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Abstract: Energy is very important in daily life. The smart power system provides an energy man-
agement system using various techniques. Among other load types, campus microgrids are very
important, and they consume large amounts of energy. Energy management systems in campus
prosumer microgrids have been addressed in different works. A comprehensive study of previous
works has not reviewed the architecture, tools, and energy storage systems of campus microgrids. In
this paper, a survey of campus prosumer microgrids is presented considering their energy manage-
ment schemes, optimization techniques, architectures, storage types, and design tools. The survey
is comprised of one decade of past works for a true analysis. In the optimization techniques, deter-
ministic and metaheuristic methods are reviewed considering their pros and cons. Smart grids are
being installed in different campuses all over the world, and these are considered the best alternatives
to conventional power systems. However, efficient energy management techniques and tools are
required to make these grids more economical and stable.

Keywords: campus microgrid; prosumer market; batteries; energy management system; distributed
generation; smart grid; renewable energy resources; energy storage system

1. Introduction

Energy crises have become major challenges in the economic development of a country.
In this modern era, machinery is considered a more effective replacement for humans in
many sectors. Smart devices are constantly being developed, which makes our routines in
life much easier. In today’s world, it is impossible to imagine a life without these smart
devices and machinery. However, everything comes with a price, and the price of this ever-
increasing dependence on machinery is the substantial consumption of energy resources [1].
These smart machines operate on electricity which is produced by the utilization of non-
conventional energy resources such as coal, oil, and gas. The rising utilization of these
fossil fuels has result in two major environmental disorders. The first is the fast depletion
of fossil fuels and the second is the production of hazardous gases and waste materials,
which results in a direct increment of environmental pollution. The organization for
economic cooperation and development (OECD) indicated in 2018 that the United States
had the strongest gross domestic product rate [2], but British petroleum ranked the air
quality index of the United States as the poorest in comparison to other countries of the
world [3]. Polluted air in any country is a major cause of the demise of its people [4]. Fossil
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fuels are non-renewable, and so their continuous depletion results in gradually increasing
energy generation prices, which increases inflation, especially in underdeveloped countries.
Further, few countries have a major share of these non-renewable energy resources, which
makes the ones that do powerful enough to control the economies of those countries
whose electricity production largely depends upon fossil fuels. The excess utilization of
nonrenewable energy resources for generation is discouraged by modern researchers [5].

Electricity produced from fossil fuels is transmitted to far-flung areas and then dis-
tributed. In addition to the energy losses during generation, these transmission and
distribution phases have also several types of losses, and in some cases, these losses may
rise by more than 50% [6]. An alternative approach is to eliminate the transmission phase
and use distributed generation instead. In this type of generation, plants are directly located
near the consumer loads. Losses can be minimized using distributed generation. These
distributed power plants may use renewable energy resources such as solar [7], wind [8],
and biogas [9] or nonrenewable energy resources such as geothermal energy [10], diesel
generators [11], and furnace oil [12] for power generation. To minimize the environmental
impacts, the usage of green energy resources is suggested in these distributed power gen-
erating stations [13]. Another benefit of these green energy resources is their renewable
nature, for which they have also been termed renewable energy resources (Res). Res are
environmentally friendly and renewable, but the only hurdle in the utilization of these
types of resources is their intermittency, which is due to their extreme dependence upon
weather conditions [14]. To reduce this problem, several techniques have been proposed in
the literature, such as the incorporation of properly sized storage, architectural modifica-
tions, optimization, energy coordination schemes, etc. The generating stations operating on
REs with a proper power coordination scheme and communication structure between the
producers and consumers are called smart grids. Smart grids typically operate as isolated
or grid-connected modes. In an isolated mode, a smart grid provides power to a connected
consumer without having any connection with the main power grid, and storage then
becomes necessary for these smart grids to overcome the intermittency problem of REs.
In a grid-connected mode, the smart grid supports the main grid and provides ancillary
services, in addition to fulfilling the consumer load requirements [15].

