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Abstract: Most wind turbines are remotely monitored 24/7 to allow for early detection of operation
problems and developing damage. We present a new fault detection approach for vibration-monitored
drivetrains that does not require any feature engineering. Our method relies on a simple model
architecture to enable a straightforward implementation in practice. We propose to apply convolu-
tional autoencoders for identifying and extracting the most relevant features from a broad continuous
range of the spectrum in an automated manner, saving time and effort. We focus on the range of
[0, 1000] Hz for demonstration purposes. A spectral model of the normal vibration response is learnt
for the monitored component from past measurements. We demonstrate that the trained model can
successfully distinguish damaged from healthy components and detect a damaged generator bearing
and damaged gearbox parts from their vibration responses. Using measurements from commercial
wind turbines and a test rig, we show that vibration-based fault detection in wind turbine drivetrains
can be performed without the usual upfront definition of spectral features. Another advantage of the
presented method is that a broad continuous range of the spectrum can be monitored instead of the
usual focus on monitoring individual frequencies and harmonics. Future research should investigate
the proposed method on more comprehensive datasets and fault types.

Keywords: condition monitoring; wind turbines; fault detection; vibrations; autoencoders; convolu-
tional autoencoders; neural networks; renewable energy

1. Introduction

Wind energy is becoming an essential pillar of the energy mix, helping to decarbonize
the energy system and to improve energy independence and security of supply in many
countries [1,2]. Most commercial wind farms today are remotely monitored around the
clock to keep the operation and maintenance costs low. The continuous monitoring allows
for early detection of potential operation problems and facilitates proactive condition-based
maintenance. Gearboxes and generators are of particular interest in the monitoring of wind
turbines (WT), because they are especially costly to replace, and associated replacement
work tends to entail long downtimes [3–6]. Thus, more and more wind turbine drivetrains
are monitored with accelerometers. This makes it possible to derive and track the vibration
spectra of critical components such as gearbox parts and generator bearings.

Previous studies have proposed various methods and features for vibration-based fault
detection in the drivetrains of wind turbines. The proposed frequency-domain methods
include the monitoring and analysis of particular frequencies, their harmonics, sidebands
and the signal envelope. Recent studies in this area applied to wind turbine gearboxes
include [7], in which conventional filtering, Hilbert transform and cepstrum methods
are applied for detecting broken teeth faults of gears. To extract features for weak faults
however, complex wavelet transform providing multi-scale enveloping spectrograms from
which bearing failure can be detected is introduced. The work in [8] proposed a method
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based on the Vold–Kalman filter and higher order energy separation. In [9], a method based
on sparse representation theory is outlined, with the stated advantages over conventional
methods being in alleviating background noise, handling the coupling effect and a more
intuitive fault diagnosis process. Similarly, Ref. [10] introduced a structured sparsity
method, highlighting and demonstrating the same advantages. A novel modulation model
for the diagnosis of compound faults is shown in [11]. The presented approach enables
adaptive decomposition of the signal, with the authors presenting superior performance
compared to classic empirical mode decomposition methods. In the time domain, the
existing methods focus on analysing the amplitudes of the vibration time series and
tracking statistical properties of the vibration response distribution. Recent contributions
include [12], presenting a fault diagnostic method based on measurement indicators such
as root mean square analysis (RMS), skewness, kurtosis or the crest factor. Experimental
results on a fixed-speed planetary gearbox test rig indicated that promising results in
discriminating fault conditions could be obtained using RMS analysis when compared
with other indicators. However, the author notes the indicator’s sensitivity to variable
operational conditions. In [13], mean vibration signatures were extracted from recordings of
a group of healthy identical WTs. The resulting measurements were used as reference, and
by detecting deviations, faults can be identified, as presented in their case study. A different
approach is outlined in [14], where these traditional vibration-based features such as RMS
or peak-to-peak were replaced with linear regression parameters of the feature-generator
power relationship, allowing for load-independent evaluations and higher interpretability.
Methods based on extracting features from multiple domains have also been proposed:
Most recently, in [15], a fault diagnosis method based on fused features is presented, of
which an optimal subset is chosen by a statistical feature selection. In [16], features from
the time, frequency, and time–frequency domains are extracted and combined as well. A
random forest is used to reduce the dimensionality of the feature set and to select an optimal
subset for the fault diagnosis model. We refer to [17,18] for comprehensive reviews of the
state-of-the-art methods of vibration-based fault detection in wind turbine drivetrains.

The existing methods require the upfront development and extraction of component-
specific features from the accelerometer measurements by condition-monitoring engineers.
The upfront definition of spectral features for the monitoring constitutes a major time invest-
ment before commissioning and operating the turbine. For instance, in-depth information
about the respective gearbox design and composition are needed to this end. The character-
istic frequencies of the monitored components need to be determined if the corresponding
spectral lines are supposed to be tracked. Collecting this spectral information for every
monitored component in every monitored wind turbine and model constitutes a major
effort. The extracted spectral features tend to be turbine- and component-specific. There-
fore, they can generally not be reused for new wind turbine types or when components
have been updated. Moreover, feature engineering can result in more and in less effective
features for fault detection. For example, in a case study by [19], spectral line and cepstrum
analyses resulted in higher fault detection accuracies than time synchronous averaging and
spectral kurtosis methods. Thus, depending on the chosen feature engineering approach,
one may end up with more or less satisfactory fault detection accuracies.

Recently, first studies have proposed the application of fault detection methods that
do not require any feature engineering. The work in [20] demonstrated the application of
autoencoders for detecting blade damage in wind turbines based on the blade stress and
strain signals obtained from strain gauge sensors. In a similar application, Ref. [21] made
use of a convolutional autoencoder for detecting blade damages. To this end, they employed
data from the wind turbine’s supervisory control and data acquisition (SCADA) system to
identify changes in the dynamics of the blade system. In [22], an autoencoder is applied for
the transfer learning of fault diagnosis tasks on SCADA and failure status datasets. They
investigated different fault types and focused on the transfer of fault diagnostics models to
target turbines with few available SCADA data. When vibration sensors are unavailable,
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SCADA-based modelling of the turbine’s normal behaviour can enable the detection of
operation faults in drivetrain components (e.g., [23–28]).

