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Abstract: The greenhouse effect is one of the concerning environmental problems. Farmland soil is
an important source of greenhouse gases (GHG), which is characterized by the wide range of ways to
produce GHG, multiple influencing factors and complex regulatory measures. Therefore, reducing
GHG emissions from farmland soil is a hot topic for relevant researchers. This review systematically
expounds on the main pathways of soil CO2, CH4 and N2O; analyzes the effects of soil temperature,
moisture, organic matter and pH on various GHG emissions from soil; and focuses on the microbial
mechanisms of soil GHG emissions under soil remediation modes, such as biochar addition, organic
fertilizer addition, straw return and microalgal biofertilizer application. Finally, the problems and
environmental benefits of various soil remediation modes are discussed. This paper points out the
important role of microalgae biofertilizer in the GHG emissions reduction in farmland soil, which
provides theoretical support for realizing the goal of “carbon peaking and carbon neutrality” in
agriculture.
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1. Introduction

Greenhouse gases (GHGs) usually refer to gases that can absorb the Earth’s thermal
radiation and enhance the greenhouse effect, mainly, carbon dioxide (CO2) and methane;
the greenhouse effect is one of the important environmental problems humans have so far
faced in the 21st century. CO2 is the single most important anthropogenic GHG in the atmo-
sphere, contributing approximately 66% of the radiative forcing by long-lived greenhouse
gases (WMO, 2019). Soil is the largest carbon reservoir in the terrestrial ecosystem [1]; the
global carbon storage in 1~3 m of soil is about 1500~2344 Gt C (1 Gt = 1015 g), which is
about three times that of the global vegetation and two times that of the atmosphere (IPCC,
2013b). However, the respiration of microorganisms, animals and roots, and the oxidation
of carbonaceous matter also produce CO2 [2]. Not only does soil produce CO2, but the
consumption of diesel, gasoline and electricity in farmland practices such as farming, irri-
gation and harvesting also cause CO2 emissions [3]. The annual global emission of CH4
was about 580 million in 2021. CH4 is the second most important GHG after CO2, with
an average lifetime of about 8.75 years in the atmosphere and a contribution rate of about
15% of the greenhouse effect. The warming effect of CH4 per unit mass in 20 years is about
84~87 times that of CO2, and its warming effect in 100 years is about 28~36 times that of
CO2 [4]. The main emission sources of CH4 in agriculture are rice and livestock cultivation,
and the anaerobic environment of flooded rice fields and animal intestine create favorable
conditions for CH4 production by methanogens. The main sources of CH4 are natural
wetlands, human activities and biomass burning, and tropical regions with high CH4
emissions contribute 80% of global CH4 emissions [5]. N2O is another noteworthy GHG,
accounting for about 7.9% of the greenhouse effect. Its average lifetime in the atmosphere
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is 114 years, and its global warming potential (GWP) is 296~310 times that of CO2, which is
the main destroyer of stratospheric ozone [6]. Nitrogen fertilizer application in agriculture
is the main source of N2O, and N2O emissions caused by fertilization account for about
30% of global land emissions. Therefore, reducing N2O emissions from farmland soil is
urgent to alleviate the greenhouse effect [7–9].

At present, researchers have developed some measures and technologies for GHG
emission reduction in farmland soil, mainly including adding biochar, returning straw
to the field, and applying organic fertilizer or microalgae biofertilizer and soil improvers
(such as lime and nitrification inhibitor, etc.) [10–14]. Microbes play a crucial role in the
application of these mitigation measures and technologies. However, there are few reviews
on the role of microorganisms in GHG emissions from farmland. This review summarizes
the sources of CO2, CH4 and N2O in farmland soils, and discusses the environmental
impact factors of microorganisms in farmland soil GHG emissions and the GHG emission
reduction mechanisms of microorganisms under different soil remediation modes.

