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Abstract: Differential Evolution (DE) has been extensively adopted for multi-objective optimiza-
tion due to its efficient and straightforward framework. In DE, the mutation operator influences
the evolution of the population. In this paper, an adaptive Grid-based Multi-Objective Differen-
tial Evolution is proposed to address multi-objective optimization (ad-GrMODE). In ad-GrMODE,
an adaptive grid environment is employed to perform a mutation strategy in conjunction with
performance indicators. The grid reflects the convergence and diversity performance together but is
associated with the user-specified parameter “div”. To solve this problem, we adaptively tune the
parameter “div”. Among the DE mutation strategies, “DE/current-to-best/1” is applied extensively
in single-objective optimization. This paper extends the application of “DE/current-to-best/1” to
multi-objective optimization. In addition, a two-stage environmental selection is adopted in ad-
GrMODE, where in the first stage, one-to-one selection between the parent and its corresponding
offspring solution is performed. In addition, to preserve elitism, a stochastic selection is adopted with
respect to performance metrics. We conducted experiments on 16 benchmark problems, including
the DTLZ and WFG, to validate the performance of the proposed ad-GrMODE algorithm. Besides the
benchmark problem, we evaluated the performance of the proposed method on real-world problems.
Results of the experiments show that the proposed algorithm outperforms the eight state-of-the-
art algorithms.

Keywords: multi-objective optimization; Differential Evolution (DE); adaptive grid environment;
mutation; binomial crossover

1. Introduction

Multi-objective Optimization Problems (MOPs) are optimization problems involving
multiple conflicting objectives [1]. Due to the conflicting behavior of objectives in MOPs,
a set of nondominated solutions is determined, known as the Pareto optimal Set (PS), which
represents the Pareto Front (PF) in the objective space [1,2]. Recently, population search-
based metaheuristic genetic algorithms [3–5], Particle Swarm Optimization (PSO) [6], and
DE [7,8] have been able to obtain Pareto-optimal solutions in a single run. Evolutionary
Algorithms (EAs) have been proven efficient in tackling MOPs. Due to their population-
based search mechanism, EAs can obtain pareto-optimal solutions a one-time run. In
general, when solving MOPs, the algorithms aim to achieve two main goals: convergence
(find solutions as close to the PF as possible) and diversity (identifying solutions that are
well distributed) [1,2]. DE is one of the simplest and most powerful EAs to be used in
continuous optimization and has now emerged as one of the state-of-the-art EAs for global
optimization issues and MOPs [9,10]. In the past few decades, after the initial extension
of DE for MOPs [11], research has focused on implementing various multi-objective DE
algorithms that have also produced promising results [10].

In the evolution of DE, three significant operators exist, mutation, crossover, and
selection, to guide the algorithm towards the PF [12,13]. Using the mutation operator,
individuals are exposed to an abrupt change or perturbation, allowing them to discover
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the search space. Following the mutation operation is the crossover operation that in-
creases the population’s diversity. The selection operator selects the best population from
a parent and its offspring for the next generation, which makes sure that the population
never deteriorates. DE has proven to solve Single-objective Optimization Problems (SOPs)
efficiently. Recent advances of DE in handling SOPs can be categorized as (a) designing
new mutation operators [14,15]; (b) developing new parameter control techniques [9,16];
(c) developing crossover operators [17,18]; and (d) combining different mutation strate-
gies [19]. However, extending DE to deal with MOPs is not straightforward. Based on the
review of the literature, the existing multi-objective DE approaches focus on designing
adaptive strategies for mutation operators and control parameters [20,21]. Despite this, few
studies have examined how to design efficient selection operators for maintaining popula-
tion diversity [22–24]. Moreover, designing efficient mutation operators in Multi-Objective
Differential Evolutions (MODEs) to handle MOPs is a crucial but under-explored area
of research. Because some mutation strategies are extensively applied in single-objective
problems. Unlike single-objective problems, MOPs cannot have just one optimal solution.
Therefore, it is challenging to modify it to cope with MOPs.

Taking advantage of these observations, in this study, we introduce a grid-based
mutation operator for DE to deal with MOPs. The proposed mutation operator employs
the “DE/current-to-best/1” mutation strategy based on grid settings. The “DE/current-to-
best/1” mutation strategy is widely adopted in SOPs but extending it to deal with MOPs
is challenging. In single-objective problems, one optimal solution can be considered as
best, but in MOPs, no single solution can be considered as best. Consequently, a set of
promising solutions are required to have good convergence and diversity properties. On
the other hand, the grid reflects convergence as well as diversity as one of its inherent
characteristics. In the grid, all solutions have a deterministic location. The convergence of
a solution can be assessed by comparing the grid location of the solution with other solu-
tions, while diversity can be estimated by determining the number of solutions that have
grid locations that are identical to or similar to the solutions. Additionally, as opposed to the
Pareto dominance criterion, a grid-based criterion provides both quantitative information
and qualitative information on the differences between the various solutions [25]. Hence,
grid settings are employed to facilitate the implementation of the “DE/current-to-best/1”
mutation strategy.

In the literature, grid settings are adopted in GrEA [25], PESA-II [26], Grid-IGD [27], etc.
However, these approaches are sensitive to the parameter settings in the grid. In grid
settings, the parameter “div” challenges the performance of the algorithm. Furthermore,
choosing an inappropriate value of “div” would degrade the performance of the algorithm
severely. However, adapting the parameter “div” can serve as a solution for the aforemen-
tioned issue. Hence, in this paper, we propose an adaptive strategy for grid settings that
fine tunes the parameter “div” and enhances the performance of the algorithm. Next, the
grid setting divides the objective space into different grids, and with the help of perfor-
mance indicators I+E and ISDE, the mutation operation is performed. In the environmental
selection, first, one-to-one selection between the parent and its corresponding offspring
solution is performed based on dominance. Then, the stochastic ranking based on I+E and
ISDE is adopted to select better solutions as parents for the next generations. We highlight
the main contributions of this work as follows:

(1) This paper proposes an adaptive grid-based mutation strategy for differential
evolution to solve MOPs. (2) In ad-GrMODE, a novel and efficient mutation strategy based
on a grid environment is developed. (3) Based on the grid, convergence and diversity are
reflected simultaneously. (4) As “DE/current-to-best/1” has been extensively applied to
single-objective optimization, this paper extends its application to multi-objective optimiza-
tion. (5) To facilitate the implementation of the “DE/current-to-best/1” mutation strategy,
grid settings are used. (6) To identify the best solution, within each grid, two performance
indicators I+E and ISDE are employed in ad-GrMODE. (7) In addition, a two-level environ-
mental selection approach employs one-to-one selection along with a stochastic selection
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with respect to the indicators. (8) ad-GrMODE employs an adaptive grid environment for
mutation strategies in DE.

Following are the remaining sections of the paper. Section 2 discusses the background
of MOP, grid structure, and related work. In Section 3, the new algorithm ad-GrMODE is
described in detail. The experimental setup is presented in Section 4. Section 5 describes
the experimental results and Section 6 concludes the paper.

2. Background

The following sections provide a brief overview of multi-objective optimization in
addition to the definitions of the grid structure and related work.

2.1. Multi-Objective Optimization Problem (MOP)

Multi-objective optimization problems (MOPs) can be defined as problems that have
multiple objectives that are in conflict and must be optimized at the same time [1]. In MOPs,
unlike SOPs, a set of optimal solutions known as PS in decision space and PF in objective
space must be found. A mathematical formulation for MOP is shown below:

min/max f (x) = ( f1(x), f2(x), . . . fm(x)) (1)

s.t.x ∈ Rn

where f(x) represents the vector of simultaneous objective functions. The number of
objective functions and the decision vectors are denoted as m and x, respectively. Rn

denotes the decision space.

Definition 1 (Pareto dominance). Suppose there are two different solutions of A and B ∈ S, then
A dominates B if and only if:

fm(A) ≤ fm(B), ∀ m = 1, 2, . . . , M

∃ i = 1, 2, . . . , M, fi(A) < fi(B).

Definition 2 (Pareto-optimal solution). When no solution dominates a solution x*, it can be
Pareto-optimal. (non-dominated solution).

@ x ∈ Rn : x ≤ x∗

Definition 3 (Pareto-optimal set). In decision variable space, a set of non-dominated solutions
(Pareto-optimal solutions) are nominated as a PS.

Definition 4 (Pareto front). The PF is a set of optimal solutions in the space of objective functions
in MOPs. The Pareto front signifies a set of solutions that are not superior to each other. However,
they are superior to other solutions in space.

2.2. Definition of a Grid Structure

There is a general tendency for a grid to reflect the distribution of solutions in the
evolutionary process using its grid position (i.e., grid coordinates). The difference in grid
coordinates among solutions illustrates the distance between them and, subsequently,
reveals the density of solutions [25].

In terms of convergence, a grid can also serve as a reliable indicator of how solutions
are evolving. As well as comparing whether one solution is better than another, the grid
coordinates also consider the differences in objective values. Therefore, the grid can identify
the solutions tied in the sense of Pareto dominance, which results in more significant
selection pressure during the evolution of many-objective optimization. In [25], a Grid-
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based Evolutionary Algorithm (GrEA) is proposed to solve many-objective optimization
problems. In GrEA, grid bounds can be changed after each iteration. In Figure 1, the grid
setting for the kth objective is indicated. As a first step, the mink(P) and maxk(P) values
of the kth objective are identified based on the individuals of a population P. In every
iteration, the lower and upper grid bounds must be computed to build the grid structure.
The following equation is used for the calculation:

lbk= mink(P)− (maxk(P)−mink(P))/(2× div) (2)

ubk= maxk(P)− (maxk(P)−mink(P))/(2× div) (3)
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Figure 1. Grid setting for the kth objective [25].