Small-scale smart grids which simultaneously produce and consume electrical power
are termed prosumer microgrids [16]. The basic structure of a microgrid is represented
in Figure 1. These microgrids can be of various types, from hospital to residential and
industrial to institutional. A research institution should not depend upon the main grid
for its energy requirements, especially if the main grid produces energy from conventional
energy resources. A load of institutions is commercial, and these institutional microgrids are
considered more important due to the research and development facilities available in an
institution. These types of microgrids are also called campus microgrids [17]. The Internet
of Things (IoT) is a modern technology that enables an operator to remotely monitor and
control the activities of a smart grid using smart sensors [18]. The devices present in a smart
grid’s interface communicate bidirectionally, and they are prone to external cyber-attacks.
Cyber security is also very important to secure a smart grid from external hacking attacks
and to protect consumer data [19].

The organization of the paper is given here. The methodology is given in Section 2.
An overview of campus energy management is presented in Section 3, different energy
management schemes are discussed in Section 4, simulation tools are discussed in Section 5,
IoT-enabled secured microgrids are disused in Section 6, and the conclusion is given
in Section 7.
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Figure 1. The basic structure of a smart microgrid.

2. Methodology

In this paper, a comprehensive review of the latest research work related to smart
campus microgrid energy management is presented. The main focus of the work was to
target the papers discussing real-time or simulated campus microgrids, with the restriction
that each selected paper must contain at least one aspect of campus microgrids.

The methodology of the review was the same for all the selected papers as all used
different energy management schemes for campus microgrid designs and optimization. The
previous studies are categorized based on their architectures, storage methods, optimization
techniques, simulation tools, and IOT technologies. The review study was carried out by
reading the papers critically and identifying the significant points in the papers. Table 1
highlights the most important papers selected for each category.

Table 1. Criteria table of selected papers.

Sr. No Selection Criteria Cited Papers

1 Simulated or installed campus microgrid [20–33]

2 Campus microgrid architecture [34–46]

3 Storage technologies [47–61]

4 Optimization techniques [62–79]

5 Simulation/cost analysis tools [80–100]

6 Internet of Things (IoT) [101–105]

3. Overview of Campus Energy Management

Energy management is defined as a process to optimize energy production from REs
and transmit this energy to consumers while cost-effectively minimizing the risk of system
failure and gas emissions [106]. The concept of energy management began in the 1970s
with the name of energy control centers, also known as ECCs. This concept was further
expanded with the inclusion of different control schemes such as demand side management
(DSM), load control (LC), demand response monitoring (DRM), etc. [107]. A simple energy
management process consists of energy planning, execution, monitoring, verification, and
understanding its usage. This process is represented in Figure 2.
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The management of energy in a microgrid is critical because it is directly related to the
economics of the grid. In campus prosumer microgrid energy management, the production
of renewable energy resources present at a university campus is monitored, controlled, and
optimized for the campus load. Worldwide, campuses of different universities are being
converted to microgrids with REs as generation sources and environmentally friendly
energy storage [20]. Most of the research published has contained simulated campus
microgrid solutions, but practically working microgrids are also being developed at univer-
sities [21–28]. A simulation model of a campus microgrid was developed in Serbia for the
University of Novi Sad in 2018, and it used photovoltaics (PV) and wind in conjunction
with biomass and energy storage facilities. The concept of electric vehicles (EV) was also
included in this research work, both as a consumer and a producer of energy in V2G
mode [29]. In Italy, an energy-efficient microgrid solution was presented by Stefano et al.
for the University of Genova. Multiple aspects of a campus microgrid were analyzed, taking
into consideration the grid-connected, as well as standalone, operations [30]. However, this
research lacked a feasibility analysis and the regulation problems of the proposed microgrid.
Kritiawan et al. performed an in-detail feasibility analysis for a campus microgrid at Sebelas
Maret University, located in Indonesia [31]. Voltage regulation is an important factor that
should be taken into account when designing a campus microgrid [32]. Valentina et al. de-
signed a microgrid for an island located in Singapore to improve the voltage regulation and
power factor of the system. This design consisted of PV and diesel generators as generating
sources, and it resulted in the lowest operational costs [33]. A pictorial representation of
several campus microgrids installed all over the world is provided in Figure 3.