2. GHG Production in Agroecosystem

The agroecosystem is an important source of CO2. Agricultural processes generate
15 billion tons of CO2 emission, accounting for 30% of global total emissions [15]. CO2
emission from the soil is usually called “soil respiration”, which is a process of metabolism
of animals, roots, fungi and bacteria in the soil. It involves three biological processes
(plant root respiration, soil microbial respiration and soil animal respiration) and one non-
biological process (chemical oxidation of carbon-containing substances) [2,16]. CO2 in the
atmosphere converts into organic matter through the photosynthesis of plants, and then
the carbon in the organic matter enters the soil in the form of root exudates, dead roots or
fallen leaves. Under the action of soil microorganisms, it is transformed into soil organic
matter and stored in the soil, forming soil carbon sink.

The agroecosystem is an important source of CH4 emissions, accounting for 15~30%
of the total emissions [17]. In soil with poor aeration, low carbon organic acids, H2, CO2
and other substances formed by the fermentation of other microorganisms generate CH4
under the action of methanogens. CH4 in the agroecosystem can be generated in two
ways: (1) organic acids in the soil environment or the degradation products of organic
acids, CO2 and H2 generate CH4 under the action of methanogens, or methanogens use
formic acid and CO to form CH4; (2) the demethylation of methyl compounds under the
action of methanogens to produce CH4. Methane-oxidizing bacteria account for the largest
proportion in dryland soil with good aeration. About 82% of CH4 is absorbed and utilized
by methane-oxidizing bacteria in the soil before being discharged into the atmosphere, and
then entering the soil ecosystem [18,19].

N2O discharged from farmland soil is mainly a by-product of microbial nitrification
and denitrification, in which nitrification is divided into autotrophic nitrification and
heterotrophic nitrification, and autotrophic nitrification is divided into two stages: (1) am-
monia oxidation stage: ammonia-oxidizing archaea (AOA) and bacteria (AOB) first oxidize
NH3 to NH2OH and then reduce it to NO−

2 ; (2) nitrite oxidation stage: NO−
2 is oxidized

to NO−
3 by nitrite-oxidizing bacteria. Heterotrophic nitrification is the transformation

of organic ammonia nitrogen into NO−
2 and NO−

3 by nitrifying bacteria and fungi in an
aerobic environment [20]. Denitrification is a process in which microorganisms reduce
NO−

3 and NO−
2 to NO, N2O and N2 in the presence of anaerobic environment and various

enzymes [21]. When the atmospheric pressure and soil moisture content change, N2O in
the atmosphere will enter the soil pores through physical diffusion, and the water and
solution in the soil will also dissolve N2O in the atmosphere, thus, introducing N2O into
the agroecosystem [22]. The production process of CO2, CH4 and N2O in farmland soil is
shown in Figure 1.
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Figure 1. The production process of CO2, CH4 and N2O in farmland soil.

3. Environmental Factors Affecting GHG Emissions of Microorganisms in
Farmland Soil
3.1. Soil Temperature

A large number of studies have shown that temperature is the main factor affecting
the production and emissions of GHG in soil [23–25]. Higher soil temperature can enhance
the root respiration of crops, accelerate the decomposition of organic matter in the soil,
improve the activity of microorganisms in the soil, and thus, accelerate the diffusion of
CO2 in soil [26,27]. Methanogens and methane-oxidizing bacteria jointly determine the
emission of CH4. Within a certain temperature, the metabolic capacity of methanogens is
positively correlated with temperature. When the ambient temperature rises from 20 ◦C
to 35 ◦C, the emission of CH4 will double. However, recent studies have proposed that
methanogens have thermal adaptability, and microbial activity decreases after long-term
warming and increases after long-term cooling [28]. Walker et al. explored the response
mechanism of soil microorganisms to temperature changes through in situ natural warming
experiments, and the results showed that microbial temperature sensitivity and substrate
consumption jointly affected soil carbon loss by controlling microbial biomass [29]. In
the experiment of soil transplantation on a 3000 m elevation gradient in a tropical forest,
every 1 ◦C increase in temperature resulted in a 4% decrease in soil carbon content. In
addition to the decomposition of soil organic matter directly caused by temperature rise,
temperature rise affected the physiological function of microorganisms, such as carbon
utilization efficiency, microbial community change and the positive feedback effect of
related enzyme activity [30]. The production of N2O in soil has biological and abiotic
pathways, and high temperature will stimulate microbial activity. Cui et al. conducted
a liquid culture of Pseudomonas mandelii at 10~30 ◦C and found that its denitrification
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activity is proportional to the temperature [31]. Studies have found that high temperature
has a more significant effect on the production of N2O by abiotic pathways, and abiotic
denitrification at 50 ◦C has the strongest effect and the highest N2O emission [32].