The goal of our study is to develop and demonstrate a fault detection method for
vibration-monitored drivetrain components in wind turbines that does not require any
feature engineering but is able to learn the characteristic spectral features of the monitored
components without any human assistance from a continuous range of the spectrum, such
as the full half spectrum. The method should enable simple model architectures to facilitate
its adoption by practitioners. At the same time, it should neither be restricted to monitoring
specific frequencies, nor should it require a comprehensive set of gearbox- and fault-type-
specific observations. The latter would be needed for fault detection methods based on
supervised machine learning, but in practice, such datasets are usually not available or not
accessible to wind turbine operators.

To achieve this goal, the present study proposes and demonstrates the application of
convolutional autoencoders for the feature learning, extraction and early detection of faults
in vibration-monitored wind turbine gearboxes and generators. This study is the first to
propose spectral normal-behaviour models constructed without feature engineering for the
purpose of vibration-based fault detection in wind turbine drivetrains, to the best of our
knowledge.

In this study, we also propose and investigate fault detection based on non-convolutional
autoencoders. Moreover, we compare the performance of reconstruction-error-based gear-
box and generator health indices to health indices derived by one-class classification with
an isolation forest model.

This paper is organized as follows. Section 2 describes our new fault detection methods.
Section 3 introduces the gearbox and generator datasets and models used for demonstrating
the methods. The results of our study are discussed in Section 4, and our conclusions follow
in Section 5.

2. Fault Detection Algorithms

Autoencoders are artificial neural networks that are trained to compress and then
reconstruct their input (e.g., [29–31]). Autoencoders are autoassociative, in that they are
trained to duplicate their input as their output and to minimize the resulting reconstruction
error. In the training process, the reconstruction error is minimized by adapting the autoen-
coder’s network weights to the training data in an iterative manner. Autoencoders consist
of encoding and decoding hidden layers. The encoding layers learn a lower dimensional
representation of the training data, which is subsequently decompressed by the decoding
layers to reconstruct an output highly similar to the input, with the same dimensionality
as the input. The dimensionality reduction of the input data has a similar compression
effect as a principal component analysis. The proposed convolutional autoencoders re-
duce the dimension of the spectral feature space and replace human feature engineering.
Convolutional autoencoders are convolutional neural networks with an encoder–decoder
architecture. They are particularly suited for image data compression and decompression
because of the feature learning and image reconstruction capabilities of the convolutional
layers. Autoencoders can be used to detect anomalous input data instances based on the
large reconstruction errors they make when trying to reconstruct those instances from their
compressed representations. Therefore, convolutional autoencoders have been successful
in image and video-based anomaly detection tasks (e.g., [32,33]).

In this study, we propose to apply convolutional autoencoders to learn and extract
spectral features from the accelerometer measurements and to use the autoencoder recon-
struction errors as an indicator (health index) of unusual operation behaviour and potential
faults of the monitored components. Alternatively, the extracted features can be input to a
one-class classification algorithm, such as an isolation forest model, to construct a health
index of the monitored component, as demonstrated in our case study. We present two
fault detection methods below that rely on two steps: (1) automated data-driven feature
learning and extraction by autoencoders to model the normal vibration responses of the
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monitored component, and (2) subsequent fault detection based on deviations from the
spectral normal-behaviour model learnt in step (1). The two fault detection methods may
be used individually or in combination. We demonstrate and discuss them in a case study
in Sections 3 and 4.

2.1. Fault Detection Based on Autoencoder Reconstruction Losses

As shown in Figure 1, an autoencoder is trained with spectrogram segments con-
structed from the accelerometer measurements. The autoencoder’s reconstruction loss is
used as an anomaly score (health index) in this case. If the autoencoder has been trained
only on vibration spectra from components unaffected by faults, then the reconstruction
error of spectra from fault-affected components is expected to be higher than that of un-
affected components. Thus, the higher the reconstruction loss of an input segment, the
more likely its underlying spectrogram is to indicate a fault in the monitored component.
In this approach, the autoencoder should be trained on data from healthy components, so
it learns to reconstruct spectra that reflect the normal operation behaviour of the monitored
component. Thus, the autoencoder learns a normal-behaviour model of the vibration
responses of the component. The underlying idea of this unsupervised fault detection
approach is similar to that of the normal-behaviour models in SCADA-based condition
monitoring [23–28]. Training, validation, and test sets are created from the spectrograms
constructed from the vibration responses of each monitored component. The mean ab-
solute reconstruction error is calculated for each segment by comparing its autoencoder
reconstruction to the original input. To identify fault-affected spectrograms, we define
a loss threshold T. When this threshold is exceeded, the component associated with the
spectrogram is considered to be fault-affected.
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Figure 1. An illustration of the fault detection approach based on autoencoder reconstruction errors.
First, the vibration measurements are converted to spectrogram segments. The segments are given as
input into a convolutional autoencoder, which returns reconstructed spectrograms as output. The
mean absolute reconstruction errors are calculated with respect to the original inputs. These errors
are used as health indices to distinguish healthy and fault-affected components.

Formally, an autoencoder consists of encoder network φe and decoder network φd,
parameterized by Θe and Θd respectively, derived by minimizing the reconstruction loss
during training. The health index h assigned to a spectrogram segment Xk recorded with
accelerometer s is obtained by calculating the mean absolute error LMAE,AEs between the
original input Xk and its reconstruction X̂k by an autoencoder AEs that was trained on
only healthy segments from accelerometer s. The classification as fault-affected is based on
whether the health index h exceeds a predefined threshold T. This threshold will ensure
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that normal variability in the spectrogram will not be flagged as fault conditions, whereas
unusual spectral changes will be detected.