A lower boundary is marked by lbk whereas an upper boundary is marked by ubk. The
minimum and maximum values are identified by mink(P) and maxk(P) div is the number of
subdivisions of the objective zone per dimension (e.g., in Figure 1, div = 5). Therefore, the
initial M-dimensional objective space is subdivided into divM hyperboxes. The width dk of
each hyperbox can be determined as:

dk = (ubk − lbk)/div (4)

By using lbk and dk, it is possible to determine the grid location of an individual within
the kth objective:

Gk (x) =
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objective function value, respectively.

2.3. Related Work

In this section, we provide the details of the proposed works of DE and grid-based
approaches. According to a literature review by the authors in [10], numerous types of
MODEs have produced positive results for a variety of MOPs. A Generalized DE (GDE3) is
introduced in [28] that can consider any number of objectives and constraints. The Pareto
DE (PDE) algorithm is described in [11]. The algorithm starts by producing a mutation
operation, in which mutations are randomly generated based on a Gaussian distribution.
Then, it eliminates the solution with the lowest neighbor distance until a certain threshold
is reached for non-dominated solutions. In [29], an expanded PDE algorithm based on
self-adaptive crossovers and mutations is introduced. Additionally, [30] proposes a method
known as the PDE Algorithm (PDEA) based on non-dominated sorting as well as the
ranking selection described in [31]. PDEA has been proved to be suitable for solving MOPs.
A new method that substitutes the crossover and mutation in NSGA-II with a simple DE
method is introduced in [32]. The results show that their approach outperforms NSGA-II
when applied to rotated MOPs. An algorithm for parallel MOPs based on DE multi-
populations is presented in [33] and a new algorithm called Multi-Objective DE (MODE)
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was introduced in [34], which uses Pareto-based ranking and crowding distance [31].
The Pareto-optimal solutions of MOPs are determined in [35] using a penal function and
weighting factor approach. A DEMO was designed in [36], which follows the ranking
and sorting technique of NSGAII [3] for convergence and diversity. Rather than a single
population in MODE, different subpopulations are used in [37] and [38] to increase the
diversity of the solutions. The authors in [20] design a self-adaptive MODE (MOSaDE)
using the mutation strategy described in [10] for use in MOPs. In an approach presented
in [39], with a secondary population, the e-dominance principle is adopted to increase the
variety of the solutions. In [40], an optimal mutation method composed of five mutation
strategies is proposed to improve the DE algorithm through a wavelet basis function
capable of improving search quality, accelerating convergence, and preventing stagnation.
The paper [8] presented an effective solution to the MOED problem based on the MOED
framework, problem-specific mutation, and crossover operators.

A self-adaptive MODE is proposed in [41], which uses the valuable information
extracted from the archived inferior solutions to the superior ones to enhance search per-
formance. In [42], the adaptive MODE is presented and how crowding entropy is used
to estimate diversity is described. The authors in [43] present a new variation of DE,
known as MCDEmv, which uses a mixed-variable co-evolutionary procedure that opti-
mizes continuous as well as discrete variables at the same time. In [44], a Multi Objective
Evolutionary Algorithm (MOEA) was designed to use a set of impossible solutions to
guide the individuals, resulting in a new strategy to handle constraints. A Grid-based
Bidirectional Local Search algorithm (GrBLS) is presented in [45] to obtain sets of solu-
tions that achieve improved convergence to the real Pareto optimal front and are more
distributed. In the GrBLS, the best individual is selected based on the grid-based method.
A grid-based adaptive multi-objective differential evolution algorithm is developed in [24].
Here, by using feedback information throughout evolution, the proposed algorithm can
appropriately adjust the convergence and diversity. The MOEA algorithm employing
constrained decomposition with grids (CCDG-K) is developed to cluster and estimate the
optimal value of k (the number of clusters) [46]. In CCDG-K, a grid-based decomposition
procedure is adopted. The grid-based weighted sum approach is described in [47] that is
applied to the Pareto local search for combinatorial MOPs. This approach was obtained
by applying both the Pareto dominance and weighted sum in a grid system. The Grid
Search-based Multi-population Particle Swarm Optimization algorithm (GSMPSO-MM) is
proposed in [48] to solve multimodal MOPs, providing high-quality solutions in decision
space using a grid in GSMPSO-MM. The authors in [49] introduce a novel optimization al-
gorithm that was inspired by nature and is referred to as MOWOA, which uses a new global
grid ranking technique based on the grid to optimize performance. By integrating grid
system concepts, ref. [5] introduced an adaptive multi-objective evolutionary algorithm
that an adaptive selection procedure dynamically allocates evolutionary opportunities by
analyzing the quality and dominance relationship between subspaces. In addition, an evo-
lutionary scheme and an external archive technique are discussed to enhance evolutionary
effectiveness. In [50], the multi-objective bat algorithm and multi-objective bat algorithm
with the grid are compared based in the performance of the drum. In the multi-objective bat
algorithm with the grid, a pareto dominance process is applied to analyze the relationships
between solutions and continuously modify the PS. In this paper, ref. [51], a grid-based
multi-objective Cauchy differential evolution is developed to solve stochastic dynamic
economic emission dispatch with uncertainty due to wind power. A Cauchy mutation is
used to improve differential evolution, while an adaptive grid is constructed to retain the
Pareto fronts diversity distribution.

3. Proposed Method

This section presents a comprehensive description of the general framework for the ad-
GrMODE. Here, we propose an algorithm that belongs to the class of DE for MOPs. Based
on the literature, it is apparent that grid-based approaches improve algorithm convergence
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and diversity. Consequently, the proposed method takes advantage of grid-based methods
and integrates them into the mutation process of DE.

3.1. General Framework of ad-GrMODE

In Algorithm 1, the general framework for ad-GrMODE is described. The proposed
ad-GrMODE randomly starts with the initialization of the parent population (P) of size “N”.
Then, the I+E [52] and ISDE [53] indicators for the parent population are determined. Next,
the adaptive grid-based mutation strategy is employed to produce the mutant parents,
followed by a crossover operation to generate the offspring population. The indicator
values for the offspring population are calculated and a two-level environmental selection
technique is adapted to preserve the ‘N’ elite solutions. This process continues until the
termination condition is satisfied.

Algorithm 1: General framework of ad-GrMODE
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3.2. Grid-Based Mutation Strategy

The grid-based mutation strategy essentially involves three steps. In the first step, the
objective space of the parent population is segregated into different grids using the adaptive
grid settings. As mentioned earlier, the “div” parameter influences the performance of
grid-based approaches, and obtaining the appropriation “div” parameter is challenging.
Hence, in this paper, we adopt the “div” parameter linearly as follows:

1 + (Ns − 1)∗
[

gt

gmax

]
(6)

where gt and gmax are the current number of generations and the maximum number of
generations, respectively. Ns is an integer. In the experimental section, we analyze the
performance of the proposed algorithm with different Ns values.

After the grid settings, the best solution for adopting the mutation strategy “DE/
current-to-best/1” [54] is obtained in the second step. In single-objective approaches,
determining the best solution is straightforward because the solution with the best objective
value can be considered as the best one. The main issue in employing the “DE/current-to-
best/1” [54] mutation strategy for MOPs is that a single solution cannot be considered the
best due to the conflicting nature of objectives. Hence, the various solutions can represent
the best solution in MOPs. In this paper, we adopt grid settings, and within each grid, the
solution with a better value of I+E and ISDE is chosen as the best solution. A schematic of
how the best solution is obtained is presented in Figure 2.

In Figure 2, f 1(x) and f 2(x) are two minimization objectives. The red color denotes the
best solution, whereas the black color shows the remaining solutions in each grid.
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From Figure 2, we can observe that the individuals in the parent population are segre-
gated into different grid locations. Then, within each grid, the best solution is obtained.
Next, all the solutions try to converge towards the best solution. Selecting the best solution
from each grid improves the diversity along with the convergence. To identify the best
solution in each grid, a stochastic selection method is employed. If rand < 0.5, ISDE is
chosen, otherwise I+E is chosen. For instance, let us assume the best solution is chosen
with respect to the ISDE indicator. As suggested in [53], the ISDE indicator improves both
convergence and diversity. The solution with a better ISDE value within each grid reflects
better convergence and diversity performance than the remaining solutions. Thus, the
solution will guide the search towards the PF. Similarly, the I+E indicator also improves
the convergence and distribution of the solutions. Hence, in the proposed ad-GrMODE,
the advantages of both I+E [52] and ISDE [53] are combined to improve convergence
and diversity.

Finally, the mutation strategy is performed within each grid as:

Ocur = Xcur + F (Pbest − Xcur) + F (Xr1 − Xr2) (7)

where Xcur and Ocur are the current parent and its corresponding offspring solution, respec-
tively, F is the scaling factor, and Xr1 and Xr2 represent random solutions. The description
of grid-based mutation is presented in Algorithm 2.

3.3. Crossover

In DE, the binomial crossover [40,55] is the most common crossover type. Hence, we
apply binomial crossover to produce the offspring in the proposed algorithm. Implementing
the binomial crossover is described as follows:

oi,j,n =

{
vi,j,n βi,j,n ≤ CR
xi,j,n otherwise

(8)
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Algorithm 2: Grid-based mutation

Processes 2022, 10, x FOR PEER REVIEW 7 of 33 
 

 

 
Figure 2. Adaptive grid-based mutation strategy. 

