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Abstract: In a wide range of applications, heating or cooling systems provide not only tempera-
ture changes, but also small temperature gradients in a sample or industrial facility. Although a
conventional proportional-integral-derivative (PID) controller usually solves the problem, it is not
optimal because it does not use information about the main sources of change—the current power
of the heater or cooler. The quality of control can be significantly improved by including a model
of thermal processes in the control algorithm. Although the temperature distribution in the device
can be calculated from a full-fledged 3D model based on partial differential equations, this approach
has at least two drawbacks: the presence of many difficult-to-determine parameters and excessive
complexity for control tasks. The development of a simplified mathematical model, free from these
shortcomings, makes it possible to significantly improve the quality of control. The development of
such a model using generative design techniques is considered as an example for a precision adiabatic
calorimeter designed to measure the specific heat capacity of solids. The proposed approach, which
preserves the physical meaning of the equations, allows for not only significantly improving the
consistency between the calculation and experimental data, but also improving the understanding of
real processes in the installation.

Keywords: precision calorimeter; generative design; process model

1. Introduction

Maintaining a predetermined temperature profile in a sample or process object under
study is a very common control task. Thermophysical measurements [1–3], in which
multiple heaters provide heating with zero temperature gradients throughout the sample,
would be a good example. A simple proportional-integral-derivative (PID) controller [4] is
not optimal since it does not use information about the main source of changes—the current
power of the heaters. The control quality can be significantly improved using a thermal
process model in the control algorithm. Although the temperature distribution during
heating can be described in a detailed three-dimensional model with partial differential
equations considering different mechanisms of heat transfer, this approach has at least
two drawbacks: the presence of many difficult-to-determine parameters and excessive
complexity for control tasks. The development of a simplified mathematical model, free
from these shortcomings, allows one not only to achieve a significant improvement in the
quality of control but also to identify problem areas in the design. From the point of view
of control, the simplest model that provides the necessary accuracy of the description will
be optimal.

In trying to build an optimal model by reducing the detail, one faces several obsta-
cles that are difficult to overcome. In addition to the already mentioned problems with
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determining the parameters of structural elements and heat transfer between them, the real
installation almost always differs from the ideas about it embedded in the detailed model.
Improving this model requires a large amount of experimental data. The reduction process
requires special algorithms to obtain an optimal result, for example, when replacing partial
differential equations with ordinary ones. Not relying on a detailed development of the
optimal model requires a preliminary numerical assessment of the influence of certain
processes on the behavior of the system and the final fine-tuning according to experimental
data. As a result, not only the coefficients, but also the equations themselves may change
since the influence of individual processes in a real installation may not coincide with our
estimates. Creating an optimal model and even automating this process allows the ap-
proach known as generative design. The designer formulates the task as a set of conditions
or constraints, and the computer offers options for solving the task during an iterative
process in which the designer clarifies the formulation of the task, achieving the optimal
result. The technology is used to create objects of varied nature but has become most
widespread in computer-aided design systems as a means of creating optimal mechanical
structures [5]. When creating a mathematical model, the method of generative design
consists of the formulation of equations that describe the simulated process by selecting
the terms included in them. Methods of such selection for partial differential equations and
the evaluation criteria are described in [6–8].

The purpose of this work was to demonstrate the application of the generative design
method for constructing a model of an adiabatic calorimeter. In the proposed approach, the
model is built by “growing” from the original, simple one by successively complicating
the equations and refining the coefficients. The fine-tuning of the model is performed
while preserving the physical meaning of the heat balance equations. As well as methods
for partial differential equations [9,10] and nonlinear dynamics [11–14], the method is
data-driven—it is built based on experimental data and considers only those processes that
play a significant role in the behavior of the system.

2. Model Building

Consider constructing such a model using the example of a precision adiabatic
calorimeter [3] designed to measure the specific heat capacity of solids in a wide tem-
perature range. The principle of operation of such a device is to measure the temperature
increase when a precisely dosed amount of heat is supplied to the cell containing the test
sample. The adiabaticity of the process is ensured by a system of active adiabatic shells, the
temperature of which is maintained equal to the cell temperature by an automatic control
system. A simplified diagram of the calorimeter is shown in Figure 1.

