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Abstract: The boiler is an essential energy conversion facility in a thermal power plant. One small
malfunction or abnormal event will bring huge economic loss and casualties. Accurate and timely
detection of abnormal events in boilers is crucial for the safe and economical operation of complex
thermal power plants. Data-driven fault diagnosis methods based on statistical process monitoring
technology have prevailed in thermal power plants, whereas the false alarm rates of those methods
are relatively high. To work around this, this paper proposes a novel fault detection and identification
method for furnace negative pressure system based on canonical variable analysis (CVA) and eXtreme
Gradient Boosting improved by genetic algorithms (GA-XGBoost). First, CVA is used to reduce the
data redundancy and construct the canonical residuals to measure the prediction ability of the state
variables. Then, the fault detection model based on GA-XGBoost is schemed using the constructed
canonical residual variables. Specially, GA is introduced to determine the optimal hyperparameters
of XGBoost and speed up the convergence. Next, this paper presents a novel fault identification
method based on the reconstructed contribution statistics, considering the contribution of state space,
residual space and canonical residual space. Besides, the proposed statistics renders different weights
to the state vectors, the residual vectors and the canonical residual vectors to improve the sensitivity
of faulty variables. Finally, the real industrial data from a boiler furnace negative pressure system of
a certain thermal power plant is used to demonstrate the ability of the proposed method. The result
demonstrates that this method is accurate and efficient to detect and identify the faults of a true boiler.

Keywords: furnace negative pressure; fault detection; canonical variable residual analysis; XGBoost;
reconstructed variable contribution

1. Introduction

In China, thermal power generation has an irreplaceable role in power industry,
accounting for 70% of the total annual power generation [1,2]. For the sake of saving
energy and materials, thermal power plants are moving towards high parameters and
large capacity. The degree of system integration and coupling in today’s plants is far more
complex than that in the conventional plants [3,4]. Since the boilers of thermal power plants
operate under high pressure and temperature, one small malfunction or abnormal event
will result in a dramatic reduction in plant power and efficiency, even causing equipment
damage or casualties [5,6]. The boiler faults in the thermal power plant are classified as
electrical and mechanical faults. The electrical faults are easy to find and identify, while
the mechanical faults need to be further determined via the analysis of data from different
parts of the equipment [7]. The boiler is an important energy conversion unit in a thermal
power plant, which is a relatively complex energy and water–gas conversion facility. In
order to ensure the supply of the qualified steam to meet the needs of load changes and the
safety of boiler operation, the process parameters of each part must be strictly controlled.
The main controlled parameters of the boiler system are the furnace negative pressure, the
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drum water level, the superheated steam temperature, the superheated steam temperature
and the fuel–air ratio,. The stable furnace negative pressure is key to ensure the safety of
the working environment and the facilities and the economical operation of the boiler. The
main task of the furnace negative pressure control system is to control the furnace negative
pressure at the set value, which controls the discharge flow of the flue gas by regulating
the speed of the flue induced draft fan or the opening of the moving blades [8]. The faults
of one sub-system may cause catastrophic consequences for the thermal power plant [9].
The furnace negative pressure changes after the faults of the draft fan occur. If the furnace
negative pressure becomes larger, the excessive furnace negative pressure will cause the
flue gas to leak, the combustion to be unstable, and even the boiler to extinguish.

Data-driven fault detection methods based on multivariate statistical process moni-
toring (MSPM) technologies have been gained considerable development in the industrial
process, such as principal component analysis (PCA) [10,11], partial least squares (PLS) [12],
canonical variable analysis (CVA) [13], and Fisher discriminant analysis (FDA) [14]. They
constructed the statistics by analyzing the statistical regularity among multiple variables
and detected the fault by calculating the control limits of the statistics [15]. Odgaard
et al. suggested that the false negatives and false positives of PCA and PLS were high
even though they can be used to identify the abnormal events [16]. To improve the ac-
curacy of detection, Yu et al. added a second threshold to the original threshold and
proposed a multi-variable threshold design method based on PCA [17]. On the other
hand, the present studies projected the high-dimensional data into the low-dimensional
space via statistical dimension reduction techniques to retain original information and
then constructed several monitoring statistics [18,19]. Li et al. detected the abnormity
according to the Manhattan distance between between the samples and the center of the
fault set [20]. Xia et al. constructed monitoring statistics based on the Cauchy–Schwarz
difference between two samples projected by kernel entropy component analysis [21].