ˆXk,s = φd,s
(
φe,s(Xk,s; Θe,s); Θd,s

)
h(Xk,s) = LMAE,AEs

(
Xk,s, ˆXk,s

)
anomaly(Xk,s) = true, if h(Xk,s) > T

2.2. Fault Detection Based on Isolation Forests

The second fault detection approach presented in this study combines the encoding
part of a convolutional autoencoder with one-class classification by an isolation forest
model, as shown in Figure 2. As in the first approach, a convolutional autoencoder is trained
with the goal of reconstructing spectrogram segments. In contrast to the first approach,
however, the autoencoder will now only be used to extract a compressed representation of
the most important features from the input spectrogram. In a second step, the extracted
features serve as input to an isolation forest model [34,35]. The features are taken from the
output of the last encoding layer of the autoencoder architecture. In this study, we call this
layer the bottleneck layer.
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Figure 2. An illustration of the fault detection approach based on isolation forests. First, the vibration
measurements are converted to spectrogram segments. The segments are given as input to the
encoding part of a convolutional autoencoder, the last layer outputs of which are an encoded
representation of the segment features (shaded layer). Then, an isolation forest model computes
an anomaly score for each segment. The score is used as a health index to distinguish healthy and
fault-affected components.

The isolation forest model detects an anomalous spectrogram based on how easily
the spectrogram can be isolated from the remaining spectrograms in the decision trees
constituting the forest. In this way, the isolation forest model distinguishes anomalous spec-
trograms from spectrograms featuring normal operation behaviour. A separate isolation
forest model is created for each monitored component and accelerometer. The inputs to the
forest are the feature vectors extracted from the bottleneck layer of the previously trained
autoencoder. In a final step, the model evaluates all segments from the training, validation
and test sets and outputs an anomaly score. We need to define a threshold to discriminate
spectrograms that reflect normal operation behaviour from spectrograms of fault-affected
components. This threshold is set to 0.5 in accordance with [34].
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More formally, for a spectrogram segment Xk recorded by accelerometer s, the trained
isolation forest model IF for s outputs the health index h based on the feature vector z(Xk)
output from the encoder network φe,s of autoencoder AEs:

z(Xk,s) = φe,s(Xk,s; Θe,s)

h(Xk,s) = IFs(z(Xk,s))

anomaly(Xk,s) = true, if h(Xk,s) > 0.5

3. Case Study

The proposed fault detection methods were demonstrated in four wind turbine drive-
trains. First, we tested the approach in two commercially operated wind turbines, which
we call wind turbine 1 (WT1) and wind turbine 2 (WT2) in this study. We knew from the
operators that WT1 exhibited no known damage nor functional impairments, whereas
WT2 may have suffered damage in a drivetrain component. Our goal was to test the
proposed fault detection methods by detecting if any of the monitored components of WT2
are affected by faults based on their vibration responses, and to identify the fault-affected
components, if any.

In addition to the commercial wind turbines, we also tested the performance of our
fault detection methods with test rig measurements from the National Renewable Energy
Laboratory (NREL).

3.1. Commercially Operated wind Turbines

Accelerometer measurements from the drivetrains of two commercially operated
multi-MW wind turbines were analysed. The two onshore turbines were identical in design
and composition, with a nominal power of 2 MW. Table 1 provides further specifications of
the turbines.

Table 1. Technical specifications of the two commercial wind turbines.

Quantity Value

Rotor diameter 114 m
Nominal power 2.1 MW

Type variable-speed horizontal-axis pitch-controlled
Deployment onshore

Gearbox three stage

In each turbine (WT1, WT2), eight accelerometers (S1–S8) monitored the gearbox,
generator, main shaft bearing and the main frame, as detailed in Table 2. Figure 3 illustrates
the monitored components and the locations of the accelerometers. The measurements
were taken at a sampling frequency of 25.6 kHz in time slices of 2 s each, over a period
of three months. All time slice measurements were taken at the same generator load of
1345 ± 3 rpm. The constant load enabled a direct comparison of the spectra across the full
measurement period of three months and between the two turbines. In total, the dataset
contained 562 time slice recordings from WT1 and 672 recordings from WT2. The time
slice recordings were converted into spectrograms. According to information provided to
us by the operator, WT1 exhibited no known damage or impairments, whereas WT2 may
have damage in any component. Therefore, our goal was to demonstrate our presented
fault detection methods by evaluating whether any monitored components of WT2 are
affected by faults, based on the fault detection model evaluations of spectrograms from
each component of WT2.
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Table 2. The monitored components and measured acceleration directions in the two wind turbines.

Accelerometer ID Monitored Component and Direction

S1 Main frame, axial
S2 Gearbox, rotor side, axial
S3 Main frame, radial
S4 Gearbox, generator side, radial
S5 Main shaft bearing, radial
S6 Gearbox, generator side, axial
S7 Generator, coupling side, axial
S8 Generator, coupling side, radial

Energies 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

Table 2. The monitored components and measured acceleration directions in the two wind turbines. 

Accelerometer ID Monitored Component and Direction 

S1 Main frame, axial 

S2 Gearbox, rotor side, axial 

S3 Main frame, radial 

S4 Gearbox, generator side, radial 

S5 Main shaft bearing, radial 

S6 Gearbox, generator side, axial 

S7 Generator, coupling side, axial 

S8 Generator, coupling side, radial 

 

Figure 3. Sketch of the drivetrain of the two wind turbines. The accelerometers S1–S8 are indicated 

in red. 

3.2. Test Rig Measurements 

In addition to the commercial wind turbines, we tested our fault detection methods 

with accelerometer measurements from the drivetrains of two wind turbines operated on 

a NREL test rig. The turbines were two 750 kW machines identical in construction. The 

gearboxes provided a transmission of 1:81.5 and were composed of a low-speed planetary 

stage and two parallel moderate and high-speed stages. One of the gearboxes showed no 

damage or functional impairments. The other gearbox had suffered an oil loss and 

resulting damages in multiple components. The vibration measurements were taken from 

multiple components of the gearboxes as part of the Gearbox Condition Monitoring 

Round Robin study [36]. The measurements were conducted for ten minutes and under 

constant load at both gearboxes, with 22 rpm of the low-speed shaft and 1800 rpm of the 

high-speed shaft. The accelerometers measured at a 40 kHz sampling frequency. A 

comprehensive description of the gearbox, the sensing system and test environment are 

provided by [36,37]. 