In Figure 2, 𝑓ଵ(𝑥) and 𝑓ଶ(𝑥) are two minimization objectives. The red color denotes 
the best solution, whereas the black color shows the remaining solutions in each grid. 

From Figure 2, we can observe that the individuals in the parent population are seg-
regated into different grid than the remaining solutions. Thus, the solution will guide the 
search towards the PF. Similarly, the 𝐼ாା indicator also improves the convergence and 
distribution of the solutions. Hence, in the proposed ad-GrMODE, the advantages of both 𝐼ாା [52] and ISDE [53] are combined to improve convergence and diversity. 

Finally, the mutation strategy is performed within each grid as: 

Ocur = Xcur + F (Pbest − Xcur) + F (Xr1 − Xr2)  (7)
where Xcur and Ocur are the current parent and its corresponding offspring solution, re-
spectively, F is the scaling factor, and Xr1 and Xr2 represent random solutions. The descrip-
tion of grid-based mutation is presented in Algorithm 2. 

Algorithm 2: Grid-based mutation 
Input: P (Parent population), I1, I2 (Indicators) 
Output: P´ (Mutated population) 
1: Grid-setting (P) 
2: Determine the grid location of each solution in P 
3: for i →1 to |P| 
4:  gx ← grid position of i 
5:  Find the solutions in gx 
6:  Obtain ISDE & 𝐼ாାvalues of solutions in gx 
7:  if rand < 0.5 
8:   Pbest ← max(ISDE) 
9:  else  
10:   Pbest ← min(𝐼ாା) 
11:  end if 

12:  P´(i)← P(i) + F(Pbest − P(i)) + F(Pxr1 − Pxr2) #F→ Mutation scale # Pxr1& Pxr2 → Random 
solutions 

13: end for 
14: Return P’ 

3.3. Crossover 
In DE, the binomial crossover [40,55] is the most common crossover type. Hence, we 

apply binomial crossover to produce the offspring in the proposed algorithm. Implement-
ing the binomial crossover is described as follows: 

The βi,j,n can be expressed as real random numbers uniformly distributed in the range
between 0 and 1, whereas CR ∈ [0, 1] represents the crossover rate.

The offspring oi,n is expected to be entirely distinct from either parent. EAs are
frequently based on this principle. If the offspring reproduces vi,n, then a randomly selected
parameter from xi,n, xi,j,n, replaces the associated parameter of the offspring oi,n, oi,j,n. In
contrast, if oi,n inherits none of the properties from vi,n, therefore no evolution occurs,
a parameter randomly selected by the offspring oi,n, oi,j,n will be substituted with the
mutant parameter vi,n, vi,j,n. Furthermore, the polynomial mutation [56] is employed to
enable better exploration of the solution space surrounding the good solution.

3.4. Environmental Selection

A process of environmental selection preserves the elite solutions as the parent popu-
lation for the next generations. The environmental selection in ad-GrMODE is a two-level
selection process where in the first level, a one-to-one comparison between a parent and its
corresponding offspring is performed based on dominance. In other words, the generated
offspring population is checked for dominance with respect to the parent population. Let
‘p’ be a parent solution and ‘q’ be its corresponding offspring solution. If individual ‘p’
Pareto dominates individual ‘q’, therefore ‘q’ is eliminated. If individual ‘q’ Pareto dom-
inates individual ‘p’, that means ‘p’ is replaced by ‘q’ in the parent population. If both
the individuals ‘p’ and ‘q’ are non-dominated with respect to each other, then both the
individuals are preserved for the second level of environmental selection.

In the second level of environmental selection, the ‘N’ elite individuals are selected
from the preserved pool. A stochastic selection ranking [57] is employed based on I+E [52]
and ISDE [53] to preserve the elite individuals. The individuals are stochastically ranked
according to I+E and ISDE, and the best ‘N’ individuals are preferred. The description of
environmental selection is presented in Algorithm 3.
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Algorithm 3: Environmental selection 
Input: P (Parent population), Q´ (offspring population), N (Population size) 
Output: PN (Final population) 
1: PN ← ∅ 
2: Perform one-to-one selection between parent and offspring populations 
3: SN ← ∅ 
4: for i →1 to N 
5:  if P(i) < Q´(i) then  
6:   SN ← SN ∪ P(i) 
7:  else if P (i) > Q ´(i) then 
8:   SN ← SN ∪ Q ´(i) 
9:  else P (i) ≤ Q ´(i) then 
11:   SN ← SN ∪ {P (i) ∪ Q ´(i)} 
12:  end if 
13: end for 
14: Obtain the indicators values for individuals in SN 
15: Apply stochastic ranking based on indicators 
16: PN´ ← SN (rank(N)) 
17: Return P’ 

4. Experimental Setup 4. Experimental Setup

The following sections explain the algorithms, overall parameter settings, benchmark
problems, and evaluation criteria in detail. The experiments are intended to provide
the following:

(a) An analysis of the performance of the proposed algorithm with different grid settings;
(b) A comparison of the performance of the proposed algorithm with state-of-art algorithms.

In this study, the simulations were conducted on a PC with an Intel Core i5-10400 CPU
processor running at 2.90 GHz and a 64-bit version of Windows 10 with MATLAB 2021b. As
part of this section, eight common MOEAs such as NSGA-III [58], SPEA-R [59], VaEA [60],
SRA [57], MODE [34], EMyO-C [61], MyODEMR [62], and GAMODE [24] are used for
comparison to evaluate the performance of the proposed ad-GrMODE. Experiments were
conducted on 16 test problems from two benchmark test suites, DTLZ [63] and WFG [64]. In
the DTLZ and WFG benchmark problems, 3, 5, 8, and 10 objectives were taken into account.
Depending on the objective, the population size varies. In other words, the population sizes
for 3, 5, 8, and 10 objectives were maintained as 120, 126, 156, and 275, respectively. During
the simulation process, for NSGAIII, SPEA-R, VaEA, and SRA algorithms, the simulated
binary crossover [65] and polynomial mutation [56] were used as variation operators.
The crossover distribution index and probability were chosen as nc = 20 and pc = 1.0,
respectively. The mutation index and probability were set as nm = 20 and pm = 1/D, where
D denotes the number of decision variables. For the MODE algorithm, the “DE/rand/1”
mutation strategy and binomial crossover were adopted with the scaling factor F as 0.5
and crossover rate CR as 0.2 as mentioned in [34]. For EMyO-C and MyODEMR, the
restricted polynomial mutation was applied with the mutation index and probability set to
20 and 1/D, respectively, as described in [61,62]. A binomial crossover with a 0.15 crossover
rate was implemented in EMyO-C and MyODEMR according to [61,62]. In GAMODE,
“DE/current-to-best/1” mutation and binomial crossover were conducted with scaling
factor F of 0.1 and crossover rate CR of 0.1 [24]. In the proposed ad-GrMODE scaling factor
F and crossover rate CR were set as 0.5 and 0.15.
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4.1. Description of Benchmark Problems

There are seven tests in the DTLZ (DTLZ1-DTLZ7) suite [63], while the WFG (WFG1-
WFG9) suite includes nine tests [64]. The DTLZ problem sets are composed of several
features and evaluate several MOEA capabilities. DTLZ1, DTLZ3, and DTLZ6 are typically
multimodal and evaluate the convergence of MOEAs through multiple local Pareto-optimal
fronts. MOEAs have problems converging to the Pareto optimal front owing to the existence
of local Pareto fronts. There are still other test problems, including DTLZ2 and DTLZ4-
DTLZ7, which examine the MOEAs’ ability to solve problems of various forms. The WFG
benchmark problems are based on Pareto-optimal fronts with properties such as convex,
concave, linear, multimodal, degenerated, biased, and disconnected geometries; hence,
they illustrate the range of MOEA abilities. Table 1 shows the parameters and settings for
each problem and their iteration numbers.

Table 1. Parameters and settings of the DTLZ and WFG problem suite.

The Parameters and Settings of the DTLZ

Problem M
Parameter

Number of Variables (D) Generations
K

DTLZ1 3, 5, 8, 10 5

M + k − 1

500

DTLZ2 3, 5, 8, 10 10 250

DTLZ3 3, 5, 8, 10 10 600

DTLZ4 3, 5, 8, 10 10 250

DTLZ5 3, 5, 8, 10 10 250

DTLZ6 3, 5, 8, 10 10 250

DTLZ7 3, 5, 8, 10 20 250

The Parameters and Settings of the WFG

Problem M
Parameter

Number of Variables (D) Generations
K L

WFG1 3, 5, 8, 10

M − 1

10

l + k

500

WFG2 3, 5, 8, 10 10 500

WFG3 3, 5, 8, 10 10 600

WFG4 3, 5, 8, 10 10 250

WFG5 3, 5, 8, 10 10 250

WFG6 3, 5, 8, 10 10 250

WFG7 3, 5, 8, 10 10 250

WFG8 3, 5, 8, 10 10 250

WFG9 3, 5, 8, 10 10 250

4.2. Performance Metric

In the present study, we used the hypervolume indicator (HV) [66], which measures
the algorithms’ efficiency. An algorithm’s convergence and diversity can be assessed using
the hypervolume indicator. A hypervolume metric [66] has the following definition:

HV(S) = Vol(xεs[ f1(x), zr
1]× . . . [ fm(x), zr

m]) (9)

where Vol(.) refers to the Lebesgue measure, zr =
(
zr

1, . . . , zr
m
)T indicates the reference point

on the Pareto-optimal front dominated by all objectives, and S denotes the approximate
solution set. To evaluate the hypervolume metric, a reference point for M-dimensional
is required. From the reference point, a hypercube is constructed and an HV metric
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evaluates the volume of the hypercube dominated by the approximated solution set. First,
the objective values of the approximated solution set obtained by each algorithm are
normalized for the lower and upper bounds of the true PF. Then, a set of reference points is
set as 1.1 times the upper bounds of the true PF. To evaluate the HV indicator, the Monte
Carlo approach is employed with 1,000,000 sampling points. The algorithms with higher
HV values are considered the best-performing algorithms.