3.2. Soil Moisture

Soil moisture affects the emissions of GHG from soils by changing the microbial activity
and soil porosity in the soil itself. Soil CO2 emission shows a Birch effect with soil moisture:
a certain water content stimulates microbial activity and increases CO2 emission, while
too high a water content inhibits soil respiration [33]. Zou et al. studied GHG emissions
patterns under different hydrological conditions and found that CO2 equivalent emissions
were the lowest when the groundwater level was close to the surface [30]. The utilization
rate of O2, the activity of microorganisms and the diffusion ability of gas molecules in
soil are all affected by soil water content. Soil with a high water content is prone to form
anaerobic areas, which promote the growth of methanogens and denitrification, thus,
resulting in an increased emission of CH4 and N2O in soil [34,35]. The Paddy field is
the main place where CH4 and N2O are produced, and its irrigation mode significantly
affects the GHG emissions of the soil. Intermittent irrigation will inhibit the activity
of methanogenic bacteria and reduce CH4 emissions. Flooding irrigation provides an
anaerobic environment to promote denitrification, but excessive water delays the diffusion
of N2O, resulting in the reduction of N2O to N2 and N2O emission being reduced [36].
According to the above, the International Paddy Field Research Institute put forward the
water management mode of dry–wet alternation; the lower redox potential of flooded soil
is beneficial to the production of CH4, and the higher redox potential of drained soil is
beneficial to the production of N2O [37]. By controlling the time of wet–dry alternation, the
redox potential of soil is maintained at a moderately low level, and the lowest emissions of
GHG is achieved [38]. Liao et al. found that soil moisture and atmospheric temperature will
affect N2O emission by adjusting the balance between nitrifying bacteria and denitrifying
bacteria [36]. Soil moisture decreases with the increase in atmospheric temperature, which
increases the gene abundance of amoA encoding nitrification to produce N2O in soil, and
the decrease in gene abundance of nosZ (Recombinant Nitrous-oxide reductase) encoding
N2O reduction to N2, thus, increasing N2O emission [39].

3.3. Soil Organic Matter

Soil organic matter (SOM) generally refers to a type of polymer organic compound
with complex components and stable properties formed by organic residues in the soil
through microorganisms or other physical and chemical processes [40]. SOM is a major
carbon source for soil respiration and significantly affects soil GHG. Soil-activated organic
C is a substrate for microbial growth, and its content directly affects the activity of microor-
ganisms, which in turn affects the emission of GHG. Soluble organic matter content in SOM
is closely related to CO2 production in soil [41,42], and Paré and Bedard et al. found that
alkane carbon and aromatic substances in the arctic tundra ecosystem enhanced CO2 emis-
sion [43]. Wang et al. and Pascual et al. found that amines and aromatic compounds in the
soil increased significantly after straw returned, resulting in higher CO2 emissions [44,45].
SOM is the main substrate of methanogens, and the SOM content is positively correlated
with the CH4 emission [46]. Most denitrifying bacteria are chemoheterotrophic, and their
energy for production and reproduction mainly comes from soil organic matter. Therefore,
a high organic matter content provides sufficient energy for denitrification and promotes
the production of N2O [47]. Other studies have found that microorganisms decompose
organic matter and consume oxygen, inhibit soil nitrification and reduce N2O emission [48].
That this is due to the C/N in the soil directly affects the decomposition of SOM and the
activity of microorganisms, thereby inhibiting or promoting the emission of N2O from the
soil [49].
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3.4. Soil pH