The vibration measurements analysed in this study were obtained from components 

which exhibited different damage levels in the gearbox that had suffered the oil loss, such 

as scuffing damage. Their counterparts in the healthy gearbox have been examined for 

damage as part of the round robin study [36], and no damage was found in them. The 

accelerometers monitored the vibrations in the following locations in the damaged and in 

the healthy gearbox: 

1. In a bottom-facing position at the ring gear, 

2. At the bearing of the high-speed shaft,  

3. At the bearing of the low-speed shaft. 

All accelerometers measured the accelerations in the respective radial direction. 

Figure 3. Sketch of the drivetrain of the two wind turbines. The accelerometers S1–S8 are indicated
in red.

3.2. Test Rig Measurements

In addition to the commercial wind turbines, we tested our fault detection methods
with accelerometer measurements from the drivetrains of two wind turbines operated on
a NREL test rig. The turbines were two 750 kW machines identical in construction. The
gearboxes provided a transmission of 1:81.5 and were composed of a low-speed planetary
stage and two parallel moderate and high-speed stages. One of the gearboxes showed
no damage or functional impairments. The other gearbox had suffered an oil loss and
resulting damages in multiple components. The vibration measurements were taken from
multiple components of the gearboxes as part of the Gearbox Condition Monitoring Round
Robin study [36]. The measurements were conducted for ten minutes and under constant
load at both gearboxes, with 22 rpm of the low-speed shaft and 1800 rpm of the high-speed
shaft. The accelerometers measured at a 40 kHz sampling frequency. A comprehensive
description of the gearbox, the sensing system and test environment are provided by [36,37].

The vibration measurements analysed in this study were obtained from components
which exhibited different damage levels in the gearbox that had suffered the oil loss, such
as scuffing damage. Their counterparts in the healthy gearbox have been examined for
damage as part of the round robin study [36], and no damage was found in them. The
accelerometers monitored the vibrations in the following locations in the damaged and in
the healthy gearbox:

1. In a bottom-facing position at the ring gear,
2. At the bearing of the high-speed shaft,
3. At the bearing of the low-speed shaft.

All accelerometers measured the accelerations in the respective radial direction.
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4. Results and Discussion

In the following sections, we will first present and discuss the results of our proposed
methods for our case study with two commercially operated wind turbines (Section 3.1).
To convert the accelerometer measurements into spectrograms, we applied a short-time
Fourier transform (STFT; [38]) with window sizes of 250 ms and an overlap of 100 ms. Fault
detection was performed based on spectrogram segments of 1 s duration and considering
frequencies up to 1000 Hz. These parameters were chosen so as to enable sufficient
temporal evolution and frequency resolution of the signal and at the same time allow for
large enough training, validation and test sets. Our results are robust against modifications
of these parameters. Prior to the model training, we applied a log-transformation to each
spectrogram and a min–max normalization, such that all data points fall in the range of
[0, 1]. Figure 4 shows examples of the resulting spectrograms for the components monitored
with the accelerometers S1–S8 in both wind turbines.
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Figure 4. Sample spectrograms of WT1 and WT2, converted from the measurements of components
monitored by the accelerometers S1–S8. The figure shows one sample from each wind turbine and
each accelerometer. All spectrogram segments run over 1 s of time (the vertical axis) and show
normalized logarithmic amplitudes for frequencies up to 1000 Hz (horizontal axis).

Dataset splits. For our case study, we created a separate model for each accelerometer.
We split the recordings of WT1 into a 70% training set, a 15% validation set and a 15% test
set for each accelerometer. A sliding window was applied to extract multiple 1 s segments
from each 2 s recording. The resulting segments of the training set were used to train the
autoencoders and the isolation forests, while the validation set was used for the model
selection and early stopping. All data from WT2 served as an additional separate test set,
so we could obtain fault notifications for each component.

Model selection. We performed a preliminary model search using the Hyperband
hyperparameter optimization algorithm [39] in order to find an optimal convolutional
autoencoder architecture. We evaluated architectures consisting of only convolutional
and pooling layers which resulted in a bottleneck size of 128 units (the flattened size of
the last encoder layer). This dimension requirement was set beforehand by us. Choosing
a bottleneck size significantly smaller than the input size forces the network to learn
a compressed representation of the inputs. This compressed representation serves as
input to the isolation forest. In terms of configurations, we evaluated models with up
to five encoding layers with either four, eight, or sixteen feature maps, with kernel sizes
(height, width) of either (1, 3), (1, 5), (3, 3), (3, 5), or (5, 5) and with varying learning rates
between 3 × 10−2 and 1 × 10−4. The decoder architecture was always symmetrical to the
encoder. The network weights were optimized using the adaptive moment estimation
(Adam) optimization algorithm [40], minimizing the mean absolute error (MAE) between
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the reconstruction output and the original input. Further, we applied an early stopping
mechanism to stop training when the validation loss had not improved within 15 epochs.

This hyperparameter optimization was performed only on the training and validation
set of accelerometer S1. The Hyperband search algorithm resulted in the best-performing
convolutional architecture (“conv-AE”) outlined in Table 3. Additionally, we compared
the reconstruction performance to a minimal dense architecture (“dense-AE”) described in
Table 3, i.e., to the smallest possible model configuration in terms of parameters with at
least one hidden fully connected layer and the same bottleneck size.

Table 3. Specifications of the models used in our work. The abbreviations are “FC Layer”: fully-
connected layer (number of units, activation function); “Conv. Layer”: convolutional layer (number
of feature maps, kernel size in height x width, activation function); “MP”: max-pooling layer (height
× width); “elu”: exponential linear unit.

