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Abstract: With the proposed goal of “Carbon Neutrality”, photovoltaic energy is gradually gaining
the leading role in energy transformation. At present, crystalline silicon cells are still the mainstream
technology in the photovoltaic industry, but due to the similarity of defect characteristics and the
small scale of the defects, automatic defect detection of photovoltaic cells (PV) by electroluminescence
(EL) imaging is a challenging task. In order to better meet the growing demand for high-quality
photovoltaic cell products in intelligent manufacturing and use, and ensure the safe and efficient
operation of photovoltaic power stations, this paper proposes an improved abnormal detection
method based on Faster R-CNN for the surface defect EL imaging of photovoltaic cells, which
integrates a lightweight channel and spatial convolution attention module. It can analyze the crack
defects in complex scenes more efficiently. The clustering algorithm was used to obtain a more
targeted anchor frame for photovoltaic cells, which made the model converge faster and enhanced
the detection ability. The normalized distance between the prediction box and the target box is
minimized by considering the DIoU loss function for the overlapping area of the boundary box and
the distance between the center points. The experiment shows that the average accuracy of surface
defect detection for EL images of photovoltaic cells is improved by 14.87% compared with the original
algorithm, which significantly improves the accuracy of defect detection. The model can better detect
small target defects, meet the requirements of surface defect detection of photovoltaic cells, and
proves that it has good application prospects in the field of photovoltaic cell defect detection.

Keywords: photovoltaic cell; electroluminescence; defect detection; image recognition

1. Introduction

With the increasing contradiction between economic development and natural re-
sources, green development has become an important trend in global development and
is becoming more and more deeply integrated with all areas of human society, economy
and politics. With the global trend towards decarbonization, the photovoltaic industry is
developing rapidly and is becoming a key force in driving the global energy transition.
The quality of the photovoltaic cells has a direct impact on the power generation efficiency
and operation of the plant. Crystalline silicon is the main photovoltaic material due to the
nature of the crystalline silicon structure; photovoltaic cells are prone to defects such as
cracks, scratches and fingers during the production process. Moreover, as the temperature
rises rapidly, the photovoltaic panels will also be subjected to extreme high temperatures.
Moreover, continuous exposure to the sun and work will bring irreversible damage to the
PV panels, leading to a reduction in the output of the PV modules, seriously affecting the
power output of the PV plant and may even lead to a fire. PV operation and maintenance
are important to guarantee improvements in the efficiency of the plant, reduce the cost of
electricity and operate safely.

PV cell defect detection aims to predict the class and location of multiscale defects
in EL near-infrared images. As shown in Figure 1, the three most frequently occurring
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types of PV cell damage are cracks, fingers and black cores with complex background
interference. The areas of the images that show high brightness are areas of crystalline
silicon with high conversion efficiency, while the areas that show darker areas are defective
areas with inactive and non-luminous light. In addition to the defects, the images are
difficult to distinguish because of the color, and the dislocations and the four busbars also
appear as dark areas, which may sometimes overlap with the defects, making automatic
defect detection in the EL images of PV cells more difficult.
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based methods, which reflect the organizational structure and alignment characteristics 
of the image surface through the grey-scale distribution of pixels and their nearby spatial 
neighbors; the second, color feature-based methods, where color features are less compu-
tationally intensive, less dependent on factors such as the size, orientation and viewing 
angle of the image itself, and highly robust. Specific methods include color histograms [1], 
color coherence vectors [2], etc.; the third category, methods based on shape features, ef-
fectively use the targets of interest in the image for retrieval. However, the traditional 
methods have poor generalization and robustness. Wen et al. [3] proposed the use of elec-
tronic speckle interference (ESPI); that is, laser speckle is used as the carrier of the field 
change information of the measured object, and the phase change between the front and 
back of the double beam wave is detected by using the correlation fringes of the speckle 
field generated by the measured object after laser irradiation to identify cracks and defects 
in photovoltaic cells. By analyzing the continuity of the speckle pattern, the existence of 
crack defects is determined. Dhimish et al. [4] used discrete Fourier transform to conduct 
two-dimensional spectral analysis of binary images of EL images of solar cells, and ad-
justed the required Fourier transform component in the intermediate frequency domain 
by analyzing the geometric characteristics of the binary images, so as to improve the de-
tection ability of cracks in solar cells. 