After detecting a fault, the MSPM technologies were further implemented to locate
the variables most closely associated with the fault by calculating the contributions of the
observed variables. Kourti and MacGregor used the contribution map of variables to find
the faulty variables [22]. They showed that the contribution map revealed the variables most
related to abnormal events to provide a basis for further investigation. Alcala proposed
a reconstruction-based contribution (RBC) method [23]. Liu et al. proposed a reduction
of the combined index (RCI) to eliminate the smudging effect caused by the traditional
contribution plots and RBC [24,25]. Tan and Cao extended the PCA contribution method
from linear system to nonlinear system [26]. The above methods are effective to identify
the variables correlated with the fault, but they only measure the contributions of a sample,
which is not conducive to long-term process monitoring. Zhu and Braatz proposed the
method of two-dimensional contribution map [27]. Jiang et al. proposed a fault diagnosis
method based on CVA, implementing two contribution graphs based on the changes in
state space and the changes in residual space [28]. Since the faulty operation conditions
must be different from the normal operation conditions and the faulty variables based
on residual space are concerned with a new process state when a fault occurs, a higher
contribution of the residual variable means that the operation condition changes and a fault
occurs. The variable contribution based on residual space ties to a fault. Li et al. proposed
the contribution map method based on canonical variable residuals to identify the variables
associated with the faults [29].

With the development of measurement technology, thousands of sensors are used in
thermal power plants, providing various types of data for process monitoring. In 2020, it was
reported that 4.4ZB of data was generated, used and exchanged in industries [30]. However,
this presents a challenge for fault detection and diagnosis by conducting MSPM technology
due to the extensive data. The well-developed machine learning (ML) techniques provide
the opportunity for fault diagnosis based on big data and a large number of scholars turn to
data-driven methods based on ML, such as artificial neural network (ANN) [31] , support
vector machine (SVM) [32,33], etc. Moradi et al. established four data-driven classifiers
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based on SVM, neural network pattern recognition, adaptive neuro-fuzzy inference systems
and learning vector quantization to detect abnormal events in steam generator units of
once-through power plants [34]. SVM has a good capability of dealing with nonlinear
and structured data due to the use of kernel function. However, the kernel function and
the convex quadratic programming problem are dependent on the initialization of certain
parameters. Inappropriate parameters lead to local optimization and slow convergence of
SVM. A variety of optimization techniques such as genetic algorithm (GA), particle swarm
optimization (PSO), and beetle antennae search algorithm (BASA) have been introduced
to determine the optimal SVM parameters [35–37]. However, the computational burden of
SVM is relatively heavy since it takes a lot of time to train the models.

To economy the computation time, the eXtreme Gradient Boosting (XGBoost) algo-
rithm was proposed by Chen and Guestrin [38]. XGBoost becomes prevalent in fault
detection and diagnosis due to its advantage of convenient calculation, fast running speed
and high precision [39]. However, just like SVM, the improper hyperparameters of XGBoost
make it prone to local minima and lower the prediction accuracy. The intelligent optimiza-
tion algorithms have been used to solve the problem of local optimal solutions. GA is one
of the most commonly used intelligent optimization algorithms, which was designed based
on the evolution of organisms in nature [40]. GA has the advantages of a simple process,
randomness and the ability to compare multiple individuals at one time. GA was used to
optimize the hyperparameters of XGBoost intelligently, thereby improving the accuracy of
prediction results [41]. However, the original data with high dimension contains redun-
dant information and noise information, causing false detection and missing detection
in practical application. The dimensionality reduction technology is used to reduce the
complexity of the data and improve the detection accuracy. Zhang et al. combined random
forest (RF) with XGBoost to build a data-driven fault detection framework, where RF was
used to calculate the importance of features [42]. Fitriah et al. diagnosed stroke patients
and improved diagnostic accuracy by combining PCA with XGBoost classification [43].
The PCA method performs well for process variables when the controlled variables are
independent and identically distributed. However, the introduction of PCA can be rather
challenging when there are a large number of strongly correlated process variables, which
is common in power plants.

To address this problem, CVA is used to reduce the dimensionality of the original data.
It takes serial correlations between the inputs and the outputs into account and selects pairs
of variables by maximizing a correlation statistic. In this article, a novel fault detection and
identification method based on CVA and GA-XGBoost is proposed, reducing the false rate
and the flase negative rate and economizing the detection time. The introduction of CVA is
used to reduce the data redundancy and find the maximum correlation between past behav-
iors and future behaviors. The canonical residual vector is used to quantify the difference
between future measurements and past measurements and characterize the subtle changes
of the process dynamics. To further improve the accuracy of XGBoost classification, GA
is adopted to optimize seven important parameters of XGBoost, including learning_rate,
n_estimators, max_depth, min_child_weight, subsample, colsample_bytree and gamma.
After detecting a fault, it is more practical for practitioners to identify the cause of the fault.
This paper proposes a fault identification method based on reconstructed contribution
graph, which considers the influence of state space, residual space and canonical residual
space. Specially, the proposed variable contribution adds different weights to the residual
statistics Qk,j, the state statistics Tk,j and the canonical residual statistics Tr

k,j.
The rest of this paper is structured as follows. The boiler system is introduced in

Section 2. In Section 3, the fault detection method based on CVA and GA-XGBoost is
described, and a novel contribution graph-based fault identification method is proposed,
which considers the influences of residual space, state space and canonical residual space.
In Section 4, the actual process data of a boiler in a certain thermal power plant is used to
illustrate the validity of the proposed method. Finally, conclusions are provided in Section 5.
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2. Background and Basic Data