According to mathematics, the inverted generational distance (IGD) [67] is defined
as follows:

IGD(S, P∗) = ∑x∈S dist(x, P∗)
|P∗| (10)

where P* refers to uniform distribution sampling points in PF, and S denotes the approx-
imate solution set obtained by the algorithm. d(x,P*) indicates the minimum Euclidean
distance from x to P*. During simulation, a uniform set is composed of around 500, 2000,
4000, and 10,000 points for 3-, 5-, 8-, and 10-objective instances, respectively. The small IGD
value indicates a better-quality approximated set of solutions.

5. Experimental Results

In this section, we provide a detailed analysis of the experimental results. The analysis
is conducted in the following order:

(a) First, the performance of the proposed algorithm is analyzed with different grid
settings. The important parameter in the grid is “div”, which controls the search
space. Hence, we evaluate our algorithm with different values of “div”. Our approach
proposes an adaptive grid setting.

(b) Second, the performance of the proposed method with the adaptive grid settings is
compared with state-of-the-art algorithms.

5.1. Analysis of Grid Setting in the Proposed Method

In this section, we analyze the performance of the proposed method with different grid
settings. Table 2 presents the description of the grid settings employed in the experiments.
The mean values of the hypervolume indicator obtained for the grid settings are presented
in Appendix A Tables A1 and A2. Table 2 shows that for ad-GrMODE1*, the “div” value
linearly increases from the minimum value of ‘2’ to ‘Ns’. We analyzed the performance of
the ad-GrMODE approach by varying ‘Ns’ from 3 to 20.

Table 2. Description of grid settings for the proposed algorithm.

Algorithm Div Algorithm Div

ad-GrMODE1 Constantly maintains
div as “3” ad-GrMODE1* Linearly increasing

div from 2 to 3

ad-GrMODE2 Constantly maintains
div as “5” ad-GrMODE2* Linearly increasing

div from 2 to 5

ad-GrMODE3 Constantly maintains
div as “10” ad-GrMODE3* Linearly increasing

div from 2 to 10

ad-GrMODE4 Constantly maintains
div as “15” ad-GrMODE4* Linearly increasing

div from 2 to 15

ad-GrMODE5 Constantly maintains
div as “20” ad-GrMODE5* Linearly increasing

div from 2 to 20

Table 3 presents the Friedman test ranking [68] results corresponding to each grid
setting. The results presented in Table 3 show that the adaptation of the “div” parameter
exhibits better performance than the fixed value of “div”. In the fixed “div” grid settings,
the performance deteriorates as the value of “div” increases. A similar phenomenon can
also be observed in the adaption of the “div” setting. In other words, in the adaptation,
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as the ‘Ns’ value increase, the performance significantly degrades. With the adaptation
of “div” settings, the ‘Ns’ values with 3 and 5 perform better compared with the other
approaches. Hence, we compared the performance of ad-GrMODE1* and ad-GrMODE2*
with state-of-the-art algorithms.

Table 3. Friedman test ranking results of different grid settings on DTLZ and WFG problems.

Algorithm
Friedman Test

DTLZ WFG

ad-GrMODE1 4.73 4.38

ad-GrMODE2 6.44 6.62

ad-GrMODE3 8.08 7.72

ad-GrMODE4 8.85 8.58

ad-GrMODE5 9.21 9.11

ad-GrMODE1* 2.07 2.58

ad-GrMODE2* 2.64 3.12

ad-GrMODE3* 3.07 3.73

ad-GrMODE4* 4.76 4.30

ad-GrMODE5* 5.10 4.81

The main factors contributing to the better performance of the grid setting with the
‘Ns’ value ranging between 3 and 5 are listed as follows:

(a) The number of grids into which the objective space can be partitioned is evalu-
ated as divM, where M is the number of objectives. For instance, if “div = 20” and
“M = 10” then the objective space is divided into 2010 grids. As arbitrarily large
population size cannot be used for the evolutionary process, dividing the controlled
population size into 2010 grids results in an inadequate number of solutions in each
grid. In other words, each grid is associated with hardly one or two solutions,
and the proposed grid-based mutation does not work with insufficient solutions
within each grid because selection pressure is lost. Thus, the grid setting with mini-
mum “div”, value performs better than and the performance degrades as the “div”
value increases.

(b) Second, fixed grid settings do not work for all types of problems. Instead, different
grid settings are helpful in exploring the search space at every stage of evolution. The
adaptive approach provides different grid settings at each evolution stage and helps
achieve better convergence and diversity.

(c) The main principle behind our grid-based mutation is that a few grids are used
initially to achieve convergence. Gradually, the number of grids increases, which
improves the diversity by providing a proper distribution of solutions.

Based on these observations, the approaches ad-GrMODE1* and ad-GrMODE2* with
‘Ns’ values 3 and 5, respectively, perform better than the rest of the grid settings. Because
further increasing the number of grids is not advisable, ‘Ns’ with values ranging from
3 to 5 have a better performance. In the next section, we compare the performance of
ad-GrMODE1* and ad-GrMODE2* with state-of-the-art algorithms.

5.2. Comparing the Proposed Method and State-of-the-Art Algorithms Using the DTLZ Problems
Based on the HV Metric

Appendix A Table A3, compares the mean and standard deviation of the HV indicators
for the DTLZ problems to evaluate each algorithm. The proposed algorithm was compared
with the algorithms under consideration by means of symbols ((+/=/-) and (†/≡/↓)), and
significance tests were carried out for each algorithm. The symbols ‘+’ and ‘†’ indicate that
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the proposed ad-GrMODE is superior to the related algorithms, the symbols ‘=’ and ‘≡’
indicate that the ad-GrMODE is similar to the related algorithms, and the symbols ‘-’ and
‘↓’ indicate that the ad-GrMODE performs poorly compared with the related algorithms.

As exhibited in Appendix A Table A3, ad-GrMODE1* achieved 16, 22, 23, 15, 20, 12,
25, and 26 best results out of 28 test instances for the DTLZ test problems compared with
NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE, respectively.
In contrast, ad-GrMODE1* demonstrated an inferior performance compared with NSGA-III,
SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on 9, 4, 2, 8, 5, 11, 1, and
1 out of 28 test instances, respectively. ad-GrMODE1* demonstrated a similar performance
to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on three,
two, three, five, three, five, two, and one out of 28 test instances, respectively. Appendix A
Table A3 illustrates that our proposed ad-GrMODE1* is superior to SPEA-R, VaEA, MODE,
MyODEMR, and GAMODE for DTLZ problems. Compared with NSGAIII and SRA, the ad-
GrMODE1* algorithm also achieves better performance. It is worth noting that the number
of tests in which ad-GrMODE1* outperforms EMyO-C is almost identical to the number
of tests in which ad-GrMODE1* performs poorly compared with EMyO-C (12 versus 11).
Therefore, according to the results presented in Appendix A Table A3, ad-GrMODE1* is
highly competitive with EMyO-C.

Next, we analyzed the ad-GrMODE2* results based on the DTLZ problem as shown
in Appendix A Table A3. The test results show that ad-GrMODE2* outperforms NSGA-III,
SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on 16, 22, 21, 13, 20, 13,
25 and 26 out of 28 test instances, respectively. ad-GrMODE2* performs poorly compared
with NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on
10, 5, 4, 12, 6, 12, 2 and 1 out of 28 test instances, respectively. ad-GrMODE2* performed
similarly to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE
on two, one, three, three, two, three, one and one out of 28 test instances, respectively.
In Appendix A Table A3, ad-GrMODE2* demonstrates to be superior to SPEA-R, VaEA,
MODE, MyODEMR, and GAMODE for the DTLZ problems. In addition, results indicate
that the ad-GrMODE2* algorithm outperforms NSGAIII and can maintain competitive
performance compared with EMyO-C and SRA.

5.3. Comparing the Proposed Method and State-of-the-Art Algorithms Using the WFG Problems
Based on the HV Metric

In this section, we experimentally compare the performance of the ad-GrMODE1*
and ad-GrMODE2* algorithms with state-of-art algorithms using the WFG problems. In
Appendix A Table A4, the results of the HV indicator are expressed as mean values and
standard deviations. In Appendix A Table A4, it can be observed that the performance
of ad-GrMODE is better when compared with NSGAIII, SPEA-R and EMyO-C and it is
superior to the MODE, MyODEMR, and GAMODE competitive when compared with
VaEA and SRA. According to Appendix A Table A4, ad-GrMODE1* achieved 16, 19, 15, 16,
28, 20, 28, and 22 best results out of 36 test instances for the WFG problem compared with
NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE, respectively.
ad-GrMODE1* performed similarly to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-
C, MyODEMR, and GAMODE on 14, 10, 9, 8, 8, 12, 5, and 11 out of 36 test instances,
respectively. Hence, based on the comparison of the number of best and similar test results,
Ad-GrMODE1* demonstrates the best performance.