Model Architecture

Convolutional autoencoder
(conv-AE)

• Input: 6 × 251 × 1 (height × width × channels), zero-padded to 8 × 256 × 1
• Encoder: Block 1: Conv. Layer (16f, 1 × 3, elu), MP (1, 2) Block 2: Conv. Layer (16f, 3 × 3,

elu), MP (2, 2) Block 3: Conv. Layer (16f, 1 × 3, elu), MP (2, 2) Block 4: Conv. Layer (16f,
1 × 5, elu), MP (1, 2) Block 5: Conv. Layer (8f, 1 × 5, elu), MP (1, 2) Bottleneck Layer: Flatten
(2H × 8W × 8f to 128 units)

• Decoder: Reshape: (128 units to 2 H × 8 W × 8f) Block 1: Upsampling (1, 2), Transposed
Conv. Layer (8f, 1 × 5, elu) Block 2: Upsampling (1, 2), Transposed Conv. Layer (16f, 1 × 5,
elu) Block 3: Upsampling (2, 2), Transposed Conv. Layer (16f, 1 × 3, elu) Block 4:
Upsampling (2, 2), Transposed Conv. Layer (16f, 3 × 3, elu) Block 5: Upsampling (1, 2),
Transposed Conv. Layer (16f, 1 × 3, elu)

• Reconstruction: Cropping Layer: (8H × 251W × 16f to 6H × 251W × 16f) Conv Layer: (1f,
5 × 5, sigmoid)

Number of parameters: 10,385

Dense autoencoder
(dense-AE)

• Input: 6 × 251 × 1 (height × width × channels) flattened to 1506 units
• Encoder: Hidden Layer: FC Layer (128 units, elu) Bottleneck Layer: FC Layer (128 units, elu)
• Decoder: Hidden Layer: FC Layer (128 units, elu)
• Reconstruction Layer: FC Layer (1506 units, sigmoid) Output reshaped back to 6 × 251 × 1

Number of parameters: 420,194

Isolation Forest Number of trees: 100
Contamination: 0.0001

Both the convolutional and the dense model architectures evaluated by us are capable
of reconstructing visually similar spectrogram segments after finished training, as shown
by the autoencoder reconstructions in Figure 5. While the training loss was lower using
the dense autoencoder model (3.55 × 10−2) compared to the convolutional autoencoder
(3.63 × 10−2), the validation loss was higher (3.82 × 10−2) compared to the convolutional
autoencoder model (3.70 × 10−2), indicating a poorer reconstruction performance of the
dense autoencoder model on the same unseen dataset. We attribute the divergence of the
training and validation losses observed in the case of the dense autoencoder to its overfitting
on the training set, due to the dense autoencoder’s large number of parameters. Our case
study showed that the convolution-based architecture can achieve a better reconstruction
performance on unseen data with a comparably small number of parameters, specifically
with only 2.5% of the dense autoencoder model’s number of parameters. At the same time,
the convolutional autoencoder maintained a good correspondence between training and
validation losses. This suggests that the convolutional autoencoder network learns more
generalizable features and is less prone to overfitting in this application. In addition, the
dense autoencoder has a large number of parameters, so its training can quickly become
computationally expensive when considering multiple models or larger datasets with even
more components and wind turbines. Based on these results, we determined that the
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convolutional architecture is better suited for our task. Consequently, we proceeded by
using this configuration for all further experiments.
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Figure 5. An example of the reconstruction capabilities of the two considered autoencoder mod-
els. An original spectrogram segment (top) is given as input to an autoencoder, which outputs a
reconstruction. A convolutional and a dense autoencoder were adapted to reconstruct a spectrogram
derived from accelerometer S1 in this illustration. The reconstruction by the dense autoencoder
(bottom) suggests that this model also tries to fit more of the noise in the spectrogram, which is
consistent with the overfitting observed with the dense autoencoder.

Fault detection based on autoencoder reconstruction losses. We trained a separate
convolutional autoencoder network with the conv-AE configuration for each accelerometer,
using 70% of the measurements of the monitored healthy component from WT1 as the
training set and 15% as the validation set. The networks were trained with the same
procedure as outlined in the model selection experiment. During the training, all eight
autoencoders achieved similar performances in terms of their validation losses (3.48× 10−2–
4.68 × 10−2). We evaluated the reconstruction errors obtained from the reconstructions
of the segments in the training, validation, and test sets of WT1 and the test data from
WT2. A threshold was determined based on the training errors, and if it was exceeded, we
considered the segment as anomalous.

Our autoencoder-based fault detection method found increased reconstruction errors
for the spectrograms derived from accelerometers S7 and S8, as shown in Figures 6 and 7.
These sensors monitor the generator component coupling to the gearbox, as shown in
Figure 3. The health index in Figure 7 displays the evolution of the health of each monitored
component and the degree of anomaly of the component’s vibrational response. Based on
the sensors from WT1, we estimated that an appropriate threshold value for bounding the
reconstruction errors of normal-vibration-response spectrograms is around 0.6. To estimate
this threshold more accurately, a larger number of fault instances would be needed. Based
on the health index, we defined a custom rule for notifying the wind turbine operators
when a certain number of anomalies were detected within a given timeframe. Specifically,
a fault alarm was generated in our case study if the threshold was exceeded three times in a
row, as shown by the shaded areas in Figure 7. No alarm was triggered for the components
associated with S1–S6. Our findings indicate unusual and persistent spectral changes likely
to result from fault-affected vibration responses of the monitored generator. We confirmed
this finding by investigating the logs of the affected WT2. The logs specified that WT2
had suffered incipient generator damage without further detailing the type of damage.
Thus, we could confirm that our proposed fault detection method is sufficiently sensitive to
detect incipient generator damage from accelerometer measurements in commercial wind
turbines. Note that we arrived at our diagnosis without any feature engineering but, rather,
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by letting the autoencoder itself learn what spectrograms look like in the normal operation
of healthy components.
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Figure 6. Fault detection based on spectrogram reconstruction. Reconstruction errors for accelerome-
ters S1–S8 after reconstruction with a convolutional autoencoder. The spectrograms from the test
set of WT1 are specified as healthy based on their comparatively low reconstruction errors, which is
consistent with the logs of WT1. In contrast, the spectrograms of accelerometers S7 and S8 of WT2
indicate damage conditions in the generator. This finding was confirmed by the logs of WT2.
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Figure 7. Fault detection based on spectrogram reconstruction. The reconstruction errors are consid-
ered health indices of the monitored drivetrain components of WT2. The red dashed line represents
our threshold, set at 0.06, the maximal reconstruction error before a segment is classified as anomalous.
Red shaded areas represent periods when the alarm notification criterion is active, following three
consecutive crossings of the threshold.
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Fault detection based on isolation forests. We applied the previously trained au-
toencoders for isolation-forest-based fault detection by using only their encoder parts.
Each encoder part outputs a compressed feature representation in a vector of size 128
(the bottleneck layer output) which was then input into the isolation forests. For each
accelerometer, we trained an isolation forest (IF) using the extracted feature vectors of
spectrogram segments from the training set.