The activities of microorganisms and enzymes in soil, the decomposition of organic
matter and the development of crop roots are closely related to soil pH. The influence of soil
pH on CO2, CH4 and N2O emissions is complex. The optimum pH of most microorganisms
in soil is 6–8, and too acidic or too alkaline an environment will inhibit the activity of
microorganisms and reduce the emissions of GHG. The optimal pH for the growth and
reproduction of methanogens is about 7 [50], and the acidic environment will reduce the
emission of soil CH4. N2O reductase is the only enzyme that converts N2O into N2 during
denitrification. Acidic soil will inhibit its activity or even cause its inactivation. Studies
have found that the emission of N2O in neutral soil is significantly lower than that in
acidic soil [51,52]. Therefore, adding alkaline amendments such as CaMg(CO3)2, CaCO3,
Ca(OH)2, CaO and other lime materials in acidic soil is beneficial to improve the activity of
N2O reductase and reduce the emission of N2O [53]. Shaaban et al. and Wu et al. modified
acidic soil with dolomite under different water gradients, and the results showed that soil
pH increased rapidly after dolomite application, which promoted the conversion of N2O
into N2 and reduced N2O emission [54,55]. Shaaban et al. found that the concentration
of NH+

4 -N decreased rapidly with time, while the concentration of NO−
3 -N gradually

increased after lime material was added to acidic soil, which indicated that nitrification in
soil was strengthened [56]. The microorganisms consumed N2O as an electron acceptor
instead of NO−

3 -N at higher NO−
3 -N concentrations. A large amount of N2O is converted

into N2 under the action of microorganisms, thereby reducing the emission of N2O [56].

4. Microbial-Mediated Soil Emissions Reduction Mechanism under Different Soil
Remediation Modes
4.1. Biochar

Biochar is a loose and porous substance with a high carbon content produced by
carbonization organic materials under the condition of little or no oxygen. It has the
characteristics of wide source, low cost, large specific surface area, strong adsorption
capacity and strong carbon stability. Biochar can improve soil fertility and increase crop
yield in agricultural applications. It has reportedly shown great potential in reducing GHG
emissions in soils. A large number of experiments have found that fresh biochar cannot
reduce CO2 emission in soil [57–60], while biochar has been naturally aged in field soil,
and the organic and inorganic complexes that accumulate on the surface of soil minerals
can stabilize the organic carbon in biochar, structurally increasing spatial resistance and
reducing CO2 emissions from a physicochemical perspective [61]. In addition, compared
with fresh biochar, aged biochar has a richer microbial community structure [62], and some
CO2-fixing bacteria appear, which reduces CO2 emission on the microbial level [63].

The reduction in CH4 emission by biochar is due to the joint action of physical chem-
istry and microorganisms in the soil. The application of biochar increases soil aeration
and redox potential, which results in the reduction in CH4 emission by physical–chemical
reaction. Methanogens are obligate anaerobic bacteria, which are the main microorganisms
producing CH4 in the soil. After entering the soil, biochar with high porosity inhibits the
activity of most methanogens and affects the change of microbial community in the soil [64].
Wang et al. monitored the microbial community after biochar application in soil for four
consecutive years; the experimental results showed that the abundance of methanogens in
the soil after long-term biochar application significantly decreased, while the abundance
of methane-oxidizing bacteria did not change significantly, thus, reducing the emission of
CH4 in paddy fields [65].