3.1. Objectives of Campus Microgrid Energy Management

The prime objective of energy management in a university campus microgrid is to
optimally allocate generation and storage resources in a way that achieves the minimum
per-unit cost of energy with maximum efficiency, while reducing gas emissions. Campus
microgrid energy management may have single or numerous objectives such as resiliency,
power quality, voltage and frequency regulation, reduced cost of energy, profit maximiza-
tion, and life expectancy of transformers [108–111]. Universities can also obtain a green
certificate by replacing the existing power infrastructure with a renewable energy-based
microgrid [112]. Important objectives of a campus microgrid are represented in Figure 4.
Campus microgrids should be efficient and reliable [113]. An energy-efficient campus
microgrid solution was presented by Young et al. for the Gwanak Campus in South Korea,
and it aimed to reduce the cost of energy by 21% and gas emissions by 110 TOE [114]. The
economy is the most important element of a campus microgrid. Universities should be able
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to generate energy for the lowest possible cost. Currently, electric vehicles are becoming
famous due to their environmentally friendly nature. The integration of these EVs with
the lowest charging cost is another objective of campus microgrids. EV integration with
a campus microgrid may cause stress on transformers [115]. Similarly, REs which are
not properly sized may cause reactive power imbalances in a system, which may lead
to frequent disconnections [116]. Low power outages and the continuity of supply are
other objectives of campus microgrid energy management [117]. The achievement of all
objectives in a single study is impossible. Most of the existing research includes a balance
between economic and technical objectives.
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3.2. Architecture of Campus Microgrids

Campus microgrids are designed to control the power production and utilization
from REs and coordinate with smart metering, protective, storage, and load management
devices, with the help of a control system, to achieve minimum costs and maximum
efficiency. Architecture and infrastructure are two common terms used to describe the
design of a campus microgrid. Microgrid infrastructure refers to all the components that
a microgrid contains, such as transformers, smart metering devices, protection systems,
switches, communication technologies, and cables [118]. The infrastructure of a microgrid
should be resilient, which means that it should be capable enough to withstand extremely
faulty conditions and recover quickly in the case of any disturbance [34]. Architecture
defines how microgrid components connect to allow energy to flow and to enable storage.
Both civil and electrical architecture are important factors in the design of a campus
microgrid. In this paper, we will focus on the electrical architecture of different campus
microgrids. A microgrid can operate in three different modes: off-grid, on-grid, and on/off-
grid. Architecture generally changes slightly depending on the mode of operation. Campus
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microgrids typically work in the on-grid mode so that they can support the existing grid
in the case of excessive supply. The common architecture of a microgrid may consist
of three different bus configurations: centralized DC bus configuration, centralized AC
bus configuration, and hybrid AC/DC bus configuration. The architecture of typical off-
grid campus microgrids follows the DC centralized bus configuration, which is shown in
Figure 5. In this architecture, the DC resources are directly connected to a centralized DC
bus bar, while the AC components of the microgrid are connected via converters [35–37].
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A typical AC bus configuration is shown in Figure 6, and it is the opposite of a DC
bus configuration. This type of architecture requires higher voltage, which results in lower
losses. REs largely supply direct DC, and it becomes less economical to first convert the
power of REs into AC before supplying it to the central busbar; therefore, this type of
configuration is found in few reach papers [38–41].
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An advanced architecture for a campus microgrid is shown in Figure 7. It consists of
both AC and DC busses, where the AC bus connects the AC components and the DC bus
connects DC loads, storage, and generation. Finally, a bidirectional inverter connects these
two buses [42–45]. In the literature, several studies have compared the types of architecture
discussed above, and they concluded that a hybrid architecture for microgrids is more
beneficial [46].
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3.3. Storage Technologies