In recent years, convolutional neural networks (CNN), a very powerful kind of deep 
neural network, have been a great success in image recognition and classification, natural 
language processing (NLP), etc., and are also widely used in industry [5–8]. The ad-
vantages are more obvious when the input to the network is an image, making it possible 
to use the image directly as the input to the network, avoiding the complex process of 
feature extraction and data reconstruction in traditional recognition algorithms, and hav-
ing great advantages in the processing of 2D images, such as the network being able to 
extract the features of the image including color, texture, shape and the topology of the 
image by itself, in the problem of processing 2D images, especially recognition. The net-
work has good robustness and computational efficiency in processing two-dimensional 
images, especially in the application of displacement, scaling and other forms of distortion 
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Traditional surface defect detection methods have played a huge role for some time.
Surface defect features are divided into three main categories: the first, texture feature-
based methods, which reflect the organizational structure and alignment characteristics
of the image surface through the grey-scale distribution of pixels and their nearby spatial
neighbors; the second, color feature-based methods, where color features are less computa-
tionally intensive, less dependent on factors such as the size, orientation and viewing angle
of the image itself, and highly robust. Specific methods include color histograms [1], color
coherence vectors [2], etc.; the third category, methods based on shape features, effectively
use the targets of interest in the image for retrieval. However, the traditional methods
have poor generalization and robustness. Wen et al. [3] proposed the use of electronic
speckle interference (ESPI); that is, laser speckle is used as the carrier of the field change
information of the measured object, and the phase change between the front and back of the
double beam wave is detected by using the correlation fringes of the speckle field generated
by the measured object after laser irradiation to identify cracks and defects in photovoltaic
cells. By analyzing the continuity of the speckle pattern, the existence of crack defects is
determined. Dhimish et al. [4] used discrete Fourier transform to conduct two-dimensional
spectral analysis of binary images of EL images of solar cells, and adjusted the required
Fourier transform component in the intermediate frequency domain by analyzing the
geometric characteristics of the binary images, so as to improve the detection ability of
cracks in solar cells.

In recent years, convolutional neural networks (CNN), a very powerful kind of deep
neural network, have been a great success in image recognition and classification, natural
language processing (NLP), etc., and are also widely used in industry [5–8]. The advantages
are more obvious when the input to the network is an image, making it possible to use
the image directly as the input to the network, avoiding the complex process of feature
extraction and data reconstruction in traditional recognition algorithms, and having great
advantages in the processing of 2D images, such as the network being able to extract the
features of the image including color, texture, shape and the topology of the image by
itself, in the problem of processing 2D images, especially recognition. The network has
good robustness and computational efficiency in processing two-dimensional images, espe-
cially in the application of displacement, scaling and other forms of distortion invariance.
Akram et al. [9] proposed a method of EL image defect recognition based on a lightweight
convolutional neural network structure, which greatly improved the recognition accuracy
on solar cell EL image data sets. HUSSAIN et al. [10] observed the similarity between the
original EL images and the filter output images obtained via gradient-guided filter tuning,
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introduced a mechanism for generating PV cell images based on EL modelling, termed filter
fused data scaling. As artificial intelligence and image recognition technologies continue
to evolve, deep learning-based object detection techniques are being used in a wide range
of industries. Object detection is the identification of objects of interest in an image, deter-
mining their class and location, and is one of the core problems in the field of computer
vision, with applications in video surveillance, virtual reality, human–computer interaction
and other fields. The target detection algorithm R-CNN [11] is a popular detection method
in the field of deep learning in recent years, which generates candidate regions of images
that may contain targets and then classifies the candidate regions using CNN with high
accuracy, but performs poorly in terms of speed. Fast R-CNN [12] solves the problem of a
large number of repeated calculations when R-CNN extracts features from all regions, and
introduces ROI Pooling. However, Fast R-CNN uses selective search to select candidate
regions, which involves a large number of calculations. The Faster R-CNN [13] algorithm
has currently the highest detection accuracy and fastest target detection in the R-CNN
family algorithm. A region proposal network (RPN) is proposed, in which an image is
input and a set of rectangular object suggestion boxes are output. Each box has a typical
full convolutional network with objectiveness score. Compared with the selective search
method in R-CNN, the generation time of RPN is reduced by 200 times.

The main contributions of this paper include three aspects:

1. Integrating the convolutional block attention module (CBAM) into Faster R-CNN
to modify the feature extraction part to assign greater weights to the features of
photovoltaic cell defects, so that the network can better distinguish the target and
background of crack defects in the image;

2. The K-means clustering algorithm was used to train targeted anchors to cluster the
width and height dimensions of the anchors for the three labeled defect boxes to
be detected in the photovoltaic cell surface defect dataset, which made it easier
for the detection network to learn accurate defect detection anchors, to improve
detection accuracy;

3. The traditional smoothL1 loss function was replaced by the calculation method of the
DIoU loss function, and the normalized distance between the candidate frame and
the target frame was directly minimized to achieve a faster convergence speed, so that
the regression could overlap with the target frame for even more accuracy and speed
when included.