Boiler is an important energy conversion equipment in thermal power plant. In the
boiler, the chemical energy of the primary fuel is released by burning the coal, which is
used to heat the water to raise the temperature and pressure of the water and obtain the
qualified steam to meet the requirement of the turbines. As one of the three major links
of the boiler, the furnace negative pressure control system plays a very important role in
the normal operation of the boiler. On the premise of ensuring the safe operation of the
boiler, if the furnace pressure is higher than the external atmospheric pressure, the flue
gas inside the furnace will overflow. Such a case will take away a lot of heat energy and
affect the boiler, the boiler-related equipment, and the personal safety of the operators
and the maintenance personnel. On the contrary, if the pressure of the furnace is seriously
low, the cold air outside the boiler will infiltrate into the furnace in quantity, reducing the
temperature of the air entering the furnace and prolonging the ignition distance of the
pulverized coal. Such case will increase the load of the exhaust fan and reduce the fuel
utilization and the boiler operating efficiency.

Figure 1 presents the schematic diagram of the boiler and its auxiliary systems, which
shows the main composition and operation principle of the boiler. The coal is transported
to the coal yard of the thermal power plant by trains and trucks, and then transported
from the coal yard to the raw coal hopper by the coal conveying belt. The raw coal is sent
on demand to the coal mill through the coal feeder, where the raw coal is ground into
pulverized coal. The pulverized coal is carried by the hot primary air into the furnace of
the boiler and mixed with the hot secondary air for combustion. The hot flue gas formed by
the pulverized coal flows along the horizontal flue and tail flue of the boiler, which flows
through the full screen superheater, screen superheater, high temperature superheater, high
temperature reheater, low temperature superheater, economizer and other heating surface
to release heat. Then the flue gas is denitrified to remove nitrogen oxides, and then it is
preheated by the air preheater to the air entering the furnace, and finally it enters the dust
collector to remove dust. Under the action of draft fan, the clean flue gas is discharged into
the atmosphere through the chimney, and the ash after combustion is separated by the slag
removal device.

raw material hopper

coal mill
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bustion cham

ber

cinder-extracting device

Combustor

 downcomer

blower

air pre-heater

dust collector
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superheated steam
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Figure 1. Schematic diagram of boiler and its auxiliary systems.
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3. The Proposed Fault Detection and Identification Methodology

This section puts forward a fault detection and identification method based on CVA
and GA-XGBoost. The CVA technology is used to reduce the dimensions of the original
data and construct the canonical residuals from the original data. The detection model is
obtained by GA-XGBoost, with the canonical residuals as input. Specially, the GA technol-
ogy is used to find the optimal hyperparameters of XGBoost. Then, a novel contribution
graph based the reconstructed variable contribution is proposed, considering the synthesis
of the state space, the residual space and the canonical residual space.

3.1. Feature Abstraction Based on CVA

CVA extracts the canonical variables with the best predictive ability by maximizing the
correlation coefficients between past space and future space. The lag of the past window is
represented by p and the lag of the future window is represented by f . ny is the number of
process variables. The past vector p(k) and the future vector f (k) are defined as:

p(k) =
[
x̃T(k− 1) x̃T(k− 2) · · · x̃T(k− p)

]T ∈ Rpny

f (k) =
[
x̃T(k) x̃T(k + 1) · · · x̃T(k + f − 1)

]T ∈ R f ny
(1)

where x stands for the process variables, and x̃ stands for x normalized to zero mean and
unit variance. The past and future data matrices Hp and H f are defined as:

Hp =
[
p(1) p(2) · · · p(W)

]
∈ Rny×W

H f =
[

f (1) f (2) · · · f (W)
]
∈ Rny×W (2)

where m represents the number of samples and W = m− p− f + 1. Then, we can get

a scaled Hankel matrix H, where H =
(

1
W−1 HpHT

p

)−1/2 ( 1
W−1 Hp HT

f

)(
1

W−1 H f HT
f

)−1/2
.

By performing singular value decomposition (SVD) on H, two projection matrices J and L
can be obtained as follows:

J = VT
(

1
W−1 Hp HT

p

)−1/2

L = UT
(

1
W−1 H f HT

f

)−1/2 (3)

where H = U ∑ VT and U and V represent the left and right singular columns of H,
respectively. In Equation (3), J and L satisfy

J
(

1
W−1 Hp HT

p

)
JT = I

L
(

1
W−1 H f HT

f

)
LT = I

J
(

1
W−1 H f HT

p

)
LT = ∑ = diag

(
λ1, · · · , λr, 0, · · · , 0

) (4)

where λ1 ≥ · · · ≥ λr are the r singular values of H, which represent the canonical correla-
tions between the past data and the future data. By transforming the past data matrix and
the future data matrix with the two projection matrices, one can get two canonical variables
Cp(k) and C f (k), where Cp(k) = JHp and C f (k) = LH f . The canonical variables Cp(k) and
C f (k) contain the mostly correlated variables between Hp and H f . The covariance matrices
of Cp and C f are identity matrices and the cross-covariance matrix between Cp and C f is ∑.
The canonical variables can separate the normal states from the faulty states. To measure
the difference between Cp and C f , a canonical residual vector is defined as:

νk = Lh f (k)− Σh Jh p(k) (5)

where νk represents the canonical residual vector, Lh = UT
h

(
1

W−1 H f HT
f

)−1/2
, ∑h =

diag
(
λ1, · · · , λh

)
and Jh = VT

h

(
1

W−1 HpHT
p

)−1/2
. Vh and Uh consist of the first h columns
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of V and U, respectively, where h < r. The number of states h of the CVA model has a
significant impact on the canonical residual vector. If h is improperly determined, the
canonical residual vector will not contain the basic information or contain the redundant
information of the actual industrial process. The canonical residual vector is able to detect
the slight discrepancy in the dynamic data. Thus, a change in the canonical residual vector
indicates the presence of a new state. In this work, the canonical residual vector is the inputs
of the XGBoost technology and a fault detection scheme-based XGBoost can be determined.

3.2. XGBoost Improved by GA
3.2.1. XGBoost

A training sample set is defined as D = {(xi, li)|(x1, l1), (x2, l2), · · · , (xm, lm)}, where xi
is input and the true label li is the output. XGBoost is the sum of k base models, which is
shown as follows:

l̂i =
k

∑
t=1

ft(xi) (6)

where l̂i is the prediction label of the i-th sample and k is the number of trees. The objective
function of XGBoost is:

obj =
m

∑
i=1

θ
(

l̂t−1
i , li + ft(xi)

)
+

t

∑
i=1

Ω( fi) (7)

where
m
∑

i=1
θ
(

l̂t−1
i , li + ft(xi)

)
is the loss function measuring the difference between l̂i and

li, l̂t−1
i is the predicted label of the t− 1-th tree, and

t
∑

i=1
Ω( fi) is the regularization term to

avoid overfitting. Since l̂t−1
i is determined by the prior t− 1 trees, the objective function

obj can be optimized by solving ft(xi).
By performing Taylor expansion of the loss function, the objective function obj can be

rewritten as:

obj =
m

∑
i=1

[
θ
(

l̂t−1
i , li + ft(xi)

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+

t

∑
i=1

Ω( fi) (8)

where gi is the first derivative of the loss function and hi is the second derivative of the loss
function. Since l̂t−1

i is known at the t-th step, θ
(

l̂t−1
i , li + ft(xi)

)
is a constant and has no

effect on the optimization of the objective function obj. Therefore, we only need to consider
the value of the first derivative and the second derivative of the loss function at each step
when optimizing the objective function obj.

In this work, a decision tree is used as the base learner of XGBoost. The number χ of
leaf nodes is proportional to the complexity of the decision tree and the weight of each

leaf node cannot be too high or too low. Therefore, the regularization term
t

∑
i=1

Ω( fi) of

Equation (8) is defined as:
t

∑
i=1

Ω( fi) = ξχ +
1
2

µ
χ

∑
j=1

ω2
j (9)

where ωj represents the weight of leaf node j, and ξ and µ are the coefficients of the
regularization term. In Equation (9), the L2 norm of ω2

j is used to reduce the variance of the
XGBoost model and make the learned model simpler.

Let Ij = {i|q(xi = j)} be the sample set of the j-th leaf node. Thus, Equation (8) can be
rewritten as:

obj =
χ

∑
j=1

∑
i∈Ij

gi

ωj +
1
2

∑
i∈Ij

hi + µ

ω2
j

+ ξχ (10)
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By taking the first derivative of the objective function and making it equal to 0, the
weight of the leaf node j-th can be obtained as:

ω∗j = −
Gj

Hj + µ
(11)

where Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi. By substituting Equation (11) into Equation (10),

Equation (10) can be simplified as:

obj = −1
2

χ

∑
j=1

G2
j

Hj + µ
+ ξχ (12)

According to Equations (10) and (12), the first derivation gi and the second derivation
hi of all samples in each node are required to be calculated. Then, the summation of all
gi and hi corresponding to each node are used to obtain Gj and Hj. Finally, the objective
function can be solved by traversing all nodes of the decision tree.

3.2.2. GA-XGBoost

In training the XGBoost model, there are more than 20 hyperparameters to be deter-
mined. If the hyperparameters change, the objective function in Equation (12) also changes.
The improper hyperparameters will lower the prediction accuracy of XGBoost model sig-
nificantly. As is known to all, learning_rate, n_estimators, max_depth, min_child_weight,
subsample, colsample_bytree and gamma hyperparameters are very important for XGBoost,
where learning_rate represents the control iteration rate to prevent overfitting, n_estimators
represents the number of iterations, max_depth represents the maximum depth of the
tree, min_child_weight represents the minimum sum of weight, subsample represents the
proportion of samples taken during random sampling, colsample_bytree represents the
proportion of randomly sampled features each time the tree is generated, and gamma
represents the minimum loss reduction. To improve the prediction accuracy of XGBoost,
the optimization of those 7 hyperparameters is a critical and intractable obstacle. In this
paper, GA is used to optimize the 7 important hyperparameters of XGBoost.