Each isolation forest was evaluated on unseen spectrograms from the test set of
healthy WT1 and with spectrograms from WT2, as shown in Figure 8. The isolation forest
models also provided an anomaly score (health index) for each spectrogram segment.
Across all eight evaluated models, the isolation forests have consistently and correctly
classified the WT1 test sets as healthy, just like the reconstruction-error-based method, as
shown in Figures 6 and 8. When evaluating the spectrograms from WT2, the isolation
forest models assigned elevated anomaly scores to the generator (accelerometers S7, S8
in Figures 8 and 9). Figure 9 displays the health index for all monitored components.
As shown in Figures 8 and 9, fault detection based on isolation forests resulted in larger
anomaly scores for the spectrograms derived from the accelerometers S7 and S8. This
indicates a fault in the generator, which is consistent with the results of our reconstruction-
error-based fault detection method.
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Figure 8. Fault detection based on isolation forest models. Visualization of the isolation forest
anomaly scores for accelerometers S1–S8. In all cases, the vibration responses from WT1 were
correctly classified as healthy based on their low anomaly score. Significantly larger anomaly scores
were obtained for accelerometers S7 and S8 of WT2. This indicates a fault in the generator, which is
consistent with the results of our reconstruction-error-based fault detection method (Figures 6 and 7).

We applied a rule to trigger a fault alarm if three consecutive anomalies occurred, as
indicated by the shaded areas in Figure 9. No alarm was triggered for the components
associated with S1–S6. A small number of spectrograms from other components exceeded
the threshold of 0.5 according to the isolation forest models, as shown by sensors S2 and
S4–S6 in Figure 8, but these did not result in persistently abnormal health scores, as shown
in Figure 9. On the other hand, multiple persistent fault alarms were triggered for the
generator coupling side towards the gearbox (S7, S8).
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Figure 9. Fault detection based on isolation forest models. Health indices for the drivetrain compo-
nents monitored with accelerometers S1–S8 of WT2. The red dashed line at 0.5 is used to separate
normal vibration responses (health index . 0.5) from anomalous ones (health index > 0.5). We set the
threshold value of 0.5 in accordance with [34]. Red shaded areas represent periods when the alarm
notification criterion is active, following three consecutive crossings of the threshold.

After detecting the fault-affected vibration responses from sensors S7 and S8, a con-
sultation of the WT2 operation logs confirmed that the generator coupling side towards
the gearbox had suffered incipient damage. Thus, both presented fault detection meth-
ods successfully detected a fault in the generator from the spectral features learnt by the
convolutional autoencoder.

Our study makes use of multiple model parameter values, such as the bottleneck size
of the autoencoder, the number of trees in the isolation forests, or the number of maximal
consecutive days with anomalies in the health index. We optimized the parameter values
related to the autoencoder architecture and training, specifically the number of layers,
their sizes, and learning parameters, based on a hyperparameter optimization approach
as described above. Optimizing these values is possible because the autoencoder training
can be considered a supervised task, in which the input spectrograms are taken to be the
target outputs. Therefore, a loss value can be optimized by the choice of the autoencoder
architecture and network parameters in the training process. On the other hand, the fault
detection methods based on the spectrogram reconstruction error and based on the isolation
forest perform unsupervised tasks because of the absence of a comprehensive set of labelled
fault observations.

The optimal choice of parameters in the fault detection models is not within the
scope of this study. Specifically, this includes the optimal number of trees in the isolation
forest, the optimal contamination parameter in the isolation forest model, and the optimal
reconstruction error threshold. We propose future studies to investigate in more detail the
optimal choice of the parameter values based on additional fault observation datasets.

We also investigated the effectiveness of the presented fault detection methods for de-
tecting known gearbox damages in one of the two 750 kW turbines from NREL (Section 3.2).
Applying the same procedures as outlined for the commercial wind turbines above, we
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found that both fault detection methods were successful in detecting the fault-affected com-
ponents in the damaged NREL wind turbine from their vibration responses. Our results
from the NREL wind turbines confirm the effectiveness of both the reconstruction-based
and the isolation-forest-based fault detection approach.

5. Conclusions

Wind energy continues to expand strongly in Europe and around the world. The
operation and maintenance costs of wind turbines account for a major fraction of the
levelized cost of energy. Condition monitoring and artificial intelligence constitute powerful
means for automating the early detection of incipient damage in wind turbines under
various operating conditions. Machine learning methods enable early notification of wind
turbine operators based on the vibration responses of the monitored components.

However, the existing vibration-based fault detection methods rely on the upfront
definition of features in the frequency or time domains. This study has introduced two
new fault detection methods for vibration-monitored parts that do not require any feature
engineering. The proposed methods make use of convolutional autoencoders to detect
unusual operation behaviour from the spectrograms of the monitored parts. The autoen-
coders learn and extract spectral features customized to the monitored components in an
autonomous manner, without requiring any human assistance. In doing so, the autoen-
coders learn a spectral model of the component’s normal behaviour from past accelerometer
measurements.

We have demonstrated the new fault detection approaches—based on reconstruction
errors and based on isolation forests—in four wind turbine drivetrains. We showed that
both methods can successfully distinguish damaged from healthy vibration-monitored
parts. First, we demonstrated their performances in detecting incipient generator damage
from the vibration responses of the generators in two multi-MW onshore wind turbines. In
addition, we confirmed the effectiveness of our presented fault detection methods in test
rig measurements from NREL, where they successfully detected gearbox damage.

Comparing convolutional and dense autoencoders for feature extraction and recon-
struction, we found that convolutional autoencoders can accomplish the spectrogram
reconstructions with a drastically lower number of parameters as compared to dense au-
toencoders. Thus, the proposed convolutional autoencoders avoid overfitting and can
generalize better to unseen data.

Importantly, both presented fault detection methods do not require any feature en-
gineering. We discussed how convolutional autoencoders can autonomously extract the
most relevant features from a continuous range of the spectrum. We demonstrated this
for the range of [0, 1000] Hz, because many characteristic frequencies fall in this range.
In principle, however, the proposed method can also be applied to the full half spectrum.
The autoencoders learn the normal vibration responses without requiring any upfront
definition of features, thereby saving time and effort. An additional advantage of the
presented methods is that a broad continuous range of the spectrum can be monitored
instead of the usual focus on individual frequencies and harmonics.