The remainder of this paper is organized as follows. Section 2 reviews and introduces
the Faster R-CNN, the convolutional block attention mechanism, the clustering algorithm
K-means, and the DIoU loss function. Section 3 describes in detail the design of adding the
above three methods to the original Faster R-CNN model. Section 4 conducts experiments
to validate the methods in this paper. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Introduction to Faster R-CNN

The task of object detection is to find objects of interest in an image or video and
simultaneously determine their location and size. Target detection not only solves the clas-
sification problem, but also solves the positioning problem, which is a multitask problem.
The target detection algorithm based on deep learning has been developed in two technical
ways: two stage and one stage. The two-stage target detector based on the candidate region
first focuses on finding the location of the target object, and obtains the proposed frame to
ensure sufficient accuracy and recall. It then focuses on classifying the proposed frames
to find more precise locations. Common two-stage target detection algorithms include
R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN [14], which are characterized by
high accuracy but lower speed. One stage directly predicts the coordinates of the prediction
box, the confidence level of the object contained in the prediction box, and the probability of
the object category from the whole image. Common one-stage target detection algorithms
include SSD [15] and the YOLO series [16–19], which are characterized by high speed but
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lower accuracy. Since battery anomaly detection pays more attention to detection accuracy,
this paper improves it based on Faster R-CNN.

Faster R-CNN consists of three parts: feature extraction network, candidate region
generation network, classification and location adjustment. The basic structure of Faster
R-CNN is shown in Figure 2. First, the feature extraction network. Faster C-NN, as a
CNN network target detection method, first uses a convolutional neural network (such
as ResNet [20], etc.) to extract image features. This feature map is shared for subsequent
RPN layers and full connection layers. Second, the regional suggestion network. The RPN
network is used to generate candidate regions. This layer determines whether the anchor
belongs to the foreground or background, and then uses the bounding box regression to
correct the anchor to obtain the accurate prediction box. Third, region of interest pooling
(ROI pooling). ROI pooling is used to convert features of the region of interest of different
sizes into the same feature map output to ensure the same size of feature map after flattening.
Fourth, classification. The feature map is used to calculate the categories of the prediction
box, and the final accurate position of the prediction box is obtained by using the bounding
box regression again.
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2.2. Convolutional Block Attention Mechanism

In addition to these factors, researchers have also looked at another aspect of net-
work design—attention. When using a convolutional neural network to process images,
researchers would prefer the convolutional neural network to pay attention to what should
be paid attention to, rather than to all information. In reality, it is impossible to manually
adjust the places that need attention. At this time, how to make the convolutional neural
network adaptively pay attention to important objects becomes extremely important. The
attention mechanism is a way to realize the adaptive attention of the network. The convolu-
tional block attention module (CBAM) is a lightweight attention module proposed by Woo
et al. [21] which combines channel and spatial attention mechanism modules, as shown in
Figure 3. CBAM includes two submodules, the channel attention module (CAM) and the
spatial attention module (SAM), which perform channel and spatial attention, respectively.
The CBAM module includes four parts: input, CAM, SAM and output. The first is the
input feature F ∈ RC×H×W , then the CAM one-dimensional convolution MC ∈ RC×1×1

is performed, the convolution result is multiplied by the original image, and the CAM
output result is used as the input of the SAM, and then the two-dimensional convolu-
tion of SAM, MS ∈ R1×H×W , is performed, and the output is multiplied by the original
map, and then the output result is multiplied by the original image in a process such as
Equations (1) and (2). Li et al. [22] optimized the model on the basis of YOLOv5, which
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included the use of CBAM to add attention mechanisms to the network layer. The model
has a general feasibility value for target recognition of global storage tanks.

F′ = MC(F)⊗ F (1)

F′′ = MS
(

F′
)
⊗ F′ (2)
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In these, F represents the input of the feature map (C× H ×W), MC is the one-
dimensional (C× 1× 1) channel attention map, MS is the two-dimensional 1× H ×W
channel attention map, ⊗ represents the multiplication operation, F′ represents the inter-
mediate output (C× H ×W), and F′′ represents the final output (C× H ×W).