Storage is a core component of a microgrid which serves many purposes during its op-
eration. Besides providing power to load during the absence of generation, storage is used
to provide ancillary services to smart grids, such as peak shaving [119], balancing the load
profile [120], and improving system reliability [121]. In particular, a standalone campus
microgrid cannot be sustained without the necessary storage facilities. A large portion of
the total installation cost is attributable to the cost of storage. Storage degradation cost is
another important factor that affects the overall system cost. Muqeet et.al [47] proposed
a campus microgrid for the University of Engineering and Technology in Taxila, Pakistan.
The authors considered the battery degradation cost in their design and compared different
models, concluding that a properly scheduled storage technology results in a reduced cost
of energy. There are several types of energy storage devices (ESDs) available, such as ther-
mal [48], electrical [49], mechanical [50], electrochemical [51], and chemical [52]. With the
advancements in plugin electric vehicles (PEV), these can also be used as storage devices in
the vehicle-to-grid (V2G) mode of operation [53]. Storage configurations can be divided
into three main categories: single storage configuration, multi-storage configuration, and
swappable storage configuration [54]. In most of the existing literature, a single type of
storage device is used in campus microgrids, while some advanced research designs have
focused on the use of multiple types of storage technologies to improve their efficiency and
useful life and reduce overall operational costs [49]. Riad Chedid et al. redesigned a campus
microgrid for the American University of Beirut to reduce its dependence on a diesel gener-
ator. In the proposed design, REs replaced the fossil fuel generation with a combination of
battery energy storage devices, which resulted in tremendous average annual savings of
USD 1,336,000 [55]. Reyasudin Basir et al. proposed a microgrid design for the University
Kuala Lumpur in Malaysia, and they proved that a grid-connected campus microgrid with
battery storage was the most economical solution for this university [56]. When comparing
different battery energy storage technologies, lithium-ion technology is considered the
most suitable option. Yuly V. Garcia et al. designed a campus microgrid for the University
of Puerto Rico in the United States. In the proposed design, solar and combined heat
and power (CHP) technologies were used to reduce the fuel price. It was concluded that
a combination of lithium-ion storage with solar generation and CHP provided the lowest
fuel cost for a 10-year scenario [57]. A single storage device can be economical, but it always
has some drawbacks which can be overcome by using multiple energy storage devices.
Leskarac et al. proposed the use of PEV storage with a fuel cell to minimize the costs of
operation for large commercial building microgrids [58]. A similar system was designed
by Kumar et al. for the Nanyang Technological University of Singapore. It was concluded
that a microgrid containing solar and natural gas as generation with PEV and fuel cells
as storage could perfectly achieve the demand response targets [59]. Pedro Moura et al.
practically demonstrated the use of multiple energy storage technologies for a campus
microgrid at the University of Coimbra in Portugal to achieve the lowest cost of energy.
The installed system contained PEV and li-ion batteries as storage systems, while grid-
connected PV generation made the campus a net-zero-energy building. In [60], Hanane
Dagdougui proposed the use of Li-ion batteries with a combination of a supercapacitor and
hydrogen storage to improve the storage life and reduce the operating costs of the system.
Rong-Jong Wai proposed the use of an ultra-capacitor and batteries as the storage medium
for the economic design of the National Taiwan University of Science and Technology in
Taiwan [61]. Current research is more focused on developing new storage technologies and
making the existing storage technologies more compact.

4. Energy Management Schemes

The management of flowing energy between a campus microgrid, energy storage,
a conventional grid, and the load is the most important element for reducing the cost of
energy. Figure 8 represents the details of different optimization algorithms for the energy
management of campus microgrids.
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Figure 8. Classification of some important optimization algorithms for energy management.

The main objective of energy management in a microgrid is to increase efficiency
by optimizing energy generation and storage systems [122]. Techniques used for opti-
mizing campus microgrids are classified into three main categories: deterministic [62],
metaheuristic [63], and artificial intelligence [64]. Each technique has unique benefits
and drawbacks.

4.1. Deterministic Techniques

Deterministic techniques are primarily used to solve continuous objective functions.
This technique involves the use of dynamic programming (DP), mixed integer nonlinear
programming (MINLP), and linear programming (MILP) methods to solve an objective
function. These methods are famous for providing precise results, but they are time-
consuming and very difficult to use with distinct objective functions. Li-Bin et al. used
mixed integer linear programming in MATLAB to optimize their proposed microgrid for
the University of Engineering and Technology in Taxila [65]. Yeliz Yoldas et al. proposed
a campus microgrid design for the Malta College of Arts, Science, and Technology. The
proposed system was formulated using MILP, and compared with the stochastic approach,
it was concluded that the use of MILP provided better optimal results [66]. In [67], the
authors used mixed integer linear programming for the successful energy management of
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a campus microgrid located in Pakistan. Kayode Timothy Akindeji et al. used quadratic
programming to optimize the microgrids of two campuses. The results depicted the effect
of different weather conditions on campus load profiles, and it resulted in a substantial
savings on fuel for the existing diesel generators by connecting them with a properly
optimized microgrid [68]. For objective functions having second-order integers, the mixed
integer second-order cone programming technique (MISOCP) is used [69]. In the dynamic
programming technique, an objective function is divided into parts and then optimized.

