classification accuracy
of six-class classification using the important features was marginally lower than that of
using all the features (92% vs. 94%). The probable reason could be that the top ranked four
features could not capture the variability of the data completely, rather the variance was
distributed among all nine features.

In general, the key factors to measure the effectivity of the classification model are the
model’s performance on the independent test data and its convergence time, that is, the
required time to train the model on the dataset. The ability of classifiers to process large
data sets within a reasonable time is an important issue besides the accuracy in the era of
Big Data. In terms of the performance on the test data, the best performing ML algorithm is
XGBoost for all three classifications and using all nine features (see Tables 4–6). The second
and third best-performing algorithms are ET and RF. In case of using a limited number of
features, specifically top four important variables (refer to Table 9), the ET outperformed
all other models. The supremacy of gradient boosting with improved loss functions, i.e.,
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XGBoost and the ensembles of decision tree-like models, such as ET and RF, is evident
in all three classification results, whether using all nine features or top four important
features. Specifically, the XGBoost produced robust and highly accurate predictions. The
SVM and KNN produced comparable results and came in the next two positions. The
AB was the worst-performing algorithm as it was the simplest among the ML algorithms
selected for the current study. In terms of its convergence time, the randomized decision
tree family algorithms were again found to be very effective, as the average training time
was approximately 100 s, while the SVM and KNN took approximately 400 and 500 s,
respectively, in the Google Colab.

On the basis of performance and convergence time, the ML models tested for the
current study can be arranged as follows in order of their effectivity in predicting gas–liquid
flow regimes: XGBoost > ET > RF > SVM > KNN > AB. The advanced boosting and bagging
algorithms demonstrate an evident supremacy over the other types of ML algorithms. The
optimum algorithm was identified as XGBoost. It is a more regularized form of the
traditional GBM. Similar to gradient boosting, the XGBoost exploits an ensemble of weak
learners in a sequential manner by assigning a higher importance to the misclassified
examples from the previous weak learner while minimizing a stepwise gradient loss. In
addition, it comes with a powerful regularization technique that combines L1 and L2 norms,
which effectively reduces overfitting and helps achieve better generalization capabilities
than the general GBM.

As bagging algorithms, RF and ET use a strong modelling technique that runs multiple
decision trees in parallel either on bootstrapped or whole original samples, using a ran-
domly chosen subset of features with optimum or randomized split points. Consequently,
all these features enable the RF and ET models to effectively reduce errors due to existent
bias and variance in the input data, which improves the classification performance and
the generalization capability of the models. Moreover, RF and ET models are inherently
suitable for multi-class training data. These two models solve the non-linearity problem
by finding a hyper-rectangle in the decision space. On the other hand, the SVMs are
generally applicable to the binary classification and solve the multi-class classification by
using several binary classifiers with a majority voting approach. The better generalization
performances of ensemble classifiers demonstrate that a collection of classifiers can produce
a more robust and confident classification as opposed to a single classifier, and this is
where the power of ensemble learning lies in. Another important point to note is that
the ensemble classifiers suffered the least due to the extreme imbalance of the dataset
in the current study. This is because these models have the ability to incorporate higher
weights into the minority class by making them cost-sensitive and, thereby, penalizing the
misclassification of the low-representative class. These algorithms also merge the sampling
technique and ensemble learning. They under-sample the majority class and grow trees on
a more balanced dataset.

The CNN was the best performer with a 92% accuracy among the proposed DL
architectures for the six-class classification (Table 7), while the DNN proved to be the
best performer with a 94% accuracy for the three-class problem (Table 8). However, the
differences in accuracies among these three DL models are not statistically significant. It
is interesting to observe that the performance of the DNN is either superior or close to
that of the CNN with a lesser sign of overfitting. A DNN is practically comprised of only
the classification layer of the CNN. The performances of the RNN and CNN were also
comparable. That is, the large networks of CNN and RNN failed to provide significantly
better performance than the DNN. The learning curves shown in Figures 8–10 exhibit that
none of the DL models suffer from extreme overfitting due to the early-stopping applied
for the trainings. The DL models performed better than a few ML models, such as SVM,
KNN, and AB; however, their performances were inferior to the randomized decision
tree and advanced boosting. The current analysis suggests that the heavy-weight DL
algorithms, especially the CNN and RNN, may not be the suitable choice for the multi-class
classification problem of identifying the flow regimes in the pipelines used for transmitting
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gas–liquid two-phase flows. They introduce excessive complexity in modelling the data
and fail to generalize the problem. These algorithms are computationally expensive to
train and test as they require a GPU machine for a reasonable convergence and prediction
time. It can make them inefficient for industrial-scale data analysis, which usually involve
millions of observations.