A detailed description of the design of the calorimeter and the equipment used is
given in [15]. It also discusses the simplest models used to construct the control system.
The measured parameters in the adiabatic calorimeter are the temperatures of the cell,
adiabatic shells and protective cap. Appropriate heaters are heat sources. Temperatures
are measured by platinum thermometers with individual calibration; the cell is heated
by a precision digital power supply. Since the cell and adiabatic shells are made of silver
and have high thermal conductivity, in real operation modes, it is possible to neglect the
temperature gradients inside them (at least in initial approximations) and consider them
isothermal. Considering the nesting of structural elements into each other, heat transfer
occurs only between neighboring elements, and in the zero approximation, the system
matrix has a simple tridiagonal form:

C0
dT0
dt = a01(T1 − T0) + P0;

C1
dT1
dt = a01(T0 − T1) + a12(T2 − T1) + P1;

C2
dT2
dt = a12(T1 − T2) + a23(T3 − T2) + P2;

C3
dT3
dt = a23(T2 − T3) + a34(T4 − T3) + P3.

 (1)
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where Ci is the total heat capacity of the ith structural element; aij–heat transfer coefficients;
Pi is the ith heater power; and indices 0–4 refer to the cell, inner and outer adiabatic shells,
protective cap, and environment, respectively.
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Figure 1. A simplified diagram of the precision adiabatic calorimeter. Test sample (1) is placed in the
silver cell (2) with cell heater (2′); an inner adiabatic shell (3) with a heater (3′) and an outer adiabatic
shell (4) with a heater (4′) provide adiabatic conditions; a protective cap (5) with a heater (5′) isolates
the system from the environment.

Recall simple facts about the benefits of using the object model in the control process.
Suppose, for simplicity, that in the adiabatic calorimeter, the temperatures of the shells
should be equal to the cell temperature (due to the presence of heat inflows in a real
installation, these temperatures must be slightly different). In the case of a conventional
PID controller based on the error value e(t) process variable (in our case, internal shell
heater power P1), e(t) is calculated as

e(t) = T1 − T0; P1 = Kpe(t) + Ki

t∫
0

e(t)dt + Kd
de(t)

dt
(2)

The PID controller of the inner shell heater does not know anything about the operation
of the other heaters, and when the cell heater is turned on,

P0(t) = P0 · 1(t) =
{

0, t ≤ 0
P0, t > 0

(3)

there is an inevitable delay in raising the shell temperature (Figure 2).
On the other hand, substituting the condition of equality of temperatures T0 = T1 = T2

into system (1), we find that this condition is met with

P̃1 =
C1

C0
P0 (4)
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Value (4) may not be used directly for the control due to the difference between model
(1) and the real device but may be used as an additional feed-forward term on the right
side of Equation (2) to reduce the delay and improve the operation of the PID controller.
The closer the model is to the real device, the better the control result.
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Figure 2. Cell and internal adiabatic shell temperatures (◦C) vs. time (s) at P0·1(t) cell heater power
and common PID controller for internal shell heater.

To create an optimal model and determine unknown coefficients, test measurements
were carried out with voltage applied to each of the heaters separately, Pi = Pi0·1(t). In
addition, the data obtained during real measurements were used. It should be noted that the
calorimeter operates in two modes: fast, reaching the set temperature, and adiabatic heating
with smooth supply and removal of power and equality of cell and shell temperatures
(Figure 3).
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Figure 3. Cell and internal shell temperatures (a) and heater power (b) during real measurement.
Both modes of operation were used—heating to about 500 ◦C (t < 10,000 s), and adiabatic mode for
specific heat measurement (t > 10,000 s).

3. Generating Optimized Model
3.1. Starting Point

To grow an optimized model, the system (1) is used as a “seed”. To simplify the
explanation and reduce the size of the article, consider only the first equation of this system.

C0
dT0

dt
= a01(T1 − T0) + P0 (5)

Coefficients C0 and a01 are calculated from known temperatures T0, T1, and power P0
by using the “least squares” method for the best match between the left and right sides of
Equation (5). In other words, minimizing the square of the residual,

δP = P0 + a01(T1 − T0)− C0
dT0

dt
,

∫
(δP)2 → min (6)

where both the derivative and the integral are calculated numerically. A reduced set of
only three measurements (Figure 4) is used here as an example.

In addition to the values of the coefficients, their standard deviations (SD) were also
calculated and used as an error estimation (Table 1).