2.3. Clustering Algorithm K-Means

The purpose of the K-means algorithm is to divide the set into several categories,
so that objects belonging to different classes are as different as possible, while objects
belonging to the same class are as similar as possible. The principle of this algorithm is
simple and easy to implement; the clustering effect is better, the convergence speed is fast
and there is no need for too much human intervention, and the interpretation is strong. The
Euclidean distance is usually used as an index to measure the similarity between samples.

k in K-means means that the clusters are clustered into k clusters, and means signifies
that the mean of the data in each cluster is taken as the center of the cluster, or called the
centroid; that is, the centroid of each class is used to describe the cluster. The clustering
process of the K-means clustering algorithm can be regarded as the process of continuously
finding the centroids of the clusters. This process starts from randomly setting k centroids
until k real centroids are found. Li et al. [23] used k-means on the basis of the Faster R-CNN
model to improve the cluster analysis of the eel head detection frames annotated in the
training set to achieve accurate counting of circulating water farmed eels.

2.4. Loss Function

In existing object detection methods, researchers usually use the L1− norm loss func-
tion for bounding box regression. However, the intersection over union (IoU) method is
adopted when evaluating the detection performance, so it is more reasonable and effective
to use IoU as the loss function of regression. The IoU loss function [24] and the Generalized-
IoU (GIoU) loss function [25] have problems of slow convergence and inaccurate regression.
The IoU loss is the difference of intersection ratio between prediction box and the target
box, expressed as Equation (3). The GIoU loss function adds a penalty term on the basis of
IoU loss and is expressed as Equation (4). Distance–IoU (DIoU) loss function is found [26]
by combining the normalized distance between the prediction box and the target box; the
DIoU loss can provide the moving direction for the prediction box without overlapping
with the target box, and the IoU loss in the case of non-overlapping target boxes, the
DIoU loss has a large error in both horizontal and vertical cases, DIoU loss has very small
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regression error in all cases, and DIoU loss converges faster in training than IoU and GIoU
which lose much more.

LIoU = 1−

∣∣∣B ∩ Bgroudtruth
∣∣∣∣∣B ∪ Bgroudtruth
∣∣ (3)

LGIoU = 1− IoU +

∣∣∣C− B ∪ Bgroudtruth
∣∣∣

|C| (4)

For the photovoltaic cell defect dataset in this paper, a DIoU loss function was in-
troduced to regularize the distance between the prediction frame and the target frame,
as shown in Equation (11). Liu et al. [27] proposed an improved EfficientDet-based mil-
itary gesture detection algorithm for the military gesture-detection algorithm, and used
DIoU-NMS to remove redundant prediction frames to obtain the final prediction result. Ex-
periments showed that the proposed algorithm had higher prediction accuracy. Li et al. [28]
proposed an improved real-time target detection algorithm suitable for insulator dropout
fault detection. Based on the YOLOv5s detection network, the DIoU loss function was used
to optimize the loss function, and the improved algorithm improved the average accuracy.

3. Research Method

In this section, the feature extraction network incorporating CBAM is first introduced,
making the detection network more capable of detecting. Then, the anchor frame parame-
ters obtained by K-means clustering are introduced, making the generated frames more
in line with the PV cell defect class proportions. Finally, the calculation method of the
DIoU loss function is introduced to make the regression more accurate and faster when it
overlaps with the target frame or even contains it.

3.1. Introduction of Feature Extraction Network with CBAM Structure

In order to overcome the problem of unreasonable weight distribution when the
original Faster-R-CNN extracts the crack defect features of photovoltaic cells, this paper
proposes to introduce the CBAM attention mechanism to optimize the feature extraction
network to suppress the features of complex background and grain pseudo-defects. The
network structure is shown in Figure 4. In Figure 4, the feature extraction network uses
Resnet50 as the basic network, and the photovoltaic cell crack defect image I ∈ RH×W is
reconstructed and then input into the feature extraction network for feature extraction.
After a 3× 3 volume, the feature map F ∈ RH×W×C is obtained after product and pooling
operation with stride 2. The CAM and SAM are added to the last structural block of the
feature extraction network, which are combined in parallel and performed sequentially.
After the feature map with the final attention weight is obtained, it is sent to the RPN
network to generate anchor boxes.
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The channel attention module is channel-dimension invariant and compresses the
spatial dimension, as in Figure 5. This module focuses on the meaningful information in the
input image. CAM takes the input feature map through two parallel MaxPool and AvgPool
layers, changing the feature map from C × H ×W to a size of C × 1× 1, and then goes
through the share MLP module, in which the number of channels is first compressed to 1/r
times the original number of channels, then expanded to the original number of channels,
after the ReLU activation function to obtain two postactivation results. The two output
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results are summed element-by-element, and then the output result of channel attention
is obtained by a sigmoid activation function. This output result is then multiplied with
the original graph to change back to the size of C × H ×W, as in Equation (5), where F
denotes the input of the feature graph (C× H ×W), MC is a one-dimensional (C× 1× 1)
channel attention graph, MLP is the multilayer perceptron, AvgPool( ) is the average
pooling operation, MaxPool( ) is the maximum pooling operation, and σ is the sigmoid
activation function.