Holland proposed GA by referring to the law of biological evolution [40]. In general,
GA simulates the evolution process of biological population mainly through selection,
crossover and mutation, and makes individuals recombine constantly. The above process
is iterating several times until the termination condition is satisfied. In each iteration, the
genetic factors of the population are renewed and the population is evolved. Additionally,
the optimal individual is determined by the optimum fitness that measures the adaptive
ability of individuals in the population. The mean square error (MSE) is used as the fitness
of GA, which is shown as follows:

f =
1

2m

m

∑
i=1

(
li − l̂i

)2
(13)

MSE reflects the deviation between the predicted value and the true value. A smaller
MSE means that the prediction model has a better accuracy in describing the true data.
Besides, GA can search in parallel. The advantage of GA is easy to combine with other
algorithms and suitable for many research fields. The algorithm of GA-XGBoost is shown
in Algorithm 1.
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Algorithm 1. GA-XGBoost

Input: pc (crossover probability), pm (mutation probability), G (maximum
number of iterations), T f (Fitness limit).

1. Initialize generation pop (learning_rate, n_estimators, max_depth, min_child_weight,
subsample, colsample_bytree and gamma).

2. Build a XGBoost model using the individuals.
3. Calculate individual fitness by Equation (13)→ f it.
4. Generate o f f spring = 0.
5. While g < G or f it < T f do.
6. While o f f spring

⋂
pop 6= 0 do.

7. Select 2 individuals with the highest fitness.
8. If (random(0, 1) < pc) do.
9. Cross operation.
10. If (random(0, 1) < pm) do.
11. Mutation operation.
12. The offspring are add to o f f spring.
13. end while
14. pop = o f f spring
15. end while
16. Output best result

3.3. The Reconstructed Variable Contribution

In the traditional CVA technology, two statistics are constructed to monitor the process.
The T squared statistics Tk based on the state space is defined as:

Tk = (Jh p(k))T(Jh p(k)) (14)

where Jh p(k) represents the state vector. The square prediction error (SPE) statistics Qk
based on the residual space is defined as:

Qk = (Fh p(k))T(Fh p(k)) (15)

where Fh p(k) represents the residual vector and Fh =
(

I −VhVT
h
)( 1

W−1 Hp HT
p

)−1/2
repre-

sents the projection matrix of past vectors. Since the process variables of the fault operation
are different from those of the normal operation, Tk and Qk can be used to detect the
abnormal events by measuring the total contribution of all the variables of one observa-
tion. However, it is difficult to obtain the contribution of each process variable to those
two statistics directly only using Jh p(k) and Fh p(k).

By decomposing Jh, Fh, and p(k), the contributions of the state variable and the residual
variable to Tk and Qk can be determined as:

Tk,j = (Jh p(k))T
p
∑

i=1

(
Jh, (i−1)ny+j p(i−1)ny+j(k)

)
Qk,j = (Fh p(k))T

p
∑

i=1

(
Fh,(i−1)ny+j p(i−1)ny+j(k)

) (16)

where Tk,j represents the contribution of the j-th state variable to Tk, and Qk,j represents

the contribution of the j-th residual variable to Qk. Besides,
ny

∑
j=1

Tk,j = Tk and
ny

∑
j=1

Qk,j = Qk.

Jh,(i−1)ny+j is the
(
(i− 1)ny + j

)
-th column of projection matrix Jh, Fh,(i−1)ny+j is the(

(i− 1)ny + j
)
-th column of projection matrix Fh and p(i−1)ny+j(k) is the

(
(i− 1)ny + j

)
-th

row of past vector p(k). As can be seen from Equation (16), however, only the past data are
considered, indicating that Tk,j and Qk,j are insensitive to some minor fault.
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The influence of the future data vector and the past data vector is taken into account
when calculating the canonical variables Cp and C f . To monitor the small data shift in
process, the statistics Tr

k based on the canonical residual vector νk is proposed as:

Tr
k = νT

k

(
I −∑2

h

)−1
νk (17)

Similarly to Qk and Tk, the contribution of the j-th canonical residual variable to Tr
k can

be defined as follows:

Tr
k,j = νT

k

(
I −

2

∑
h

)−1( f

∑
i=1

Lh,(i−1)ny+j f(i−1)ny+j(k)−
p

∑
i=1

∑
h

Jh,(i−1)ny+j p(i−1)ny+j(k)

)
(18)

where Tr
k,j represents the contribution of the j-th canonical residual variable to Tr

k and
ny

∑
j=1

Tr
k,j = Tr

k . Lh,(i−1)ny+j and Jh,((i−1)ny+j) represent the
(
(i− 1)ny + j

)
-th column of Lh

and Jh, respectively, and f(i−1)ny+j(k) represents the
(
(i− 1)ny + j

)
-th row of the future

vector f (k). According to Equation (17), Tr
k quantifies the difference between the future

vector and the past vector. Therefore, Tr
k,j is more sensitive to a slight fault comparing with