Table 1. Calculated coefficients of Equation (5) and their standard deviations.

a01 C0

−0.10711 271.87

SD 0.00058 0.80

To assess how well the model reflects the real processes, standard deviations of the
heater power, SD(P0) = 2.72 W, and the residual, SD(δP) = 0.57 W, were calculated. These
give the relative error for the starting point, δ = 21%.
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cell heater power (b), and the residual δP (c).

3.2. Generative Design. Generalization of Dependencies and Structure

A simple model (1) assumes the constancy of the coefficients. To build a more realistic
model, we need to consider the dependence of heat capacity on temperature and the
presence of various heat exchange mechanisms. Moreover, the assumption of the interaction
of only neighboring structural elements may not correspond to the actual installation.

Ci
dTi
dt = ∑

j=i±1
aij(Tj − Ti) + Pi → CiT

dTi
dt = −∑

j
gij + Pi

CiT = CiT(Ti), gij = gij(Ti, Tj) = −gji

(7)

Sets of heat capacities and heat flow {CiT},
{

gij
}

can contain physically meaningful
functions or just simply polynomial approximations. In our case, we obtain

C0T = C0 + b0T0
g01 = a01(T0 − T1) + A01(T4

0K − T4
1K)

TiK = Ti + 273.15 (◦C → K)
(8)

where linear regression gives the following coefficients (Table 2).
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Table 2. The coefficients for Equation (4) generalized to (6).

A01 a01 b0 C0

4.518 × 10−11 0.08639 0.0463 271.79

SD 0.075 × 10−11 0.00058 0.0031 0.84

This reduces the standard deviation of the residual by about two-thirds, to SD(δP) =
0.18 W, and the relative error to δ = 6.6%, less than one third of the starting point.

In addition, at this stage, there are no new components corresponding to heat ex-
change with structural elements other than the inner shell. Thus, if it is present, its role is
insignificant.

3.3. Generative Design. Expansion

The equations of the model are essentially the equations of thermal balance, the law
of conservation of energy. Thus, a residual other than 0 means a thermal imbalance. The
set of random bursts in Figure 4 can be made more convenient for analysis by going from
power to enthalpy and using the integral residual:

δH =

t∫
0

δPdt (9)

Just like the peaks in Figures 4c and 5 show, the discrepancy is because the simple
model (1) does not describe the fast transient processes in the system since it reduces
the entire structure to several large elements. The relationship between the spatial and
temporal resolution of the model can be demonstrated by the example of constructing a
conservative numerical scheme for the equation of thermal conductivity:

cρ
∂T
∂t

= −divg + p → cnρn
dTn

dt
∆Vn = −∑

k
g∆Snk + pn ∆Vn, n = 1 . . . N (10)

where c, ρ, T, and p are the specific heat, density, temperature, and volumetric heating
power, respectively, all dependent on the coordinates and time, and g is the heat flow. At
any given time, (7) can be linearized by a Jacobian matrix Jnm.

dTn

dt
≈ JnmTm + qn, qn =

pn

cnρn
(11)

The solution of (8) can be described using eigenvalues and eigenvectors of Jnm.

u(k)
n Jnm = λku(k)

m , λk ≤ 0
d
dt (u

(k)
n Tn) ≈ λk(u

(k)
n Tm) + (u(k)

n qn), (u(k)
n Tm) ∼ eλkt

(12)

According to (9), the solution contains components with a time constant of 1/|λk|.
Due to physical reasons, all eigenvalues are not positive, and λmax → ∞ when. ∆Vn → ∞
(N → ∞). In other words, the greater the spatial detail, the better the model describes
transients.

To build an optimal model, we will consistently add new thermal elements to it in
those places where the residual is maximum or close to it. To determine the coefficients, we
will use the results of experiments with heating in the form of a Heaviside function:

P0(t) = P0 · 1(t) (13)

and we will limit the area of linear regression calculation to the duration of the transient
process. We will use the same Equation (5) as a starting point to simplify the presentation.
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In this case, new calculation gives coefficients (Table 3) that are slightly different from those
calculated earlier (Table 1) due to the different regression base.