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
FC

avg

))
+ W1

(
W0

(
FC

max
))) (5)
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The spatial attention module is spatial-dimension invariant and compresses the chan-
nel dimension, as shown in Figure 6. This module focuses on the location information of
the target. SAM takes the output of channel attention and obtains two 1× H ×W feature
maps by maximum pooling and average pooling, then splices the two feature maps by
concat operation, turns them into one-channel feature maps by 7× 7 convolution, and
then obtains the spatial attention’s feature map, and finally the output result is multiplied
with the original map to change back to the size of C× H ×W as in Equation (6), where F
denotes the input of the feature map (C× H ×W), MS is the two-dimensional 1× H ×W
channel attention map, MLP is the multilayer perceptron, AvgPool( ) is the average pooling
operation, MaxPool( ) is the maximum pooling operation, σ is the sigmoid activation
function, f 7×7 is the convolution operation with a convolution kernel size of 7× 7, and [;]
is the splicing operation of channel dimensions.

MS(F) = σ
(

f 7×7([AvgPool(F)]; MaxPool(F))
)
= σ

(
f 7×7

(
Fs

avg; Fs
max

))
(6)

Energies 2023, 16, 1619 8 of 15 
 

 

 
Figure 6. Spatial attention module. 

3.2. Anchor Box Scheme Generation Based on K-Means Clustering Algorithm 
Clustering the width and height of the labeled boxes in the photovoltaic cell defect 

data set, and setting the obtained cluster center as the initial anchor box scheme, so that 
the generated parameter scheme is more representative for the photovoltaic electromag-
netic surface defects to be detected, thereby improving the detection accuracy. The pseu-
docode of the clustering algorithm is shown as Algorithm 1. 

Algorithm 1: Anchor frame clustering algorithm 
1:    Input: Set of target box sizes 𝐷 = (𝑥 , 𝑦 ), ⋯ , (𝑥 , 𝑦 ), number of clusters 𝑘 
2:    Output: mean vector 𝑐 , 𝑐 , ⋯ , 𝑐  as anchor size 
3:    Randomly select 𝑘 target box sizes as the initial mean vector 𝑐 , 𝑐 , ⋯ , 𝑐  
4:    repeat 
5:        let 𝐷 =  ∅ (𝑖 = 0, 1, ⋯ , 𝑘 − 1) 
6:     for i = 0, 1, ⋯ , 𝑚 − 1 do  
7:       for j = 0, 1, ⋯ , 𝑘 − 1 do  
8:          loss ← 1 − 𝐼𝑂𝑈(𝑐 , (𝑥 , 𝑦 )) 
9:         if (loss < min_loss) then  
10:           record ← j 
11:           min_loss ← loss 
12:       put (𝑥 , 𝑦 ) into 𝐷   
13:     for i = 0, 1, ⋯ , 𝑚 − 1 do 
14:       calculate a new mean vector 𝑐 ←  ( ) ∑ 𝑑  ( ) (𝑑 ∈ 𝐷 ) 

15:    until none of the current mean vectors are updated 

The number of clusters in the original anchor frame parameter scheme is five scales 
and three ratios, so the number of clusters 𝑘 = 15, the clustering algorithm assigns each 
sample to the nearest class center according to the aspect ratio, and according to the con-
vergence The result adjusts the class centers, repeating until the number of iterations is 
reached. According to K-means clustering, the coordinates of the 15 anchors and the as-
pect ratio of photovoltaic cell sheet defects are shown in Figure 7. In this paper, the scale 
of the anchor box generated by FPN is re-customized from the original {322, 642, 1282, 2562, 
5122} to {102, 302, 602, 1002, 8002}. For too large anchor aspect ratios, such as 1:2, etc., add 1:3 
and 3:1 anchor aspect ratios, and finally the three aspect ratios of the anchors are {1:3, 1:1, 
3:1}, combined with 5 scales, a total of 15 anchors were customized. The anchors custom-
ized by the K-means clustering algorithm are more reasonable for the photovoltaic cell 
surface defect data set, which can make the defect detection network converge faster and 
enable the model to obtain better detection performance. 

Figure 6. Spatial attention module.