Qk,j and Tk,j.
By combining the state space, the residual space and the canonical residual space,

a novel reconstructed variable contribution is defined as:

Ck,j = δQk,j + γTk,j + λTr
k,j (19)

where δ, γ and λ are the weights of indicators Qk,j, Tk,j and Tr
k,j, respectively. According

to Equations (16), (17) and (19), if the indicators Tr
k,j and Tk,j cannot capture a new state,

the indicator Qk,j will capture the new state. Jiang et al. demonstrated that the residual
space contains much more knowledge relating to the abnormal events compared with the
state space and the canonical residual space [28]. In actuality, the fault events of the furnace
negative pressure control system often generate new states rather than deviations from
the known states. Therefore, the proposed fault identification method in this article gives
different weights to state space, residual space and canonical residual space.

3.4. The Procedure for Fault Detection Based on CVA and GA-XGBoost

In this paper, a method that combines CVA and GA-XGBoost is used to detect the faults
of the furnace negative pressure system. The flowchart of the proposed fault detection
method is shown in Figure 2. In Figure 2, the purpose of offline training is to obtain the
projection matrices and the optimal hyperparameters. In the offline training stage, CVA is
mainly used to abstract the maximum correlation between future data and past data and
construct Lh, Jh and ∑h. Then, the canonical residuals νk and the corresponding state labels
are regarded as the inputs and outputs of XGBoost, respectively. In training the XGBoost
model, the fitness function MSE is calculated using the prediction result of XGBoost and
GA is used to obtain the optimal hyperparameters of XGBoost. In the online testing stage,
the samples with length p + f are collected for online detection. Lh, Jh and ∑h are used to
update the real-time canonical residuals. In Figure 2, 1 represents the normal operation and
0 represents the faulty operation. A fault can be found if the output of GA-XGBoost is 0.

3.5. The Procedure for the Proposed Fault Identification Method

The fault identification algorithm proposed in this paper is shown in Algorithm 2.
The normal samples are collected to obtain the mean µ and variance σ during the offline
modeling process. In Algorithm 2, δ, γ and λ ranges from 0 to 1 and δ + γ + λ = 1.
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Figure 2. The flowchart of the fault detection method based on CVA and GA-XGBoost.

Algorithm 2. Proposed fault identification algorithm

Offline modeling:
1. Collect normal data sample x, standardize data, and obtain µ and σ.
2. Construct p(k) and f (k).
3. Construct Hp and H f .
4. Perform SVD on the scaled matrix H and obtain V, U and ∑.

5. Calculate J = VT
(

1
W−1 Hp HT

p

)−1/2
and L = UT

(
1

W−1 H f HT
f

)−1/2

6. Determine h by the fastest descent method.
7. Construct Vh, Uh and Fh.
Online identification:
1. Collect the monitoring data xnew.
2. Standardize data (µ, σ).
3. Construct p(k) and f (k).
4. Calculate zk = Jh p(k), ek = Fh p(k)

5. Calculate Tk,j = zT
k

p
∑

i=1

(
Jh,(i−1)ny+j p(i−1)ny+j(k)

)
.

6. Calculate Qk,j = eT
k

p
∑

i=1

(
Fh,(i−1)ny+j p(i−1)ny+j(k)

)
.

7. Calculate Tr
k,j = νT

k

(
I −∑2

h

)−1


f

∑
i=1

Lh,(i−1)ny+j f(i−1)ny+j(k)−
p
∑

i=1
∑h Jh,(i−1)ny+j p(i−1)ny+j(k)

.

8. Calculate Ck,j = δQk,j + γTk,j + λTr
k,j.
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4. Application

This example collects the true process data of furnace negative pressure control system in
boiler chamber of a thermal power plant in China. Table 1 presents 21 process variables (PVs)
closely related to the working condition of the furnace negative pressure control system.

In this example, a fault occurs in the exhaust fan of # 1 furnace A, in which the exhaust
motor blade was jammed. Figure 3 shows the diagram of the base cracking of the exhaust
fan blade actuator. When the moving blade of the exhaust fan of #1 furnace A is jammed,
the output of the #1 exhaust fan will change and the #2 exhaust fan will track the set point
of the furnace negative pressure the automatic state to adjust the furnace negative pressure
to be stable. Therefore, the amount of flue gas passing through the #1 and #2 exhaust fan
will change, which results in a change in the temperature of the flue gas at the #1 and
#2 exhaust fan inlet. Although it has been adjusted by #2 induced draft fan, there is still
a certain gap comparing with normal operation. In order to maintain the balance of the
pressure in the furnace, it is necessary to adjust the output of the blower, which causes the
change of the current of the blower of the #1 furnace A.

Table 1. Process variables and their descriptions.