4.2. Metaheuristic Techniques

Unlike deterministic techniques, metaheuristic algorithms provide an approximate
solution. These are self-learning algorithms that take comparatively less time to reach
a global solution. A famous example of a metaheuristic algorithm is the particle swarm
algorithm. There are many metaheuristic algorithms present in the literature [70], such as
Harmony Search (HS), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant
colony Optimization (ACO), Stimulated Annealing (SA), Tabu Search (TS), Cuckoo Search
(CS), Teaching Learning Based Optimization (TLBO), Jaya-Harmony search (JHS), Krill
Heard (KH), Variable Neighborhood search (VNS), etc. For the campus microgrid at Yalova
University in Turkey, Aykut Fatih Güven et al. proposed the use of the Jaya-Harmony
search algorithm to optimize the energy management process, and they compared the
results with PSO and HOMER. It was concluded that the JHS algorithm provided the
most optimal component sizing [71]. To further increase the efficiency and convergence
of metaheuristic algorithms, a combination of these algorithms is recommended [72]. For
example, PSO provides fast convergence compared to GA [73], but it lacks flexibility, and
so a combination of GA and PSO provides the best results both in terms of convergence
and flexibility [74]. Mohamad Almas Prakasa and Subiyanto Subiyanto used a fusion of
a genetic algorithm and a modified particle swarm optimization algorithm for the cost-
optimal design of a campus microgrid located at the Universitas Negeri Semarang in
Indonesia [75]. The proposed design managed to reduce operation costs by 11.9%.

4.3. Artificial Intelligence Techniques

Artificial intelligence techniques are modern optimization algorithms based on arti-
ficial intelligence. These algorithms have the benefits of quick convergence, high speed,
and good precision. Machine learning involves the use of artificial intelligence algorithms.
Saheed Lekan Gbadamosi and Nnamdi I. Nwulu used the machine learning Waikato Envi-
ronment for Knowledge Analysis algorithm for solar and wind forecasting for a campus
microgrid at the University of Johannesburg in South Africa [76]. Letícia A.L. Zaneti et al.
used the rolling horizon method to reduce the charging costs of campus bus charging
stations by up to 52% [77]. Jangkyum Kim et al. used IoT (Internet of Things) sensors to
collect live data from the Korea Advanced Institute of Science and Technology (KAIST),
Daejeon campus, and then they used this data to propose a microgrid energy management
scheme. The system was optimized using an AI-based self-organizing map algorithm.
Optimization by taking uncertainties into account resulted in a 3% reduction in peak power
and a 2.16% reduction in the daily electricity price for the campus [101]. Deep learning
techniques can be used for the prediction of energy prices and smart grid stability [78], but
they are associated with some limitations. Türkücan Erdem and Süleyman Eken proposed
the use of layer-wise relevance propagation to discover the relevance of each input. It was
suggested that the primary input in the system was the time required for the participant
response, accompanied by the pricing coefficient, and that the electricity consumption
or production had a negligible effect on the stability [79]. Table 2 shows optimization
techniques being utilized in the latest research.
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Table 2. Some optimization techniques from the latest campus microgrid studies.

Ref Campus Name Country Optimization Method Outcome

[65] University of Engineering
and Technology, Taxila Pakistan MILP

• 36.6% savings for
campus microgrid

[66] Malta College of Arts,
Science, and Technology Malta MILP

• GBP 17,226 net
saving in storage

• 100% optimal
design

[68] University of
KwaZulu–Natal South Africa Quadratic

Programming
Substantial savings on
fuel

[71] Yalova University Turkey Jaya-Harmony Search
• Better convergence.
• Most optimal

sizing

[75] Universitas Negeri Semarang Indonesia Modified PSO and GA
• 11.99% reduction in

system costs

[76] University of Johannesburg South Africa
Waikato Environment
for Knowledge
Analysis (WEKA)