Energies 2023, 16, 1619 8 of 15

3.2. Anchor Box Scheme Generation Based on K-Means Clustering Algorithm

Clustering the width and height of the labeled boxes in the photovoltaic cell defect
data set, and setting the obtained cluster center as the initial anchor box scheme, so that the
generated parameter scheme is more representative for the photovoltaic electromagnetic
surface defects to be detected, thereby improving the detection accuracy. The pseudocode
of the clustering algorithm is shown as Algorithm 1.

Algorithm 1: Anchor frame clustering algorithm

1: Input: Set of target box sizes D = (x1, y1), · · · , (xm, ym), number of clusters k
2: Output: mean vector c1, c2, · · · , ck as anchor size
3: Randomly select k target box sizes as the initial mean vector c1, c2, · · · , ck
4: repeat
5: let Di = ∅ (i = 0, 1, · · · , k− 1)
6: for i = 0, 1, · · · , m− 1 do
7: for j = 0, 1, · · · , k− 1 do

8: loss← 1− IOU
(

cj, (xi, yi)
)

9: if (loss < min_loss) then
10: record← j
11: min_loss← loss
12: put (xi, yi) into Drecord
13: for i = 0, 1, · · · , m− 1 do

14: calculate a new mean vector ci ← 1
length(Dm)

length(Dm)−1
∑

i=0
di (di ∈ Dm)

15: until none of the current mean vectors are updated

The number of clusters in the original anchor frame parameter scheme is five scales
and three ratios, so the number of clusters k = 15, the clustering algorithm assigns each
sample to the nearest class center according to the aspect ratio, and according to the
convergence The result adjusts the class centers, repeating until the number of iterations is
reached. According to K-means clustering, the coordinates of the 15 anchors and the aspect
ratio of photovoltaic cell sheet defects are shown in Figure 7. In this paper, the scale of the
anchor box generated by FPN is re-customized from the original {322, 642, 1282, 2562, 5122}
to {102, 302, 602, 1002, 8002}. For too large anchor aspect ratios, such as 1:2, etc., add 1:3 and
3:1 anchor aspect ratios, and finally the three aspect ratios of the anchors are {1:3, 1:1, 3:1},
combined with 5 scales, a total of 15 anchors were customized. The anchors customized
by the K-means clustering algorithm are more reasonable for the photovoltaic cell surface
defect data set, which can make the defect detection network converge faster and enable
the model to obtain better detection performance.
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3.3. Loss Function Optimization

The original border regression loss function is replaced by the smoothL1 loss function
with the DIoU loss function. The DIoU loss function is determined by three parts, namely
the IoU, the distance of the center point and the diagonal length of the closure area.

Both the prediction frame and the target frame are represented by four coordinates
(x1, y1, x2, y2), which are the horizontal and vertical coordinates of the upper left point
and the horizontal and vertical coordinates of the lower right point. The algorithm is
implemented as follows:

1. Obtain the maximum value of x, y at the upper left point and the minimum value
of x, y at the lower right point of the prediction frame and the target frame, find the
difference and obtain the two sides of the intersection area, respectively, multiply
them together and obtain the intersection value of the prediction frame and the target
frame, as shown in Figure 8a;

2. The area of the prediction frame and the target frame are summed and subtracted
from the intersection value to the merged value of the prediction frame and the
target frame;

3. The IoU can be obtained from the intersection and merge values;
4. The square of the Euclidean distance between the two centroids is obtained by finding

the centroid coordinates of the prediction frame and the target frame from their
respective coordinates;

5. The minimum value of x, y at the upper left point and the maximum value of x, y at
the lower right point of the prediction frame and the target frame are obtained, the
difference is found to obtain the two sides of the closed region, and the square of the
diagonal distance of the closed region is obtained, as shown in Figure 8b;

6. The DIoU loss value is obtained by Equations (7) and (8).
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DIoU = IoU −
ρ2(b, bgt

)
c2 (7)

LossDIoU = 1− DIoU (8)

where ρ is the Euclidean distance between the two centroids and c is the diagonal length of
the closed region.