Process Variables Description

1 #1 exhaust fan blade opening
2 Current of exhaust fan of #1 furnace A (A)
3 #2 exhaust fan blade opening
4 Current of exhaust fan of #1 furnace B (A)
5 #1 inlet flue gas temperature of exhaust fan (◦C)
6 #1 flue gas pressure at the outlet of dust collector (Pa)
7 #2 inlet flue gas temperature of exhaust fan (◦C)
8 #2 flue gas pressure at the outlet of dust collector (Pa)
9 #1 blower blade opening
10 Current of blower of #1 furnace A (A)
11 #2 blower blade opening
12 Current of blower of #1 furnace B (A)
13 #1 furnace A primary fan current (A)
14 #1 furnace B primary fan current (A)
15 Side A steam header pressure (MPa)
16 Side A steam header temperature (◦C)
17 Compensated blower outlet air volume (t/h)
18 Oxygen content of tail flue gas (%)
19 Furnace negative pressure (Pa)
20 Generator active power (MW)
21 main steam flow (t/h)

Figure 3. The diagram of the base cracking of the exhaust fan blade actuator.
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In training the CVA model, 4000 normal samples are considered. First, autocorrelation
analysis is performed on 4000 normal samples to obtain the number of time lags in the
past and future data (p and f ). In this case, the ten number of lag is the maximum, after
which the autocorrelation does not change significantly within the 5% confidence interval.
Therefore, both p and f are set to 10. Figure 4 shows the singular values of the Hankel
matrix H. The number of h states in the CVA model is determined according to the trend of
the singular values of H. In this paper, the fastest descent method is adopted to decide the
proper h and h is considered to be the “critical” point in the singular value curve. According
to the point inside the red circle in Figure 4, h = 25.
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Figure 4. Singular values plot.

To train the fault detection model, 4000 normal samples and 2000 fault samples are
collected to compose the training set. Then, the model residuals vk of the training set are
calculated based on p, f and h obtained during CVA training. The vk is taken as the input of
GA-XGBoost and its corresponding label as the output of GA-XGBoost. The GA-XGBoost
algorithm is used to build the fault detection model. If the output of GA-XGBoost model is
1, it means that the furnace operates normally. If the output of GA-XGBoost model is 0, it
means that a fault occurs. After constructing the fault detection model, 4880 samples are
used to online detect the faults. In this paper, the detection rate IDR and the false positive
rate IFAR are used to measure the performance of the proposed method. The definitions of
IDR and IFAR are given as: {

IDR= N1
Nabnormal

× 100%
IFAR= N2

Nnormal
× 100%

(20)

where Nabnormal represents the number of the true fault, N1 represents the number of fault
detected, Nnormal represents the number of the true normal samples, and N2 represents the
number of the normal samples diagnosed as faults. A higher IDR combining with a lower
IFAR indicates the better performance of the proposed method.

The proposed method is compared with CVA, PCA-SVM and PLS-SVM. Figure 5 presents
the fault detection result of CVA, with Figure 5a for CVA-Tk, Figure 5b for CVA-Qk and
Figure 5c for CVA-Tr

k . The control limits of the three monitoring indicators of CVA are
obtained by the kernel density estimation method. In Figure 5a,b, the indicators CVA-Tk
and CVA-Qk in the monitoring phase always exceed their control limits and all of the
normal samples are judged to be abnormal. In Figure 5c, CVA-Tr

k are larger than the
control limit from the 2752nd sample, and 1249 normal samples are mistakenly diagnosed as
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malfunctions. This result indicates the two traditional CVA indicators and the newly defined
indicator CVA-Tr

k are ineffective to discover the abnormal events of the furnace negative
pressure systems. Figure 6 presents the fault detection result of PCA-SVM, from which
about 200 faulty samples are judged to be normal. Thus, the detection rate of PCA-SVM
is much low. Figure 7 presents the fault detection result of PLS-SVM. All of the faulty
samples are judged to be normal, indicating that the PLS-SVM method is invalid for this
example. Figure 8 exhibits the fault detection result of the proposed method. In Figure 8,
only 12 normal samples are misdiagnosed as malfunctions and only four faulty samples
are judged to be normal. As seen from Figures 6–8, the number of fault samples correctly
detected by the proposed method is much larger than those by PCA-SVM and PLS-SVM.
As seen from Figures 5 and 8, the number of the normal samples incorrectly detected by
the proposed method is much smaller than that by CVA. Therefore, compared with CVA,
PCA-SVM and PLS-SVM, the proposed method is more effective to discover the abnormal
events of the furnace negative pressure system.
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Figure 5. Fault detection results of (a) CVA-Tk (b) CVA-Qk and (c) CVA-Tr
k .
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Figure 6. Fault detection result of PCA-SVM.
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Figure 7. Fault detection result of PLS-SVM.
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Figure 8. Fault detection result of CVA and GA-XGBoost.