The short-term addition of biochar to rice soil increased the abundance of ammonia-
oxidizing bacteria (AOB) and ammonia monooxygenase gene (amoA), and significantly
increased the denitrification rate of the soil. Fresh biochar provided a stronger alkaline
environment and nutrients, and even improved the denitrification capacity and nitrogen
emission [66]. Many studies have shown that fungi make a greater contribution to N2O
production than bacteria in acid soil [67,68]. As the denitrification product of fungi is N2O
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instead of N2, reducing the number of fungi in soil can reduce N2O emissions. Adding
biochar and nitrogen fertilizer to acid soil with high N2O emission will increase the soil
pH, change the community composition of fungi, inhibit the denitrification of fungi, signifi-
cantly reduce the abundance of fungi, increase the abundance of the nosZ gene, enhance
the activity of N2O reductase, and promote bacteria to reduce N2O to N2 [69] (Figure 2).
nosZ I and nosZ II are N2O reductase coding genes widely existing in the environment.
Studies have shown that microbes containing the nosZ II gene have greater N2O reduction
potential. Some microbes containing the nosZ II gene lack the nitrite reductase gene, so
they do not produce N2O during denitrification, which provides a new research idea for
N2O emission reduction in the future.
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acidic soils.

Although biochar can improve carbon sequestration, achieve emission reduction and
adjust the abundance and activity of microorganisms related to GHG emissions in soil, it
also has the health risk of releasing heavy metals, organic pollutants, nanoparticles and
other substances to inhibit the growth and development of crops. Nanoparticles extracted
from six biochars by Zhang et al. were confirmed to inhibit the germination of rice seeds
and the growth of reed roots [70]. After biochar enters the soil, soil alkalinity will be
enhanced, which will reduce the utilization rate of trace elements such as Fe, Zn and Cu in
the soil, interfere with crop growth and even cause plant death [71]. Some studies have
found that pollutants in biochar cause serious harm to earthworms [72], and excessive
biochar directly reduces their survival rate [73]. Therefore, the application of biochar needs
to be considered in combination with the actual soil environment, nature and other factors.

4.2. Organic Fertilizer

Organic fertilizer is the best substitute for chemical fertilizer by using agricultural,
animal husbandry and industrial wastes as raw materials to turn waste into treasure.
Organic fertilizer can significantly improve soil quality, enrich the microbial community
and increase crop yield. However, studies have shown that the introduction of organic
fertilizer into the soil will increase the content of light component organic carbon, which is
more easily used by microorganisms, and the application of organic fertilizer alone will
significantly increase soil CO2 emission [74]. Wang et al. and Li et al. adopted the mode
of fertilizer reduction combined with organic fertilizer application and found that soil
carbon sequestration significantly increased and GHG emissions significantly decreased in
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double-cropping rice fields [75,76]. Studies have shown that CH4 effluxes were significantly
and negatively related to mcrA and pmoA gene copy numbers, and positively related to
mcrA/pmoA. Organic fertilizers provide substrates for methanogens and promote the
production and emission of CH4 [77,78]. Li et al. replaced a part of inorganic fertilizer
with organic fertilizer in the soil, and five substitution rates including 0, 20%, 50%, 80%,
and 100% and a no fertilizer control were evaluated on Chinese cabbage. Cylindrical PVC
chambers were placed at the center of each plot on each sampling day at 9 a.m. to collect
gas. They found that organic fertilizer could reduce the emission of N2O, and the quality
of the vegetables improved under the substitution rate of 20~50% [79]. In summary, the
rational use of organic fertilizer can not only regulate C/N in the soil, thereby changing the
dominant species of microorganisms in the soil, but also increase crop yield and alleviate
the GHG effect. Therefore, significant experimentation and research are needed to find the
best case.