C0
dT0

dt
= a01(T1 − T0) + P0 (14)
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Table 3. The coefficients for Equation (5) for heating in the form of a Heaviside function.

a01 C0

0.08206 267.7

SD 0.00080 1.7

The maximum residue—the peak in Figure 6a (step in Figure 6b)—corresponds to
the fastest process in the system, turning on the cell heater. Adding an intermediate
thermal element within the cell, which can be identified as the actual heater with its own
temperature and heat capacity, gives the system (15). With the coefficients of Table 4, this
can reduce the residual power by 5 times (Figure 7) and significantly improve the enthalpy
residue (Figure 8). {

C0−1
dT0−1

dt = a0−1(T0 − T0−1) + P0

C0
dT0
dt = a0−1(T0−1 − T0) + a01(T1 − T0)

(15)

Table 4. The coefficients for Equation (15).

a01 C0 a0–1 C0–1

0.08445 228.53 1.26 30.2

SD 0.00030 0.62 0.07 0.6

To determine what other terms and equations should be added to the system (15), we
will perform an approximation of the residual enthalpy with powers of temperatures T0
and T1. The coefficients and their standard deviations are shown in Table 5.
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Table 5. The coefficients for Equation (15) with powers of temperatures T0 and T1.

T0 T0
2 T0

3 T1 T1
2 T1

3 Const

−147.0 4.36 −0.038 −2540 70.14 −0.638 31,599
SD 14.0 0.46 0.0060 215.95 6.50 0.058 2366
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Figure 9. Residual enthalpy after approximation from Table 5.

Obviously, the approximation of Table 5 contains an excessive number of approximat-
ing terms. This is evidenced by a significant relative (about 10%) error of the coefficients.
The magnitude of this error can serve as a criterion for choosing the final approximation.
After excluding several terms, the relative error of the remaining coefficients is less than 1%
(Table 6). Reducing the number of terms practically did not worsen the approximation—the
graph of residual enthalpy has no visible differences from Figure 9.

Table 6. The coefficients for Equation (15) with excluded powers of temperatures T0 and T1.

T0
2 T1 T1

2 Const

0.0968 208.7 3.011 3380

SD 0.0010 2.4 0.035 37
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Since residual enthalpy is an integral characteristic, the equation for T0 must contain
derivatives T0

dT0
dt , dT1

dt , T1
dT1
dt . These terms look like heat capacity correction and appear

on the right side of equation for T0 in the system (16) as an additional heat transfer channel.
C0−1

dT0−1
dt = a0−1(T0 − T0−1) + P0

C0
dT0
dt = a0−1(T0−1 − T0) + a0+1(T0+1 − T0) + a01(T1 − T0)

C0+1
dT0+1

dt = a0+1(T0 − T0+1) + a1−1(T1 − T0+1)

C1
dT1
dt = a01(T0 − T1) + a1−1(T0+1 − T1) + a12(T2 − T1)

(16)

The dependence on T1 can be understood if we add the last two Equations in (16):

a0+1(T0 − T0+1) = C0+1
dT0+1

dt
+ C1

dT1

dt
− a12(T2 − T1) (17)

where C0+1 and C1 are both linear functions of the temperature. Due to the large number of
coefficients, we did not list them in the table.

This process continues to sequentially remove the main part from the residue step-by-
step until the required accuracy is achieved.

The constructed model is conveniently represented as an undirected graph showing
the thermal relationship between the installation elements. For example, for system (16),
we have Figure 10.
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Figure 10. Topology of thermal relations of the inner part of the calorimeter.

Figure 10 shows that in addition to the thermal conductivity along the air gap, there is
a thermal contact between the cell and the inner shell along the suspension and the supply
wires. The heater temperature during rapid heating will differ from the cell’s temperature.

The use of the model in the control loop made it possible to maintain the temperature
difference between the cell and the inner shell on the measuring heaters with an error of
less than 0.01 ◦C.

3.4. Computing Features

At the starting point and during generalization (systems (1) and (7)), the search for
coefficients by the method of least squares was reduced to linear regression since all of the
functions on the right side were known. During expansion, unknown temperatures T0−1 in
system (15) and T0+1 in (16) appear. In the process of finding the minimum of the total of
the square of the residuals, differential equations for these temperatures are solved at each
step. Finding the extremum depends on the number of variable parameters; in complex
cases, an evolutionary algorithm is used [16]. Adding new variables and equations uses a
data segment corresponding to the duration of the transition process.

4. Conclusions

The proposed approach allows building a conservative thermal process model with a
clear physical meaning of the equations. A key feature of the approach is the construction
of the system by sequential complication and use of the residual enthalpy as a criterion for
the correspondence of the model to the experimental data. The constructed model not only
improves the quality of control but also clarifies the ideas about the real processes in the
installation.

Further work will use deep neural networks to build a model and automate the process
of studying the installation with the active formation of optimal test procedures.
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