The pseudocode for DIoU loss function is shown in Algorithm 2.
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Algorithm 2: DIoU loss function forward

1: Input: predicted box B1 coordinate (a1, b1, c1, d1), ground truth B2 coordinate
(a2, b2, c2, d2)

2: Output: DIoU loss
3: area predicted ← (c1 − a1)× (d1 − b1)
4: area_gt ← (c2 − a2)× (d2 − b2)

5: center_predicted_x ← (c1−a1)
2

6: center_predicted_y ← (d1−b1)
2

7: center_gt_x ← (c2−a2)
2

8: center_gt_y ← (d2−b2)
2

9: p ← (center_gt_x− center_predicted_x)2 + (center_gt_y− center_predicted_y)2

10: width_c ← max(c1, c2)−min(a1, a2)
11: height_c ← max(d1, d2)−min(b2, b2)
12: c ← width_c2 + height_c2

13: DIoU ← IoU(B1, B2)−
p
c

14: return 1−DIoU

4. Experiments
4.1. Experimental Data and Experimental Setup

This paper uses the PVEL-AD dataset, also called the EL2021 dataset, jointly published
by Hebei University of Technology and Beijing University of Aeronautics and Astronau-
tics [29]. The PVEL-AD dataset has near-infrared images of various internal defects and
heterogeneous backgrounds, including 1 type of defect-free image and 12 different types of
abnormal defects, such as crack (line and star), finger interruption, black core, misalign-
ment, thick line, scratch, fragment, corner, printing error, horizontal dislocation, vertical
dislocation and short circuit defects, as shown in Figure 9. Of these, crack (line and star),
finger interruption and black core are the most common defects, with other types of de-
fects rarely occurring, which would result in an unbalanced dataset distribution if all
classifications were used. In order to obtain a well-trained deep learning model using a
balanced dataset distribution, EL defect images and defect-free images with a resolution
of 1024 × 1024 containing the above three common defects were selected in the PVEL-AD
dataset to evaluate the three proposed applications and detection results. The annotation
tool (LabelImg) was used to mark the different EL defect image data sets, and the defect
was closely surrounded by a rectangular box that would reflect the specific location and
category of the defect. Table 1 shows the dataset configuration.

Table 1. Dataset configuration.

Category Training Set Test Set

Crack 884 376
Finger 2105 853

Black Core 688 340

The experiments were conducted on a workstation with an Intel Xeon (Skylake)
Platinum 8163 CPU and 2*NVIDIA Tesla V100S 32G. The model used COCO pre-trained
model to initialize ResNet50 to speed up the convergence of the network. The initial
learning rate was set to 0.01, the network batch size was set to 4, and the maximum number
of iterations was 30, which ensured a complete cycle of the photovoltaic cell EL training
data. The RPN network training batch size was set to 256. Other detailed parameters are
shown in Table 2.
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Table 2. Parameter details.

Parameter Choice

Image size 1024 × 1024
Learning rate 0.01

Network batch size 4
Momentum 0.9

RPN batch size 256
Max iteration 30

ROI foreground threshold (0.5, 1)
ROI background threshold (0, 0.5)

Image size 1024 × 1024

4.2. Ablation Experiments

To clarify the performance impact of each module in the PV cell surface defect detection
model and to verify the effectiveness of each module structure, ablation experiments were
designed and trained using a mixed data set, and the test results are shown in Figure 10.
The final improved Faster R-CNN network did not improve significantly in the recognition
of black cores compared to the original network, because the defect features of black cores
were so obvious and simple that even the original network could achieve better detection
results. On the other hand, the average accuracy in the two small defect categories of cracks
and broken grids improved significantly, which shows that the improved algorithm is more
accurate than the original network in locating small and medium-sized defects, and has
better results in identifying defects in all three categories.

In order to demonstrate the performance of the algorithms proposed in this paper and
to investigate the effectiveness of each of the improvements, the models were trained and
tested on the PV cell surface defect dataset using the above improvements, using the same
hyperparameters and training techniques for each set of experiments. The experimental
results are shown in Table 3, where

√
indicates that the module was introduced.
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Table 3. Results of experiments with different improvement methods.

Group Faster
R-CNN

Pre-Training
Weights CBAM Anchor
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Loss