4.3. Straw Returning

Straw returning is a comprehensive utilization measure widely adopted around the
world, which has the advantages of fertilizing soil capacity, improving cultivated land
quality, and increasing soil carbon reservoir and crop yield. As an agricultural renewable
resource, straw contains N, P, K, Ca, Mg and other mineral elements needed for crop
growth. The main components of straw are abundant organic carbon such as cellulose,
hemicellulose and lignin, which can improve the soil organic matter content after returning
to the field. As shown in Table 1, there are differences in the composition of straw from
different crops, which have different effects on GHG emissions in the soil after returning
to the field. Zuo et al. studied the effect of returning corn straw pretreated with white rot
fungi on soil GHG emissions, and the results showed that the emissions of CO2 and N2O
increased significantly due to the increase in C and N content [11]. Recent studies have also
suggested that straw return significantly increased the net GWP compared to non-straw
return [80], which is consistent with the results of Wu et al., who reported that straw return
increased GHG. Research on straw returning significantly increasing CH4 emissions has
been widely reported [81]. Wang et al. found that straw returning significantly increased
CH4 emissions by using the method of meta-analysis, and the comprehensive temperature
potential of GHG significantly increased by 87.1% [82]. The impact of straw returning on
N2O is still uncertain. Li et al. and Liu et al. believed that straw returning increased the
content of C in the soil, enhanced the denitrification of microorganisms in the soil, and
promoted the emission of N2O [83,84]. Xu et al. studied the impact of nitrogen fertilizer and
straw on N2O emission from winter wheat farmland. Four treatments, i.e., no N fertilizer
and no straw, straw incorporation only, N fertilizer only, and N fertilization plus straw
incorporation, were established in the experiment. They found that straw incorporation
increased the N content in the soil but had no significant impact on N2O emission [85].
Chen et al. used 15N tracing technology to study the mechanism of N2O increase after straw
return [86]. They found that the C/N ratio of straw application was negatively related to
soil denitrification, and increasing the C/N ratio of straw application could weaken the
N2O emission during denitrification. Straw returning significantly affects the soil microbial
community structure, and the dominant bacteria in the straw degradation process will also
change over time. In order to reduce GHG emissions, the strategy of straw incorporation
should be adjusted. There is a research gap in the impact of straw return on GHG, which
still needs to be studied by relevant professionals.
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Table 1. The emission data of the GHGs from straw addition.

Soil Type Straw Type GHG Compared with No
Straw Addition Year Ref.

Rice-wheat Rice-wheat CH4 +35.0% 2015 [87]

Rice-rapeseed Rapeseed CO2 +6.3%
2016 [88]CH4 +32.9%

Maize-crop Maize straw N2O −11.0~27.0% 2017 [89]

Rice paddy Rice straw
CH4 +39.1%

2017 [48]N2O −77.8%

Rice paddy Rice straw
CO2 +14.8~27.5%

2019 [90]CH4 +36.9~182.1%
N2O −23.5~40.6%

Rice-wheat Wheat CH4 +36.6~80.1% 2021 [91]

Rice-wheat Rice-wheat
CH4 +41.20%

2021 [80]N2O +47.50%

Rice-wheat Rice-wheat
CH4 +5.4~72.2%

2021 [92]N2O −3.3~31.4%

Wheat Wheat
CO2 +11.5~28.3%

2022 [93]N2O +37.1~48.4%

4.4. Microalgae Biofertilizer

Microalgae are widely distributed unicellular or simple multicellular microorganisms
in land, lake and sea. Microalgae can efficiently carry out photosynthesis and be used
for energy production, wastewater treatment and CO2 reduction. Microalgae biofertilizer
is mainly composed of eukaryotic green algae with high photosynthetic efficiency and
prokaryotic cyanobacteria with fixed nitrogen. Microalgae biofertilizer is rich in trace
elements and has the advantages of high efficiency, environmental protection, carbon
fixation and nitrogen fixation to reduce GHG emissions [94]. The beneficial effects of
microalgae on soil and GHG are shown in Figure 3. The photosynthetic efficiency of
microalgae is 10~50 times that of ordinary terrestrial plants. Microalgae can fix CO2 from
the atmosphere and increase O2 content in the soil by absorbing CO2 in the environment and
releasing O2 at the same time [95]. Microalgae in the soil can activate solidified phosphorus
and potassium in soil under the action of biological enzymes, improve the activity of
cationic mineral elements in soil, and promote the accumulation and transformation of
photosynthetic products. The extracellular polysaccharides secreted by microorganisms
and microalgae on the soil surface will form a layer of algal biofilm, which can increase the
carbon and nitrogen sources in the soil by sequestering CO2 and N2 in the atmosphere [96].
Marks et al. added the suspension of chlorella culture to farmland soil, accelerating the
formation of soil photosynthetic biofilm [97].