Next, we assessed the ad-GrMODE2* performance on the WFG test problems as shown
in Appendix A Table A4. According to the results, ad-GrMODE2* performs similarly to
ad-GrMODE1* (the proportion of test instances are the same) when compared with SPEA-R,
VaEA, SRA, MODE, and EMyO-C. As also shown in Appendix A Table A4, ad-GrMODE2*
produces better results on 15 test cases, is competitive on 14 test cases, and performed
poorly on 7 out of 36 WFG test problems compared with NSGAIII. The ad-GrMODE2*
exhibits consistently impressive results on the WFG6, WFG7, and WFG8 test problems, but
performs poorly on the WFG4 and WFG9. Compared to the MyODEMR, the ad-GrMODE2*
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algorithm achieved better results in 28 cases, similar results in four cases, and poor results
in four cases. As compared to GAMODE, the ad-GrMODE2* generated better results in
22 cases, equivalent results in 10 cases, and poor outcomes in three cases. Additionally,
the ad-GrMODE2* is significantly more effective on WFG1, WFG2, WFG5, WFG6, WFG7,
WFG8, and WFG9 test problems and is less successful on the WFG4.

5.4. Comparing the Proposed Method and State-of-the-Art Algorithms Using the DTLZ Problems
Based on the IGD Metric

Here, we evaluate the performance of the ad-GrMODE1* and ad-GrMODE2* algo-
rithms with state-of-art algorithms for the DTLZ problems based on the IGD indicator.
Appendix A Table A5 shows the mean and standard deviation of the IGD indicators. Based
on Appendix A Table A5, ad-GrMODE1* performed best for 23, 23, 23, 23, 23, 20, 24, and 26
out of 28 tests compared to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR,
and GAMODE. ad-GrMODE1* showed similar results to NSGA-III, SPEA-R, VaEA, SRA,
MODE, EMyO-C, MyODEMR, and GAMODE on one, two, one, one, zero, one, zero, and
one out of 28 test instances, respectively. Despite this, ad-GrMODE1* performed weaker
than NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on four,
three, four, four, five, seven, four, and one out of 28 test instances, respectively. As shown
in Appendix A Table A5, the proposed ad-GrMODE1* is superior to NSGA-III, SPEA-R,
VaEA, SRA, MODE, MyODEMR, and GAMODE in terms of DTLZ problems.

Then, we examined the ad-GrMODE2* outcomes using DTLZ based on IGD, which is
shown in Appendix A Table A5. A comparison of the test results shows that ad-GrMODE2*
performs better than NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and
GAMODE on 22, 23, 23, 19, 23, 20, 24, and 27 out of 28 test instances, respectively. ad-
GrMODE2* was comparable to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyO-
DEMR, and GAMODE on one, zero, one, three, zero, one, zero, and zero out of 28 tests
instances, respectively. ad-GrMODE2* is inferior to NSGA-III, SPEA-R, VaEA, SRA, MODE,
EMyO-C, MyODEMR, and GAMODE on five, five, four, six, five, seven, four, and one out
of 28 tests instances, respectively. According to Appendix A Table A5, the proposed ad-
GrMODE2* is superior to NSGA-III, SPEA-R, VaEA, MODE, MyODEMR, and GAMODE
on DTLZs. Furthermore, the outcomes show that the ad-GrMODE2* algorithm outperforms
SRA and EMyO-C.

5.5. Comparing the Proposed Method and State-of-the-Art Algorithms Using the WFG Problems
Based on the IGD Metric

The IGD indicator results for the WFG problems are compared in Appendix A Table A6
to evaluate each algorithm. From Appendix A Table A6, it is evident that the performance
of ad-GrMODE1* is significantly better than NSGA-III, SPEA-R, SRA, MODE, EMyO-C,
MyODEMR, and GAMODE, and it is better than the VaEA. In Appendix A Table A6,
ad-GrMODE1* obtained 23, 25, 21, 24, 31, 25, 33, and 24 best results out of 36 test cases
for the WFG problem in comparison to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C,
MyODEMR, and GAMODE, respectively. ad-GrMODE1* showed similar performance to
NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on six, five,
five, five, four, five, five, and one out of 36 tests cases, respectively. ad-GrMODE1* showed
poor performance on NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and
GAMODE on 7, 6, 10, 7, 1, 6, 2, and 8 out of 36 tests cases, respectively.

Next, we evaluated the ad-GrMODE2* performance for WFG tests, summarized in
Appendix A Table A6. In Appendix A Table A6, ad-GrMODE2* achieved 22, 24, 21, 23,
31, 24, 33, and 23 best outcomes out of 36 test cases on WFG, compared with NSGA-III,
SPEA-R, VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE, respectively. ad-
GrMODE2* showed similar performance to NSGA-III, SPEA-R, VaEA, SRA, MODE, EMyO-
C, MyODEMR, and GAMODE on five, eight, four, five, five, four, one, and three out of
36 tests cases, respectively. ad-GrMODE2* displayed poor results on NSGA-III, SPEA-R,
VaEA, SRA, MODE, EMyO-C, MyODEMR, and GAMODE on 9, 4, 11, 8, 0, 8, 2, and 10
out of 36 tests cases, respectively. As can be seen in Appendix A Table A6, the result of
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ad-GrMODE2* is superior to NSGA-III, SPEA-R, SRA, MODE, EMyO-C, MyODEMR, and
GAMODE, and it is better than the VaEA.

5.6. Overall Performance Comparison of ad-GrMODE with State-of-the-Art Algorithms for the
DTLZ and WFG Problems

This section presents the overall comparison of the ad-GrMODE1* and ad-GrMODE2*
algorithms against state-of-the-art algorithms for both the DTLZ and WFG tests based on
HV and IGD indicators. Additionally, the Wilcoxon signed-rank tests at the 5% significance
level for the HV and the parallel coordinates of the Pareto front solutions determined using
the various algorithms are presented. Based on HV results shown in Table 4, it can be
observed that out of 64 tests, the ad-GrMODE1* algorithm is more effective in 32 cases, is
similar in 17 cases, and worse in 15 cases compared with the NSGAIII algorithm. Based on
the comparisons between SPEA-R and ad-GrMODE1*, ad-GrMODE1* perform better in
41 instances, similarly in 12 cases, and poorly in 11 instances. Compared with the VaEA and
SRA algorithms, the ad-GrMODE1* algorithm demonstrates superior performance in 38
and 31 instances, equivalent performance in 12 and 13 instances, and worse performance in
14 and 20 instances, respectively. ad-GrMODE1* performs better than MODE and EMyOC
in 48 and 32 instances, similar in 11 and 17 instances, and worse in 5 and 15 instances
respectively. A comparison of the ad-GrMODE1* algorithm with the MyODEMR algorithm
highlights that it performs better in 53 instances, similarly in seven instances, and worse in
four instances. Comparing ad-GrMODE1* with the GAMODE indicates that it has a better
performance in 48 instances, similar performance in 12 instances, and poor performance
in four.

Table 4. Overall performance comparison of the proposed algorithm with state-of-the-art algorithms
based on HV and IGD for DTLZ and WFG test problems.

Compared
with

Problem
Suite NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE

Comparison of overall performance based on the HV

Ad-
GrMODE1*

(+/=/-)

DTLZ 16/3/9 22/2/4 23/3/2 15/5/8 20/3/5 12/5/11 25/2/1 26/1/1

WFG 16/14/6 19/10/7 15/9/12 16/8/12 28/8/0 20/12/4 28/5/3 22/11/3

Overall 32/17/15 41/12/11 38/12/14 31/13/20 48/11/5 32/17/15 53/7/4 48/12/4

Ad-
GrMODE2*
(†/≡/↓)

DTLZ 16/2/10 22/1/5 21/3/24 13/3/12 20/2/6 13/3/12 25/1/2 26/1/1

WFG 15/14/7 19/10/7 15/9/12 16/8/12 28/8/0 20/12/4 28/4/4 22/10/4

Overall 31/16/17 41/11/12 36/12/16 29/11/24 48/10/6 33/15/16 53/5/6 48/11/5

Comparison of overall performance based on the IGD

Ad-
GrMODE1*

(+/=/-)

DTLZ 23/1/4 23/2/3 23/1/4 23/1/4 23/0/5 20/1/7 24/0/4 26/1/1

WFG 23/6/7 25/5/6 21/5/10 24/5/7 31/4/1 25/5/6 33/1/2 24/4/8

Overall 46/7/11 48/7/9 44/6/14 47/6/11 54//4/6 45/6/13 57/1/6 50/5/9

Ad-
GrMODE2*
(†/≡/↓)

DTLZ 22/1/5 23/0/5 23/1/4 19/3/6 23/0/5 20/1/7 24/0/4 27/0/1

WFG 22/5/9 24/8/4 21/4/11 23/5/8 31/5/0 24/4/8 33/1/2 23/3/10

Overall 44/6/14 47/8/9 44/5/15 42/8/14 54/5/5 44/5/15 57/1/6 50/3/11

The signs ‘+’, ‘=’, and ‘-’ depicts the instances, ad-GrMODE1* performs better, similar and worse with respect
to state-of-the-art algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the in-stances, ad-GrMODE2* performs better,
similar and worse with respect to state-of-the-art algorithms.