The obtained results are very promising. While we demonstrated the new fault
detection approach by means of gearbox and generator vibration responses, it can in
principle also be applied to the structural health monitoring of other subsystems such as at
the wind turbine tower. Further studies are needed for applications beyond the drivetrain
to investigate the effect of variable operation conditions and how to account for them
in the preprocessing and feature extraction in applications beyond the drivetrain. In the
present study, we account for the effects of variable operation conditions by investigating
the vibration responses at constant generator and drivetrain loads. The requirement to
measure the vibration responses at constant loads can be easily accomplished in practical
applications. For example, time-slice vibration measurements can be triggered whenever
a specified load condition is met, e.g., by triggering the acquisition system at a certain
rotational speed of the generator.
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In addition to applications in other subsystems, future research should also investigate
the proposed approach with more comprehensive datasets of vibration responses from
damaged drivetrain components. It would be worthwhile to apply and investigate it for
different damage types and intensities. It will also be interesting to study the temporal
development of the proposed health indices in view of progressively increasing damage.

Author Contributions: Conceptualization, A.M.; Data curation, D.A.; Formal analysis, S.J.; Funding
acquisition, B.B. and A.M.; Investigation, D.A.; Methodology, S.J. and A.M.; Project administration,
B.B.; Resources, D.A.; Software, S.J.; Supervision, A.M.; Validation, S.J.; Visualization, S.J.; Writing—
original draft, S.J. and A.M.; Writing—review and editing, D.A. and B.B. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge that the present study was supported by a grant from
the Swiss innovation agency, Innosuisse.

Data Availability Statement: The authors do not have permission to share the data used in this
research.

Acknowledgments: The authors wish to thank Shawn Sheng from the National Renewable Energy
Laboratory for providing test bench data from gearbox accelerometer measurements analysed in this
study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Energy Agency. Global Energy Review 2021; International Energy Agency: Paris, France, 2021.
2. International Energy Agency. Renewables 2021; International Energy Agency: Paris, France, 2021.
3. Tavner, P.J.; Xiang, J.; Spinato, F. Reliability Analysis for Wind Turbines. Wind Energy 2007, 10, 1–18. [CrossRef]
4. Faulstich, S.; Hahn, B.; Tavner, P.J. Wind Turbine Downtime and Its Importance for Offshore Deployment. Wind Energy 2011, 14,

327–337. [CrossRef]
5. Crabtree, C.J.; Zappalá, D.; Hogg, S.I. Wind Energy: UK Experiences and Offshore Operational Challenges. Proc. Inst. Mech. Eng.

Part J. Power Energy 2015, 229, 727–746. [CrossRef]
6. Carroll, J.; McDonald, A.; McMillan, D. Failure Rate, Repair Time and Unscheduled O&M Cost Analysis of Offshore Wind

Turbines: Reliability and Maintenance of Offshore Wind Turbines. Wind Energy 2016, 19, 1107–1119. [CrossRef]
7. Teng, W.; Ding, X.; Zhang, X.; Liu, Y.; Ma, Z. Multi-Fault Detection and Failure Analysis of Wind Turbine Gearbox Using Complex

Wavelet Transform. Renew. Energy 2016, 93, 591–598. [CrossRef]
8. Feng, Z.; Qin, S.; Liang, M. Time–Frequency Analysis Based on Vold-Kalman Filter and Higher Order Energy Separation for Fault

Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions. Renew. Energy 2016, 85, 45–56. [CrossRef]
9. Yang, B.; Liu, R.; Chen, X. Sparse Time-Frequency Representation for Incipient Fault Diagnosis of Wind Turbine Drive Train. IEEE

Trans. Instrum. Meas. 2018, 67, 2616–2627. [CrossRef]
10. Sun, R.; Yang, Z.; Chen, X.; Tian, S.; Xie, Y. Gear Fault Diagnosis Based on the Structured Sparsity Time-Frequency Analysis. Mech.

Syst. Signal Process. 2018, 102, 346–363. [CrossRef]
11. Teng, W.; Ding, X.; Cheng, H.; Han, C.; Liu, Y.; Mu, H. Compound Faults Diagnosis and Analysis for a Wind Turbine Gearbox via

a Novel Vibration Model and Empirical Wavelet Transform. Renew. Energy 2019, 136, 393–402. [CrossRef]
12. Abouel-seoud, S.A. Fault Detection Enhancement in Wind Turbine Planetary Gearbox via Stationary Vibration Waveform Data. J.

Low Freq. Noise Vib. Act. Control 2018, 37, 477–494. [CrossRef]
13. Escaler, X.; Mebarki, T. Full-Scale Wind Turbine Vibration Signature Analysis. Machines 2018, 6, 63. [CrossRef]
14. Zimroz, R.; Bartelmus, W.; Barszcz, T.; Urbanek, J. Diagnostics of Bearings in Presence of Strong Operating Conditions Non-

Stationarity—A Procedure of Load-Dependent Features Processing with Application to Wind Turbine Bearings. Mech. Syst. Signal
Process. 2014, 46, 16–27. [CrossRef]

15. Tang, Z.; Wang, M.; Ouyang, T.; Che, F. A Wind Turbine Bearing Fault Diagnosis Method Based on Fused Depth Features in
Time–Frequency Domain. Energy Rep. 2022, 8, 12727–12739. [CrossRef]

16. Mengjiao, W.; Zhenhao, T.; Bo, Z.; Yunfeng, H. Wind Turbine Bearing Fault Diagnosis Method Based on Multi-Domain Feature
Extraction. In Proceedings of the 2022 4th International Conference on Power and Energy Technology (ICPET), Beijing, China,
27–30 July 2022; pp. 413–418.