Cyanobacteria have both carbon and nitrogen-fixation functions. CO2 in the atmo-
sphere is fixed through photosynthesis, similar to green algae. The cyanobacteria are
divided into vegetative and highly differentiated heterocyst cells. Heteroplasts have a
unique nitrogenase, which can reduce N2 to NH3. Nitrate reductase and nitrite reductase in
vegetative cells convert nitrate and nitrite in the environment to NH3 through nitrification
and denitrification, increasing soil nitrogen reserves [98]. Nitrogen-containing substances
such as amino acids, sugars, polysaccharides and a small number of hormones secreted by
cyanobacteria during their growth and reproduction further increase the content of effective
nitrogen in the soil [99,100]. Ali et al. showed that the CH4 emission flux of Bangladeshi
rice soil treated with azolla and cyanobacteria was low in two consecutive rice experiments,
12% lower than that of the control [101]. Prasanna et al. conducted experiments in paddy
fields in New Delhi, India, and found that the CH4 emission of rice soil inoculated with
two kinds of Anabaena biofilm (Anabaena—Trichoderma, and Anabaena—Pseudomonas
aeruginosa) was 50~80% lower than that of rice fields under the traditional mode [102].
Shrestha et al. found that, compared with urea, microalgae biofertilizer did not significantly
increase wheat yield, but reduced nitrogen oxide (N2O and NO) emissions in soil [103].
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Zhang et al. and Hu et al. tried to combine microalgae biofertilizer with biochar or organic
fertilizer and found that the carbon sequestration ability of microalgae was significantly
improved [104,105]. The reason for this is that the addition of biochar and organic fertilizer
increases the intracellular glucose content of microalgae, and microorganisms are more
likely to obtain extracellular glucose; thus, a large amount of intracellular glucose becomes
a part of soil carbon sink, strengthening the carbon sequestration ability of microalgae. It
has been reported that microalgal biofertilizer can not only sequester carbon, fix nitrogen
and reduce GHG emissions, but the dead algal cells can be converted into organic matter
and improve soil fertility and plant yield [106]. Microalgae carbon fixation is also widely
used in the treatment of coal-fired flue gas in factories. Microalgae fix CO2 in coal-fired
flue gas through photosynthesis, and absorb NOx and SOx in flue gas as nitrogen and
sulfur sources for their own growth and reproduction [107,108]. Microalgae, the product of
industrial carbon fixation, happens to be an important source of microalgae biofertilizer,
which will become an effective medium for industrial and agricultural carbon emissions
reduction. Under the background of global green production, microalgae have broad
application prospects and are important resources for future development.
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5. Conclusions and Prospects

There are many factors affecting GHG emissions from farmland soils. Soil tempera-
ture, soil moisture, soil organic matter content and soil pH, as well as other soil physical
and chemical properties change soil GHG emissions by affecting the activities of soil mi-
croorganisms and related enzymes. At present, the feasible technologies to control soil
GHG emissions include biochar application, organic fertilizer application, straw return and
microalgae biofertilizer application. However, there are heavy metals, polycyclic aromatic
hydrocarbons and other organic pollutants in biochar, which may inhibit crop growth,
reduce crop yield and affect the growth and reproduction of soil animals after application;
the organic fertilizer application and straw return require high operation and technology,
so the emission reduction effect in actual application is not stable.

Here, we emphasize a remediation mode of “microalgae biofertilizer” with future
development prospects. Microalgae biofertilizer satisfies people’s demands for healthy soil;
it achieves environmental protection, and agricultural quality and efficiency improvement
through multiple functions such as carbon fixation and nitrogen fixation, crop growth pro-
motion and soil improvement. However, there are few reports on the response mechanism
of microorganisms in soil after applying microalgae biofertilizer. Therefore, it is significant
to explore the underlying mechanism through the GHG emissions of soil after applying
microalgae biofertilizer and the metagenome sequencing technology, which will provide
important theoretical support for the development of microalgae biofertilizer.
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