Likewise for ad-GrMODE2*, the HV results in Table 4 show that out of the 64 test
instances, ad-GrMODE2* performed better than NSGAIII in 31 tests, similarly in 16 tests,
and worse in 17 tests. Comparing the ad-GrMODE2* approach with the SPEA-R and
VaEA algorithms, the results show that ad-GrMODE2* performs better in 41 and 36 tests,
similarly in 11 and 12 tests, and worse in 12 and 16 tests, respectively. In comparison
with the SRA algorithm, the proposed algorithm performed better in 29 cases, similarly
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in 11 cases, and worse in 24 cases. Compared to MODE and EMyOC, ad-GrMODE2*
outperforms on 48 and 33 tests, is similar on 10 and 15 tests, and is worse on 6 and
16 tests, respectively. Comparing the ad-GrMODE2* with the MyODEMR and GAMODE
algorithms shows that ad-GrMODE2* performs better in 53 and 48 instances, similarly in 5
and 11 instances, and worse in six and five instances. The signs ‘+’, ‘=’, and ‘-’ depicts the
instances, ad-GrMODE1* performs better, similar and worse with respect to state-of-the-art
algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the instances, ad-GrMODE2* performs better,
similar and worse with respect to state-of-the-art algorithms.

In accordance with the IGD results shown in Table 4, from the analysis of 64 tests,
the ad-GrMODE1* algorithm showed better results in 46, 48, 44, 47, 54, 45, 57, and
50 cases, showed similar results in 7, 7, 6, 6, 4, 6, 1, and 5 cases, and showed worse results
in 11, 9, 14, 11, 6, 13, 6, and 9 cases compared with the NSGAIII, SPEA-R, VaEA, SRA,
MODE, EMyO-C, MyODEMR, and GAMODE algorithms, respectively. The ad-GrMODE2*
algorithm produced better outcomes in 44, 47, 44, 42, 54, 44, 57, and 50 cases, exhibited
similar outcomes in 6, 8, 5, 8, 5, 5, 1, and three cases, and produced poorer outcomes in 14,
9, 15, 14, 5, 15, 6, and 11 cases compared with the NSGAIII, SPEA-R, VaEA, SRA, MODE,
EMyO-C, MyODEMR, and GAMODE algorithms, respectively.

To further compare the proposed algorithm with state-of-the-art algorithms and evalu-
ate its effectiveness, we applied the Wilcoxon signed-rank tests at a 5% significance level
with respect to the HV metrics on the DTLZ and WFG problems as shown in Figure 3. The
symbols in Figure 3 indicate the number of tests in which the proposed ad-GrMODE1*
and ad-GrMODE2* perform worse, similar, and better than the state-of-the-art algorithms.
Figure 3a illustrates that ad-GrMODE1* outperforms the state-of-the-art algorithms for the
DTLZ and WFG problems. Additionally, it can be observed that the difference is significant
with respect to the number of instances where ad-GrMODE1* performs more efficiently
and worse than the state-of-the-art algorithms. Figure 3b shows that the ad-GrMODE2*
algorithm performs better than the NSGAIII, SPEA-R, VaEA, MODE, EMyO-C, MyODEMR,
and GAMODE algorithms for the overall test instances (DTLZ and WFG). The SRA algo-
rithm; however, shows a competitive performance when compared with the ad-GrMODE2*
method. Furthermore, similar to ad-GrMODE1*, there is a large difference in the number
of instances where ad-GrMODE2* is better and worse than state-of-the-art algorithms.
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Figure 3. Wilcoxon signed-rank tests at a 5% significance level with respect to the HV for the DTLZ
and WFG problems using ad-GrMODE and state-of-the-art algorithms: (a) ad-GrMODE1* compared
with state-of-the-art algorithms; (b) ad-GrMODE2* compared with state-of-the-art algorithms.

A parallel set of coordinates that represent the Pareto front solutions based on the
different algorithms was also determined. Figures 4 and 5 illustrate the parallel coordinates
in the objective space for the 8- and 10-objective DTLZ1 problems. As can be observed from
Figure 4, for the eight-objective DTLZ1 problem, all the algorithms except the NSGAIII,
SPEA-R, VaEA, MODE, and MyODEMR algorithms show better convergence capabilities
as well as good distributions. Figure 5, showing plots of the 10-objective DTLZ1 problem,
demonstrates that the proposed method achieves better convergence and diversity when
compared with the other algorithms. Instead, NSGAIII, SPEA-R, VaEA, MODE, and
MyODEMR result in poor convergence and diversity.
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5.7. Runtime Evaluation of ad-GrMODE Compared with State-of-the-Art Algorithms

The runtime performance evaluation of the ad-GrMODE algorithm against state-of-art
algorithms for 3-, 5-, 8-, and 10-objective problems is presented in this section. To compare
time, all simulations were performed on a PC running a 2.90 GHz Intel Core i5-10400 CPU
and Windows 10, 64-bit with MATLAB 2021b installed. Considering the results shown in
Table 5, it is apparent that ad-GrMODE takes less computational time compared with the
other algorithms except NSGAIII, SPEA-R, and VaEA for all of the objectives in the DTLZ1
problem. Despite the longer computation time of the proposed algorithm when compared
with the NSGAIII, SPEA-R, and VaEA algorithms, it outperforms these algorithms in terms
of HV results. MODE requires less computation time than the proposed method for the
3- and 10-objective problems. For the five- and eight-objective problems, ad-GrMODE has
a faster execution time compared with MODE.

Table 5. Runtime evaluation of the proposed algorithm compared with state-of-the-art algorithms for
the DTLZ1 problem.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE ad-
GrMODE1*

ad-
GrMODE2*

DTLZ1 3 0.7826
(0.0619)

4.3906
(0.3950)

1.9692
(0.0841)

48.3371
(1.3896)

6.0658
(3.2730)

153.528
(93.8307)

15.8150
(8.5747)

58.7822
(32.4275)

7.4222
(0.5226)

6.4673
(0.2709)

5 1.1940
(0.0396)

6.3420
(0.1541)

3.1808
(0.0900)

82.4202
(0.8441)

19.1898
(4.4339)

607.0595
(161.9189)

49.7501
(11.4753)

110.7197
(63.4026)

14.6811
(0.2029)

12.3303
(0.2275)

8 1.9808
(0.2472)

9.1888
(0.1052)

5.1819
(0.1455)

144.0251
(4.4180)

38.2911
(6.6981)

1299.47
(251.6444)

99.9088
(17.6567)

405.0303
(230.25)

29.0712
(0.5332)

23.8091
(0.3178)

10 3.7808
(0.2605)

25.6134
(0.2891)

23.3892
(0.7395)

556.5698
(10.9311)

81.4116
(18.5941)

2971.669
(677.4956)

233.7770
(56.8272)

2.8723 × 10+3

(1.6126 × 10+3)
129.1142
(1.7147)

105.7771
(1.2593)

5.8. Overall Performance Comparison of ad-GrMODE with State-of-the-Art Algorithms on
Real-World Problem

Here, we evaluate the performance of the proposed ad-GrMODE algorithm with state-
of-the-art algorithms on real-world problems. In this study, we examined three real-world
problems: the Reinforced concrete beam design (RCBD) problem [69], the Pressure vessel
design (PVD) problem [69], and the Gear train design (GTD) problem [69]. The Reinforced
concrete beam design problem described in [69] consists of two-objective functions with
three decision variables. The pressure vessel design problem [69] is a two-objective problem
involving four variables. The gear train design problem [69] problem is composed of
three objective functions and four decision variables. The real-world problems considered
in this paper have PFs associated with mixed, concave, and disconnected characteristics in
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nature. The population sizes are maintained as 100, 100, and 120 for RCBD [69], PVD [69],
and GTD [69] problems, respectively. The number of iterations is set as 250 for all the
problems. We have presented the HV results for real-world problems in order to analyze the
performance comparison of the proposed algorithm with the state-of-the-art algorithms. In
Table 6, the mean and standard deviation of the HV indicator values are shown. To measure
the HV indicator value, a similar process that is used to measure the HV value for DTLZ
and WFG problems was applied. The results shown in Table 6 reveal that the proposed
algorithm outperforms the state-of-the-art algorithm on all three real-world problems.

Table 6. Mean and standard deviation values of HV results of proposed algorithm with state of art
algorithms on real-world problems.