Function mAP (%) Crack Finger Black Core

1
√

72.27% 36.80% 82.60% 97.43%
2

√ √
78.14% 45.67% 89.95% 98.80%

3
√ √ √

83.10% 55.66% 94.54% 99.10%
4

√ √ √ √
86.53% 61.93% 98.11% 99.54%

5
√ √ √ √ √

87.14% 62.63% 98.81% 99.98%

As can be seen in Table 3, the mAP of the original Faster R-CNN was 72.27%, and the
mAP of the model after using pre-training weights was 78.14%, which is 5.87 percentage
points higher than the original model, indicating that the use of pre-training weights can
speed up the convergence of the network. On the basis of using pre-training weights, the
feature extraction network integrated into CBAM made the mAP of the model 83.10%,
which is 10.83% higher than the original model and 4.96% higher than that of the second
set of experiments, indicating that the strategy combined with CBAM is effective. On the
basis of using pre-training weights and incorporating CBAM, the mAP of the model after
using the improved anchor box generation parameters was 86.53%, which is 14.26% higher
than the original model and 3.43% higher than the third group of experiments. It shows
that the anchor frame generation parameters proposed in this paper are more suitable
for the scale of the defect target than the original anchor point generation parameters,
and the positioning is more accurate, which can effectively reduce the situation of missed
detection and false detection, and improve the accuracy of the model. After introducing
the DIoU loss function, the mAP of the model was 87.14%, which is 14.87% higher than
the original model and 0.61% higher than that of the third set of experiments, indicating
that the replacement of the loss function improves the detection accuracy slightly. In
general, each improvement method proposed in this paper effectively improved the model
accuracy. After accumulating each improvement method, the model accuracy was gradually
improved, and the model obtained better results, indicating that the improved network
is less effective for photovoltaic cells. The defect detection capability was significantly
improved, and the defect detection effect of photovoltaic cells was better.

As shown in Figure 11, the AP values of various types of defects on the test set
under different improvement methods can be seen, each improvement method improved
the detection accuracy of each defect category, especially the detection accuracy of small
defect target categories, significantly. For example, the original Faster R-CNN model
had a poor detection effect on the small defect category such as cracks, which was only
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36.80%. After adding the improved method in this paper, the final detection accuracy of
the algorithm in this paper for this category was 62.63%, which is higher than the original
model, respectively, increased by 25.83%. In contrast, for the black core with a large defect
area and obvious color contrast, the original model already had high detection accuracy,
and the detection accuracy of the improved model can only be slightly improved. The
experimental results showed that the improved method in this paper had a certain effect
on the detection of small target defects, and could effectively reduce the missed detection
rate and false detection rate of defects.
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4.3. Comparison of Different Target Detection Algorithms

In order to verify the performance of the improved method in this paper on the
detection of photovoltaic cell surface defects, the algorithm in this paper was compared
with the other five models. The experimental results are shown in Table 4. AP and mAP
were used as evaluation indexes. In the training process, the IoU greater than or equal to
0.5 is a positive sample, and the IOU less than 0.5 is a negative sample. As can be seen from
Table 4, the AP value of this algorithm for cracks, fingers and black core was better than
that of YOLOv5 model and the original Faster R-CNN, especially for cracks and fingers.
This is because the algorithm in this paper fully considers the characteristics of targets in
the defect data set of photovoltaic cells, and makes targeted improvements for targets with
small defects in the data set. At the same time, the mAP value of the algorithm in this paper
was 87.14%, which was better than the other five models and meets the requirements of
higher detection accuracy for the surface defects of photovoltaic cells.

Table 4. Comparison of different algorithms.

Group mAP (%) Crack Finger Black Core

SSD [15] 78.00% / / /
YOLO v5 68.92% 33.41% 76.41% 96.96%

Faster R-CNN [13] 72.27% 36.80% 82.60% 97.43%
RCA-Faster R-CNN [30] 83.29% / / /

RetinaNet [31] 84.53% / / /
Our method 87.14% 62.63% 98.81% 99.98%

5. Conclusions

Aiming at the characteristics of small defects in electroluminescence images of pho-
tovoltaic cells, the low detection accuracy and poor generalization ability of the general
models in practical production in various fields, this paper proposes an improved pho-
tovoltaic cell based on Faster R-CNN network. The abnormal defect detection method
optimizes the feature extraction network by introducing CBAM to suppress the features of
complex background and grain pseudo-defects; at the same time, the K-means clustering
algorithm is used to train targeted anchors, so that the generated anchor frame can be better
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fitted to the defect target detected in this paper, thereby reducing the probability of missed
detection and false detection of small defects, and improving the detection accuracy of
the model. Finally, the DIoU loss function was used to directly minimize the normalized
distance between the anchor boxes and the target box, which speeded up the convergence
and made the target box more accurate. The experimental results show that the defect
detection algorithm proposed in this paper has a remarkable adaptability to defects of
various shapes and small cracks, reduces the probability of missed detection of small target
cracks, and improves the detection performance of the entire model. Specifically, the model
improved the overall accuracy of PV cell-defect detection by 14.87%. There was also a
significant improvement in the detection of small defects, for example, 25.83% for crack
defects and 16.21% for finger defects. A small improvement over good detection results
was also achieved for obvious defects, for example, a 2.55% improvement for black core
defects. It has a good application prospects in the field of photovoltaic cell defect detection.
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