Table 2 gives the detection rate, the false positive rate and the detection time of the
four methods. As shown in Table 2, the IFAR of CVA-Tk and CVA-Qk are 1, indicating that
CVA-Tk and CVA-Qk are ineffective to distinguish the normal samples from the faulty
samples. The IDR of the PLS-SVM method is 0, indicating that PLS-SVM is unable to find
the abnormal events. The IFAR of the proposed method is 0.0030, which is much smaller
than that of CVA-Tk, and the IDR of the proposed method is 0.9955, which is only 0.0045
smaller than that of CVA-Tr

k . This result indicates that the false alarm rate of the proposed
method is much smaller than that of CVA. The IDR of the proposed method is three times
larger than that of PCA-SVM, and the IFAR of the proposed method is almost equal to
that of PCA-SVM. This result indicates that the detection rate of the proposed method is
much larger than that of PCA-SVM. In Table 2, the detection time of the proposed method
is 3.481 s, which is 0.0163 s less than that of CVA-Tr

k . The detection times of PCA-SVM
and PLS-SVM are 7.304 s and 8.403 s, respectively. However, since the canonical residuals
constructed by CVA are used to obtain the proposed fault detection model, the detection
time of the proposed method is 0.151 s more than that of CVA-Tk and CVA-Qk. This result
means that the detection time of the proposed method is much less than that of PCA-SVM
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and PLS-SVM while it is a little more than that of CVA-Tk and CVA-Qk. Therefore, the
proposed method is the most effective than the other three methods in detecting the faults
of the furnace negative pressure system for the real thermal power plants.

Table 2. The detection rate, false alarm rate and detection time of the four methods.

Method IDR IFAR Detection Time

CVA-Tk 1 1 3.330 s
CVA-Qk 1 1 3.307 s
CVA-Tr

k 1 0.4203 3.561 s
PCA-SVM 0.3148 0 7.304 s
PLS-SVM 0 0 8.403 s

CVA-GA-XGBoost 0.9955 0.0030 3.481 s

After detecting the fault, the faulty variables need to be identified. The fault identifica-
tion results based on state space and canonical residual space are shown in Figure 9 and
Figure 10, respectively. In Figure 10, #2 inlet flue gas temperature of exhaust fan (PV7) and
current of blower of #1 furnace A (PV10) are identified in several samples. However, no PVs
are identified in the subsequent contribution plots. This result suggests that the variable
contribution of state space and that of canonical residual space are unable to identify the
faulty variable. The fault identification result of the proposed method is shown in Figure 11.
For the reconstructed variable contribution of this example, the weights on the residual
space, the state space and the space residual space are 0.6, 0.2 and 0.2, respectively. As seen
from Figure 11, there are four PVs are identified as faulty variables, such as the current of
exhaust fan of #1 furnace A (PV2), #1 inlet flue gas temperature of exhaust fan (PV5), PV7
and PV10. Besides, the contributions of the four PVs always exist. Figure 12 presents the
online PV2, PV5, PV7 and PV10. As shown in Figure 12, there is a sharp increase in PV2
and PV5, and there is a sharp decrease in PV7 and PV10 when the fault occurs. It can also
be seen from Figure 12 that the changes in PV2 and PV7 are much more significant than
those in PV5 and PV10, meaning that the current fault has a more significant effect on PV2
and PV7 than that on PV5 and PV10. Figure 11 clearly shows that the contributions of PV2
and PV7 are much greater than those of PV5 and PV10. This result demonstrates that the
proposed method can accurately identify the variables related to the fault. Therefore, the
fault identification method based on reconstructed variable contribution is effective for the
furnace negative pressure system of the thermal power plant.
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Figure 9. Contribution plot based on the state space.
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Figure 10. Contribution plot based on the canonical residual space.
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Figure 11. Reconstructed contribution plot based on the state space, residual space and canonical
residual space.
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Figure 12. Online faulty variables sample dataset from the furnace negative pressure system: (a) Cur-
rent of exhaust fan of #1 furnace (b) #1 Inlet flue gas temperature of exhaust fan (c) #2 Inlet flue gas
temperature of exhaust fan (d) Current of blower of #1 furnace A.
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5. Conclusions

In this paper, a novel fault detection and identification method based on CVA and GA-
XGBoost is proposed for the furnace negative pressure system of a boiler. The CVA method
processes the original data to remove noise in the data and constructs the canonical residual
vector that quantifies the difference between the future vector and the past vector. The fault
detection model based on GA-XGBoost is built using the canonical residuals of the training
set. The seven key hyperparameters of XGBoost, including Learning_rate, n_estimators,
max_depth, min_child_weight, subsample, colsample_bytree and gamma, are optimized
by GA to improve the prediction accuracy. A novel fault identification method based
on reconstructed contribution graph is proposed, which can simultaneously capture the
abnormal information contained in the state space, residual space and canonical residual
space, and the ability of the method can be improved by changing the weights. The furnace
negative pressure system of a boiler in a thermal power plant is used to demonstrate the
effectiveness of the proposed fault detection and identification method. The IDR of the
proposed method is greater than 0.99, which is significantly larger than that of PCA-SVM
and PLS-SVM, and the IFAR is lower than 0.01, which is significantly smaller than that of
CVA. The proposed fault identification method identifies the variables related to the fault
correctly. This result demonstrates that the method proposed in this paper is superior to
CVA, PCA-SVM and PLS-SVM.
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