Problem NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1 adGrMODE2

RCBD 9.608 × 10−1

(5.89 × 10−3)
9.601 × 10−1

(9.351 × 10−4)
9.600 × 10−1

(5.71 × 10−4)
9.611 × 10−1

(1.72 × 10−4)
8.574 × 10−2

(2.64 × 10−4)
9.402 × 10−1

(3.92 × 10−3)
2.854 × 10−1

(1.85 × 10−1)
6.231 × 10−1

(1.25 × 10−2)
9.612 × 10−1

(1.81 × 10−4)
9.612 × 10−1

(2.49 × 10−4)

PVD 9.636 × 10−1

(5.27 × 10−3)
9.648 × 10−1

(3.62 × 10−4)
9.626 × 10−1

(2.08 × 10−3)
9.661 × 10−1

(3.83 × 10−4)
7.881 × 10−1

(1.19 × 10−2)
9.586 × 10−1

(2.50 × 10−3)
2.655 × 10−2

(1.45 × 10−1)
9.602 × 10−1

(6.52 × 10−3)
9.664 × 10−1

(2.73 × 10−4)
9.663 × 10−1

(2.14 × 10−4)

GTD 7.086 × 10−1

(1.50 × 10−2)
6.975 × 10−1

(5.97 × 10−3)
7.093 × 10−1

(4.62 × 10−4)
7.080 × 10−1

(1.40 × 10−3)
8.260 × 10−3

(9.63 × 10−5)
7.086 × 10−1

(8.01 × 10−4)
2.339 × 10−1

(7.53 × 10−2)
7.092 × 10−1

(1.54 × 10−2)
7.094 × 10−1

(4.02 × 10−4)
7.092 × 10−1

(4.79 × 10−4)

6. Conclusions and Future Work

DE has become a popular approach used to solve single-objective problems and has
been extended to solve multi-objective problems due to its efficient and straightforward
structure. In DE, mutation and crossover operators play a prominent role in influencing
the evolution of the population. This article presents an ad-GrMODE algorithm for multi-
objective optimization. With ad-GrMODE, a novel and efficient mutation strategy based on
a grid environment is proposed. The mutation strategy “DE/current-to-best/1”, popularly
adopted for single-objective optimization, is extended for multi-objective optimization
using the adaptive grid environment. Furthermore, the performance indicators I+E and ISDE
are employed to find the best solution to perform the “DE/current-to-best/1” mutation
strategy. A two-level environmental selection is performed to preserve ‘N’ elite individuals
for the next generation. In the experimental design, we evaluated the performance of
the proposed approach with different grid settings. Then, the methods with better grid
settings compete against existing algorithms. The experimental results show that the
proposed approach exhibits better performance than the existing algorithms. As discussed
above, the proposed ad-GrMODE algorithm has proven to exhibit good performance when
solving MOPs.

Consequently, future research could explore how this algorithm can be applied to
constrained multi-objective problems.
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Abbreviations

DE Differential Evolution
ad-GrMODE adaptive Grid-based multi-objective differential evolution
MOP Multi-objective Optimization Problem
PS Pareto optimal Set
PF Pareto Front
PSO Particle Swarm Optimization
EA Evolutionary Algorithm
SOP Single-objective Optimization Problem
MODE Multi-Objective Differential Evolution
GrEA Grid-based evolutionary algorithm
PESA-II Pareto envelope-based selection algorithm II
Grid-IGD Grid-based Inverted Generational Distance
GDE3 Generalized Differential Evolution
PDE Pareto Differential Evolution
NSGA-II Non-dominated Sorting Genetic Algorithm II
PDEA Pareto Differential Evolution Algorithm
DEMO Differential Evolution for Multi-objective Optimization
MOED Multi-objective Energy Disaggregation
MOSaDE Multi-objective Optimization based on Self-adaptive Differential Evolution
GrBLS Grid-based Bidirectional Local Search
MOEA Multi objective Evolutionary Algorithm

CCDG-K
Multi objective evolutionary algorithm base on Constrained Decomposition
with Grids

GSMPSO-MM Grid Search-based Multi-population Particle Swarm Optimization

MOWOA
opposition-based Multi-Objective Whale Optimization Algorithm with global
grid ranking

NSGA-III Non-dominated Sorting Genetic Algorithm III
SPEA-R Strength Pareto Evolutionary Algorithm based on Reference direction
VaEA Vector angle-based Evolutionary Algorithm
SRA Stochastic Ranking Algorithm
EMyO-C Clustering-based selection for Evolutionary Many-objective Optimization
MyODEMR Many-Objective Differential Evolution with Mutation Restriction
GAMODE Grid-based Adaptive Multi-Objective Differential Evolution
HV Hypervolume
IGD Inverted Generational Distance
RCBD Reinforced Concrete Beam Design
PVD Pressure Vessel Design
GTD Gear Train Design

Appendix A

Table A1. The mean values of the HV indicator for different grid settings of the proposed algorithm
on DTLZ.

# M

ad
-G

rM
O

D
E1

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E3

ad
-G

rM
O

D
E4

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E1

*

ad
-G

rM
O

D
E2

*

ad
-G

rM
O

D
E3

*

ad
-G

rM
O

D
E4

*

ad
-G

rM
O

D
E5

*

D
T

LZ
1

3 0.8397 0.8365 0.8128 0.7322 0.6750 0.8392 0.8392 0.8385 0.8374 0.8364

5 0.9677 0.9515 0.1453 0.0043 0.0023 0.9692 0.9674 0.9671 0.9651 0.9641

8 0.9879 0.6445 0.0302 0.0000 0.0000 0.9927 0.9930 0.9913 0.9894 0.9904

10 0.9974 0.9604 0.1336 0.0063 0.0000 0.9989 0.9987 0.9987 0.9981 0.9785



Processes 2022, 10, 2316 21 of 33

Table A1. Cont.

# M
ad

-G
rM

O
D

E1

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E3

ad
-G

rM
O

D
E4

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E1

*

ad
-G

rM
O

D
E2

*

ad
-G

rM
O

D
E3

*

ad
-G

rM
O

D
E4

*

ad
-G

rM
O

D
E5

*

3 0.5653 0.5639 0.5631 0.5619 0.5612 0.5659 0.5651 0.5653 0.5644 0.5648

5 0.7899 0.7688 0.7503 0.7454 0.7461 0.7976 0.7964 0.7941 0.7920 0.7905

8 0.8469 0.7730 0.7492 0.7473 0.7418 0.8889 0.8762 0.8645 0.8563 0.8560D
TL

Z
2

10 0.8980 0.8182 0.7929 0.7833 0.7788 0.9273 0.9215 0.9110 0.9044 0.9007

D
TL

Z
3

3 0.5115 0.2798 0.0609 0.0000 0.0014 0.5546 0.5248 0.4865 0.3856 0.3112

5 0.6572 0.0417 0.0000 0.0000 0.0000 0.7606 0.6724 0.4271 0.2507 0.1664

8 0.5135 0.0400 0.0000 0.0000 0.0000 0.7730 0.7109 0.6526 0.3768 0.2751

10 0.8629 0.2162 0.0000 0.0000 0.0000 0.9334 0.8773 0.8474 0.7967 0.7024

3 0.5308 0.5184 0.5224 0.5052 0.5122 0.5442 0.5364 0.5581 0.5454 0.5467

5 0.7656 0.7438 0.7244 0.7223 0.7251 0.7857 0.7760 0.7815 0.7724 0.7673

8 0.8998 0.8875 0.8832 0.8788 0.8708 0.9144 0.9109 0.9049 0.9056 0.9019D
TL

Z
4

10 0.9606 0.9559 0.9511 0.9442 0.9454 0.9609 0.9668 0.9655 0.9643 0.9654

D
TL

Z
5

3 0.1996 0.1998 0.1996 0.1997 0.1995 0.1998 0.1998 0.1998 0.1997 0.1997

5 0.1244 0.1247 0.1239 0.1227 0.1234 0.1246 0.1246 0.1245 0.1246 0.1241

8 0.1012 0.1007 0.0984 0.0972 0.0966 0.1003 0.1003 0.0994 0.1004 0.1003

10 0.0955 0.0963 0.0939 0.0920 0.0904 0.0952 0.0952 0.0955 0.0948 0.0944

3 0.1996 0.1437 0.0000 0.0000 0.0000 0.1999 0.1999 0.2001 0.1907 0.1930

5 0.0375 0.0000 0.0000 0.0000 0.0000 0.1165 0.1152 0.0688 0.0381 0.0226

8 0.0010 0.0000 0.0000 0.0000 0.0000 0.0507 0.0361 0.0222 0.0097 0.0009D
TL

Z
6

10 0.0090 0.0000 0.0000 0.0000 0.0000 0.0759 0.0543 0.0537 0.0171 0.0185

D
T

LZ
7

3 0.3894 0.3896 0.3908 0.3983 0.3810 0.3844 0.3882 0.3972 0.3717 0.4000

5 0.3225 0.2932 0.2128 0.2077 0.2074 0.3239 0.3251 0.3283 0.3205 0.3208

8 0.1358 0.0096 0.0102 0.0099 0.0102 0.2227 0.2110 0.2208 0.1950 0.1748

10 0.0301 0.0009 0.0007 0.0006 0.0009 0.1862 0.1736 0.1233 0.0843 0.0901

Table A2. The mean values of the HV indicator for different grid settings of the proposed algorithm
on WFG.

# M

ad
-G

rM
O

D
E1

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E3
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-G

rM
O

D
E4

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E1

*

ad
-G

rM
O

D
E2

*

ad
-G

rM
O

D
E3

*

ad
-G

rM
O

D
E4

*

ad
-G

rM
O

D
E5

*

W
FG

1

3 0.2852 0.2811 0.2805 0.2793 0.2793 0.2855 0.2827 0.2817 0.2811 0.2810

5 0.2800 0.2794 0.2789 0.2752 0.2494 0.2801 0.2797 0.2798 0.2795 0.2795

8 0.2294 0.2295 0.2295 0.2268 0.2060 0.2294 0.2294 0.2293 0.2294 0.2294

10 0.2071 0.2070 0.2073 0.2073 0.2054 0.2071 0.2071 0.2072 0.2072 0.2073
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Table A2. Cont.