17. Salameh, J.P.; Cauet, S.; Etien, E.; Sakout, A.; Rambault, L. Gearbox Condition Monitoring in Wind Turbines: A Review. Mech.
Syst. Signal Process. 2018, 111, 251–264. [CrossRef]

18. Barszcz, T. Vibration-Based Condition Monitoring of Wind Turbines; Applied Condition Monitoring; Springer International Publishing:
Cham, Switzerland, 2019; Volume 14, ISBN 978-3-030-05969-9.

http://doi.org/10.1002/we.204
http://doi.org/10.1002/we.421
http://doi.org/10.1177/0957650915597560
http://doi.org/10.1002/we.1887
http://doi.org/10.1016/j.renene.2016.03.025
http://doi.org/10.1016/j.renene.2015.06.041
http://doi.org/10.1109/TIM.2018.2828739
http://doi.org/10.1016/j.ymssp.2017.09.028
http://doi.org/10.1016/j.renene.2018.12.094
http://doi.org/10.1177/1461348417725950
http://doi.org/10.3390/machines6040063
http://doi.org/10.1016/j.ymssp.2013.09.010
http://doi.org/10.1016/j.egyr.2022.09.113
http://doi.org/10.1016/j.ymssp.2018.03.052


Energies 2023, 16, 1760 16 of 16

19. Koukoura, S.; Carroll, J.; McDonald, A.; Weiss, S. Comparison of Wind Turbine Gearbox Vibration Analysis Algorithms Based on
Feature Extraction and Classification. IET Renew. Power Gener. 2019, 13, 2549–2557. [CrossRef]

20. Li, Y.; Chen, P.; Wang, K.; Miao, Q. A Deep Convolutional Autoencoder for Wind Turbine Blades Health Condition Monitoring
Based on FBG Strain Gauges Measurement. In Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring,
APWSHM 2018, Hong Kong, China, 12–15 November 2018; pp. 973–981.

21. Yang, L.; Zhang, Z. A Conditional Convolutional Autoencoder-Based Method for Monitoring Wind Turbine Blade Breakages.
IEEE Trans. Ind. Inform. 2021, 17, 6390–6398. [CrossRef]

22. Li, Y.; Jiang, W.; Zhang, G.; Shu, L. Wind Turbine Fault Diagnosis Based on Transfer Learning and Convolutional Autoencoder
with Small-Scale Data. Renew. Energy 2021, 171, 103–115. [CrossRef]

23. Zaher, A.; McArthur, S.D.J.; Infield, D.G.; Patel, Y. Online Wind Turbine Fault Detection through Automated SCADA Data
Analysis. Wind Energy 2009, 12, 574–593. [CrossRef]

24. Schlechtingen, M.; Santos, I.F.; Achiche, S. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior
Models. Part 1: System Description. Appl. Soft Comput. 2013, 13, 259–270. [CrossRef]

25. Tautz-Weinert, J.; Watson, S.J. Using SCADA Data for Wind Turbine Condition Monitoring—A Review. IET Renew. Power Gener.
2017, 11, 382–394. [CrossRef]

26. Meyer, A.; Brodbeck, B. Data-Driven Performance Fault Detection in Commercial Wind Turbines. In Proceedings of the PHM
Society European Conference, Turin, Italy, 1–3 July 2020; Volume 5, p. 7.

27. Meyer, A. Multi-Target Normal Behaviour Models for Wind Farm Condition Monitoring. Appl. Energy 2021, 300, 117342.
[CrossRef]

28. Bilendo, F.; Meyer, A.; Badihi, H.; Lu, N.; Cambron, P.; Jiang, B. Applications and Modeling Techniques of Wind Turbine Power
Curve for Wind Farms—A Review. Energies 2023, 16, 180. [CrossRef]

29. Bourlard, H.; Kamp, Y. Auto-Association by Multilayer Perceptrons and Singular Value Decomposition. Biol. Cybern. 1988, 59,
291–294. [CrossRef] [PubMed]

30. Kramer, M.A. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE J. 1991, 37, 233–243.
[CrossRef]

31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning; The MIT Press: Cambridge,
MA, USA, 2016; ISBN 978-0-262-03561-3.

32. Ribeiro, M.; Lazzaretti, A.E.; Lopes, H.S. A Study of Deep Convolutional Auto-Encoders for Anomaly Detection in Videos. Pattern
Recognit. Lett. 2018, 105, 13–22. [CrossRef]

33. Duman, E.; Erdem, O.A. Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder. IEEE Access 2019, 7,
183914–183923. [CrossRef]

34. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

35. Meyer, A. Vibration Fault Diagnosis in Wind Turbines Based on Automated Feature Learning. Energies 2022, 15, 1514. [CrossRef]
36. Sheng, S. Wind Turbine Gearbox Condition Monitoring Round Robin Study-Vibration Analysis; National Renewable Energy Lab.

(NREL): Golden, CO, USA, 2012.
37. Musial, W.; McNiff, B. Wind Turbine Testing in the NREL Dynamometer Test Bed; National Renewable Energy Lab. (NREL): Golden,

CO, USA, 2000.
38. Allen, J. Short Term Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform. IEEE Trans. Acoust. Speech

Signal Process. 1977, 25, 235–238. [CrossRef]
39. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparame-

ter Optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.
40. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. ICLR. arXiv 2015, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1049/iet-rpg.2018.5313
http://doi.org/10.1109/TII.2020.3011441
http://doi.org/10.1016/j.renene.2021.01.143
http://doi.org/10.1002/we.319
http://doi.org/10.1016/j.asoc.2012.08.033
http://doi.org/10.1049/iet-rpg.2016.0248
http://doi.org/10.1016/j.apenergy.2021.117342
http://doi.org/10.3390/en16010180
http://doi.org/10.1007/BF00332918
http://www.ncbi.nlm.nih.gov/pubmed/3196773
http://doi.org/10.1002/aic.690370209
http://doi.org/10.1016/j.patrec.2017.07.016
http://doi.org/10.1109/ACCESS.2019.2960654
http://doi.org/10.3390/en15041514
http://doi.org/10.1109/TASSP.1977.1162950

	Introduction 
	Fault Detection Algorithms 
	Fault Detection Based on Autoencoder Reconstruction Losses 
	Fault Detection Based on Isolation Forests 

	Case Study 
	Commercially Operated wind Turbines 
	Test Rig Measurements 

	Results and Discussion 
	Conclusions 
	References