• Reduced effect of
RE unpredictability

• Lowest system
maintenance costs

[77] University of Campinas Brazil Rolling Horizon
• 52% reduction in

operation costs

[101] Korea Advanced Institute of
Science and Technology Korea Self-Organizing Map

Algorithm

• 2.16% reduction in
daily electricity
costs

• 3% reduction in
peak power

[80] Polytechnic of Porto Portugal Fuzzy logic

• Reliable
consumption
forecasting with
less historical input

5. Tools Used for Energy Management of Campus Microgrids
5.1. MATLAB

MATLAB is a programming and development tool to develop several kinds of mathe-
matical algorithms. It is widely used for campus microgrid system optimization purposes.
L. Hadjidemetriou et al. used MATLAB as a tool for the optimization of their proposed
microgrid for the Malta College of Arts, Science, and Technology [17]. Ali Arzani et al. pro-
posed a campus microgrid for Clemson University, Clemson, based on the solar generation
and battery energy storage that could provide power for a two-day islanding event. The au-
thors used MATLAB for the component sizing of their proposed microgrid [101]. In Greece,
Elencova designed a campus microgrid for the Democritus University of Thrace. The
energy management scheme of the campus microgrid was designed using MATLAB [102].

5.2. Simulink

Simulink is a graphical programming tool for modeling work, simulating, and evalu-
ating multidomain dynamic systems based on MATLAB. Its framework comprises a simple
visual block diagramming tool and its libraries that can be modified. It is a very useful tool
for constructing a simulation model of a campus microgrid. Yuly V. Garcia et al. simulated
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their proposed campus microgrid design containing solar, battery storage, and a CHP
system for the University of Puerto Rico in the United States [57]. Moslem Uddin et al.
used a Simulink (MATLAB) tool to model a campus microgrid for the Universiti Teknologi
PETRONAS (UTP) in Malaysia. The proposed model was then used to perform economic
and stability analyses [82].

5.3. LabVIEW

LabVIEW is also a graphical programming tool that can be considered an alternative
to Simulink. This tool is widely used by designers and engineers for campus microgrid
applications. Rachid Lghoul in [83] used LabVIEW and CompactRIO for data acquisition
and the management of a campus microgrid at Al Akhawayn University in Morocco. Pedro
Moura et al. used the LabVIEW tool for the development of monitoring software for
a campus microgrid installed at the University of Coimbra in Portugal [84].

5.4. HOMER

HOMER is the abbreviation of Hybrid Optimization of Multiple Energy Resources.
This tool is a favorite among researchers due to its simple interface and rich features.
A complete financial analysis of a proposed microgrid can be completed using HOMER. It
also provides an opportunity to compare different combinations of proposed active and
passive components of a proposed microgrid to select the most economical one [85]. MD
Sarwar et al. used HOMER for the design and economic analysis of a campus microgrid
at Jamia Millia Islamia University in India. The results proved that the proposed system
design was the most economic and environmentally friendly [86]. Ayooluwa A. Ajiboye
et al. also used HOMER to identify the most economically feasible solution for Covenant
University in Nigeria. The results showed that wind turbines were not suitable for this
location, while a combination of solar, grid, diesel, and battery energy storage was a
potential system for long-term economic benefits [87]. For green transportation at the
Thiagarajar College of Engineering in India, 100 kW solar generation was recommended.
The system was optimized using HOMER, and it was observed that the proposed microgrid
reduced gas emissions by 49,303 kg per year [88]. Sheeraz Iqbal et al. used HOMER for
the economic feasibility testing of a proposed microgrid for the King Abdullah Campus
of the University of Azad Jammu and Kashmir. It was concluded that a hybrid system
containing solar, battery, and grid was the best solution for this university campus [89]. T.
M. I. Riayatsyah et al. performed a techno-economic analysis for Syiah Kuala University in
Indonesia using HOMER, and they concluded that an RE-based system containing 62%
energy from solar and 20% energy from wind could reduce the per-unit cost of campus
energy utilization from $0.060 to $0.0446 per kWh [90]. Stephen Ogbikaya et al. used
HOMER Pro for the optimization and economic analysis of a campus microgrid for a
university located in Nigeria. The proposed optimized system resulted in 88% saving on
electricity charges [91].