After identifying XGBoost as the optimum model for classifying gas–liquid two-phase
flow regimes in pipelines, experiments were conducted to evaluate its shortcomings. The
detailed classification report and the confusion matrix of the XGBoost model for six-class
classification are illustrated in Figure 11. The classification report describes the class-specific
precision, recall, and F1-scores for the model. As anticipated, the minority classes of ‘B’
and ‘SS’, which comprise less than 5% of total samples individually, have lower recall
or sensitivity; whereas, the highest recall is for the majority class, ‘I’ that contains 54%
of total samples. In the confusion matrix, class ‘B’ has the highest FN, i.e., 16% of ‘B’
class samples are wrongly predicted as class ‘I’. The second-highest FN is reported for the
class ‘SS’. Approximately 8% of samples of this category are falsely classified as ‘I’. The
misclassification rates for these two classes are 16% and 11%, respectively. The XGBoost
model shows a deficiency in generalization because there are a limited number of training
samples available for the minority classes, which causes the model to either fail in extracting
any useful pattern for these classes or makes the learning biased towards the majority
class. Nevertheless, a comparatively worse trend was observed for the ET classifier that
was reported as the best performing ML model by Arteaga et al. (2021) for the current
dataset. Their best model yields not only lower recalls of 84% and 88% for the ‘B’ and
‘SS’ classes, but also only 87% of the recall for the third-most minority group, ‘DB’, which
includes 7% of total samples. On the contrary, the XGBoost produces 96% of precision, 94%
of recall, and 95% of the F1-score values for this particular low-representative class. That is,
the XGBoost is more resilient to the class imbalance problem; however, it may hinder the
model’s performance gradually in case the imbalance is extreme (≤5%).

In addition to standard classification reports, other effective evaluation metrics for the
imbalanced multi-class classification problems, such as the F1-score, Cohen’s kappa, and
ROC-AUC curves, were used to assess the performance of the classifiers. The ROC curves
for the XGBoost classifier are presented in Figures 12–14 with AUC scores calculated for
each class with a 95% confidence interval. Among the classification problems investigated
in the current study, the three-class classification has the highest accuracy (96%) and
F1-score. The Cohen’s kappa scores achieved for the six-class, three-class and two-class
classifications are 91%, 92%, and 90%, respectively. Similarly, the AUC scores of 99.7% and
99.6% were achieved for both the six-class and three-class classification performances. As
the AUC score indicates the degree of separability by plotting the TPR against the FPR, the
ROC-AUC curves of the XGBoost classifier indicate the model’s capability of distinguishing
the data points for the six-class or three-class categorizations with high confidence and
accuracy. It is pertinent to note that all evaluation metrics were developed based on the
micro-average form, which is suitable for an imbalanced class distribution.

A comparative analysis of the currently developed models to other similar models
was performed as part of their evaluation. The primary objective of conducting this set of
experiments was to investigate the effectiveness of the models in comparison to the peers’
models developed earlier independently. The best-performing models reported in [65]
and [76] were specifically selected for the comparison as those were developed using a
subset of the current database, i.e., the dataset that was reported in [53]. It ensured fair
comparisons among the systems in terms of classification performances and provided the
opportunity for the cross-application of the models to different datasets. The respective
results of the analyses are presented in Tables 10 and 11. The optimum ML and DL models
realized in the course of the present study demonstrate better performances irrespective
of the data size. It should be noted that we used the peers’ models with the reported
parametric configurations and did not attempt to further optimize them on the respective
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databases. This objective analysis demonstrates the efficacy and robustness of the current
models, which are unaffected by the database size and class imbalance.

It should be underscored that there was no attempt to balance the dataset for the
present study. Only the original samples were used without over-sampling the minority
classes with synthetic data points or duplicating the entries while testing the efficacy of
the ML classifiers. This is because over-sampling can lead to overfitting and lowering
the generalizability of the models on unseen data. Similarly, the under-sampling of the
majority classes reduces the size of the training data resulting in the under-fitting of the
models. The primary target was to achieve an unbiased and objective accuracy for the
current flow regime dataset, which is imbalanced in nature. It is also important to note
that the flow regime categorization in the consolidated experimental datasets comes from
visual observation and manual assignment of flow patterns to the samples. Human error
and visual limitation could introduce misassignment of the pattern type to flow regime
samples, which can influence the AI models’ learning and could deteriorate the models’
generalization performances.

5. Conclusions

A large dataset including 11,838 data points is used in the current study to develop
AI-based flow regime classification systems using state-of-the-art ML and DL algorithms.
To the best of the authors’ knowledge, it is the largest dataset used to date for predicting
gas–liquid two-phase flow regimes based on AI. The best performing ML algorithm is the
XGBoost, with micro-average accuracies of 94%, 96%, and 95% for the six-class, three-class,
and two-class classification problems, respectively. The Cohen’s kappa score of 89% and the
AUC score of 99.6% at a 95% confidence interval are achieved for the six-class classification
by the XGBoost classifier. A feature importance analysis reveals the superficial velocity
of liquid (Vsl), the superficial velocity of gas (Vsg), the angular inclination of the pipeline
(Ang), and the pipe’s internal diameter (ID) as the most important features. The ET classifier
attains the highest six-class classification accuracy of 93% using these top four important
features. Among the DL algorithms, the CNN model achieved the highest accuracy of 92%
with Cohen’s kappa of 88% and AUC scores of 99.3%. Despite the imbalanced nature of the
multi-class dataset employed in the current study, the effective designs of the classification
systems ensure high levels of accuracies, F1-scores, Cohen’s kappa, and AUC scores. The
present study provides a powerful AI approach to classify the multi-phase flow patterns in
industrial pipelines with a high accuracy and confidence level.
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