5.5. PVSyst

PVSyst is a powerful tool for campus microgrid design and optimization. It has many
unique built-in features, such as 3D partial shading phenomena, solar system sizing [92],
storage optimization, etc. However, the use of this tool is limited to the design of those
microgrids which use only solar as a generation source. It is not possible to use this tool
for microgrids having multiple energy generations [93]. David Morillón Gálvez et al.
used PVSyst to model a grid-connected solar-based campus microgrid for the National
Autonomous University of Mexico. The proposed microgrid resulted in reduced carbon
footprints and had the shortest payback period (fewer than six years) [94].

5.6. CPLEX

CPLEX is a mathematical programming tool developed by IBM ILOG. This tool uses
integer, mixed integer, and quadratic programming techniques to optimize microgrid
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design. It is compatible with several programming languages such as Java, C++, and
Python [95]. Jingyun Li and Hong Zhao used a CPLEX solver to optimize a proposed
campus energy management model based on an improved particle swarm optimization
technique [96].

Apart from the above-mentioned softwares, there are many other useful tools for
campus microgrid development and optimization, such as DER-CAM (Distributed Energy
Resources Customer Adoption Model) [23], iHOGA (Hybrid Optimization by Genetic
Algorithms) [97], SAM (System Advisor Model) [98], PSCAD (Power Systems Computer
Aided Design) [99] and GAMS (Generic Algebraic Modelling System) [100]. Table 3 shows
the energy management system and used tools in the literature.

Table 3. Tools used in the campus microgrid energy management literature.

Ref Campus Resources Tool

[17] Malta College of Arts, Science, and Technology Solar, diesel generator, and BSS MATLAB

[81] Clemson University Solar and BSS MATLAB

[102] Democritus University of Thrace Solar and BSS MATLAB

[57] University of Puerto Rico Solar, CHP, and BSS Simulink

[82] Universiti Teknologi PETRONAS PV, gas turbine, and BSS Simulink

[83] Al Akhawayn University Solar and BSS LabVIEW

[84] University of Coimbra Solar, BSS, and EV LabVIEW

[86] Jamia Millia Islamia University Solar, wind, and BSS HOMER

[87] Covenant University Solar, diesel generator, grid, and BSS HOMER

[88] Thiagarajar College of Engineering Solar HOMER

[89] University of Azad Jammu and Kashmir Solar, grid, and BSS HOMER

[90] Syiah Kuala University Solar and wind HOMER

[94] National Autonomous University of Mexico Solar and grid PVSyst

[123] Seoul National University Solar and ESS MDStool

6. IoT Enabled Cyber-Secured Microgrid

There are several solutions available for smart campus microgrid energy manage-
ment [103]. Technologies that are important for campus microgrid design, communica-
tion, and operation are RFID (radio frequency identification), cloud computing, wireless
technologies, augmented reality (AR), mobile technologies, and IoT (Internet of Things)
technologies [104]. Solar irradiance, humidity, and temperature sensors were used by
Jangkyum Kim to acquire real-time data from a campus microgrid and then propose
an effective energy management model for it [101]. M. Z. Elenkova et al. [102] produced
a simulation model for the campus microgrid at the Democritus University of Thrace in
Greece, and an efficient energy management scheme was introduced for operating this mi-
crogrid. This scheme used IEC 61,850 as a communication protocol. Hanaa Talei proposed
the use of a cloud computing-based IoT platform to avoid unnecessary delays in campus
microgrid communication systems [105].

7. Conclusions

In this paper, a comprehensive study of the various aspects of campus microgrids is
presented. This paper describes the energy management of campus microgrids considering
the objective, architecture, storage technologies, and different tools used. Different storage
technologies are used for campus microgrids. A prosumer-based system is focused on
having the characteristics of energy exchange. In modern techniques, AI is the optimal
tool when compared to conventional tools. An Internet of Things (IoT) -enabled system
is more advanced compared to a classical system. Therefore, IoT technologies are used
for communication and signaling purposes. The softwares used for energy management
systems are also studied to explore better options for simulations. Python is an advanced
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platform for analyses using AI tools. In the future, a technical paper will be presented
focusing on advanced techniques and uncertainties of systems.
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