# M
ad

-G
rM

O
D

E1

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E3

ad
-G

rM
O

D
E4

ad
-G

rM
O

D
E2

ad
-G

rM
O

D
E1

*

ad
-G

rM
O

D
E2

*

ad
-G

rM
O

D
E3

*

ad
-G

rM
O

D
E4

*

ad
-G

rM
O

D
E5

*

3 0.2352 0.2351 0.2347 0.2345 0.2342 0.2352 0.2352 0.2351 0.2352 0.2351

5 0.2115 0.2113 0.2106 0.2101 0.2100 0.2115 0.2115 0.2114 0.2116 0.2116

8 0.1854 0.1851 0.1840 0.1838 0.1836 0.1855 0.1855 0.1854 0.1853 0.1854W
FG

2

10 0.1729 0.1729 0.1723 0.1720 0.1716 0.1730 0.1730 0.1729 0.1730 0.1730

W
FG

3

3 0.0923 0.0919 0.0908 0.0905 0.0902 0.0925 0.0920 0.0922 0.0923 0.0920

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.1951 0.1926 0.1834 0.1756 0.1731 0.1964 0.1964 0.1948 0.1938 0.1932

5 0.2159 0.1969 0.1928 0.1918 0.1932 0.2257 0.2237 0.2203 0.2174 0.2133

8 0.1639 0.1620 0.1605 0.1636 0.1617 0.1685 0.1692 0.1674 0.1704 0.1695W
FG

4

10 0.1599 0.1616 0.1596 0.1615 0.1618 0.1598 0.1624 0.1640 0.1657 0.1638

W
FG

5

3 0.4585 0.4562 0.4495 0.4432 0.4414 0.4584 0.4584 0.4584 0.4583 0.4573

5 0.4622 0.4478 0.4385 0.4366 0.4361 0.4671 0.4652 0.4640 0.4622 0.4611

8 0.4587 0.4431 0.4368 0.4391 0.4380 0.4656 0.4640 0.4611 0.4582 0.4588

10 0.4727 0.4586 0.4533 0.4534 0.4518 0.4770 0.4763 0.4735 0.4724 0.4702

3 0.1914 0.1910 0.1906 0.1905 0.1899 0.1915 0.1915 0.1916 0.1914 0.1913

5 0.1919 0.1915 0.1903 0.1901 0.1898 0.1920 0.1920 0.1920 0.1919 0.1919

8 0.1893 0.1889 0.1874 0.1869 0.1871 0.1893 0.1893 0.1892 0.1890 0.1890W
FG

6

10 0.1880 0.1878 0.1868 0.1862 0.1863 0.1881 0.1881 0.1881 0.1881 0.1881

W
FG

7

3 0.0924 0.0886 0.0823 0.0801 0.0764 0.0931 0.0925 0.0921 0.0920 0.0909

5 0.1380 0.1260 0.0955 0.0768 0.0725 0.1448 0.1448 0.1411 0.1386 0.1373

8 0.1456 0.1286 0.0639 0.0525 0.0505 0.1540 0.1512 0.1494 0.1467 0.1442

10 0.1515 0.1360 0.0602 0.0489 0.0490 0.1544 0.1544 0.1512 0.1500 0.1488

3 0.2312 0.2313 0.2303 0.2299 0.2292 0.2314 0.2314 0.2316 0.2315 0.2317

5 0.2379 0.2354 0.2299 0.2278 0.2271 0.2386 0.2382 0.2380 0.2371 0.2374

8 0.2397 0.2355 0.2246 0.2225 0.2228 0.2408 0.2403 0.2397 0.2389 0.2387W
FG

8

10 0.2420 0.2394 0.2268 0.2228 0.2216 0.2426 0.2424 0.2419 0.2412 0.2409

W
FG

9

3 0.3753 0.3716 0.3614 0.3565 0.3536 0.3763 0.3757 0.3761 0.3744 0.3759

5 0.4675 0.4310 0.4143 0.4024 0.4059 0.4995 0.4932 0.4770 0.4733 0.4733

8 0.4339 0.3800 0.3712 0.3704 0.3739 0.4675 0.4597 0.4485 0.4423 0.4322

10 0.4521 0.4103 0.3979 0.3939 0.3989 0.4957 0.4848 0.4697 0.4659 0.4626
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Table A3. Mean and standard deviation values of HV results of proposed method with state of art
algorithms on DTLZ problems.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

D
T

LZ
1

3

8.435 ×
10−1

(7.81 ×
10−4)-(↓)

8.392 ×
10−1

(1.04 ×
10−2)=(≡)

8.144 ×
10−1

(4.84 ×
10−2)+(†)

8.332 ×
10−1

(2.73 ×
10−3)+(†)

8.136 ×
10−1

(4.66 ×
10−3)+(†)

8.390 ×
10−1

(1.41 ×
10−3)+(†)

7.012 × 10−1

(1.89 ×
10−1)+(†)

0.7128 ×
10−1

(2.03 ×
10−1)+(†)

8.392 × 10−1

(1.04 × 10−3)
8.392 × 10−1

(1.14 × 10−3)

5

9.743 ×
10−1

(8.87 ×
10−4)-(↓)

9.282 ×
10−1

(6.09 ×
10−2)+(†)

8.785 ×
10−1

(4.52 ×
10−2)+(†)

9.692 ×
10−1

(1.83 ×
10−3)=(↓)

9.0144. ×
10−1

(1.18 ×
10−2)+(†)

9.667 ×
10−1

(1.92 ×
10−3)+(†)

8.241 × 10−1

(6.74 ×
10−2)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.692 × 10−1

(1.21 × 10−3)
9.674 × 10−1

(1.57 × 10−3)

8

9.799 ×
10−1

(6.89 ×
10−2)+(†)

7.815 ×
10−1

(3.00 ×
10−1)+(†)

8.119 ×
10−1

(2.28 ×
10−1)+(†)

9.949 ×
10−1

(9.25 ×
10−4)-(↓)

9.161 ×
10−1

(1.24 ×
10−2)+(†)

9.927 ×
10−1

(7.03 ×
10−4)=(†)

4.673 × 10−1

(1.80 ×
10−1)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.927 × 10−1

(1.67 × 10−3)
9.930 × 10−1

(1.39 × 10−3)

10

9.151 ×
10−1

(1.63 ×
10−1)+(†)

7.083 ×
10−1

(2.67 ×
10−1)+(†)

8.870 ×
10−1

(1.78 ×
10−1)+(†)

9.989 ×
10−1

(1.21 ×
10−4)=(≡)

9.313 ×
10−1

(8.05 ×
10−3)+(†)

9.989 ×
10−1

(2.04 ×
10−4)=(≡)

5.374 × 10−1

(1.85 ×
10−1)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.989 × 10−1

(2.43 × 10−4)
9.989 × 10−1

(3.79 × 10−4)

3

5.621 ×
10−1

(5.01 ×
10−4)+(†)

5.593 ×
10−1

(1.66 ×
10−3)+(†)

5.651 ×
10−1

(1.11 ×
10−3)+(≡)

5.578 ×
10−1

(2.22 ×
10−3)+(†)

5.386 ×
10−1

(6.89 ×
10−3)+(†)

5.582 ×
10−1

(1.35 ×
10−3)+(†)

5.435 × 10−1

(4.04 ×
10−3)+(†)

5.2890 ×
10−1

(4.80 ×
10−3)+(†)

5.659 × 10−1

(1.21 × 10−3)
5.651 × 10−1

(1.08 × 10−3)

5

7.921 ×
10−1

(6.97 ×
10−4)+(†)

7.878 ×
10−1

(2.39 ×
10−3)+(†)

7.717 ×
10−1

(3.04 ×
10−3)+(†)

7.807 ×
10−1

(3.33 ×
10−3)+(†)

6.582 ×
10−1

(1.96 ×
10−2)+(†)

7.831 ×
10−1

(2.91 ×
10−3)+(†)

7.508 × 10−1

(8.13 ×
10−3)+(†)

0.2011 ×
10−1

(2.25 ×
10−2)+(†)

7.976 × 10−1

(1.65 × 10−3)
7.964 × 10−1

(2.12 × 10−3)

D
T

LZ
2

8

9.065 ×
10−1

(3.91 ×
10−2)-(↓)

9.059 ×
10−1

(3.16 ×
10−3)-(↓)

8.889 ×
10−1

(5.62 ×
10−3)=(↓)

8.960 ×
10−1

(4.84 ×
10−3)-(↓)

6.764 ×
10−1

(2.05 ×
10−2)+(†)

9.162 ×
10−1

(2.49 ×
10−3)-(↓)

8.889 × 10−1

(8.71 ×
10−3)=(↓)

0.000 × 100

(0.00 ×
100)+(†)

8.889 × 10−1

(1.05 × 10−2)
8.762 × 10−1

(1.52 × 10−2)

10

9.612 ×
10−1

(2.06 ×
10−2)-(↓)

9.500 ×
10−1

(3.37 ×
10−3)-(↓)

9.106 ×
10−1

(1.49 ×
10−2)+(†)

9.493 ×
10−1

(1.67 ×
10−3)-(↓)

6.979 ×
10−1

(1.53 ×
10−2)+(†)

9.646 ×
10−1

(1.09 ×
10−3)-(↓)

9.502 × 10−1

(4.24 ×
10−3)-(↓)

0.000 × 100

(0.00 ×
100)+(†)

9.273 × 10−1

(8.23 × 10−3)
9.215 × 10−1

(1.14 × 10−2)

D
T

LZ
3

3

5.546 ×
10−1

(5.19 ×
10−3)=(↓)

4.060 ×
10−1

(7.83 ×
10−2)+(†)

5.471 ×
10−1

(9.45 ×
10−3)+(↓)

5.437 ×
10−1

(9.50 ×
10−3)+(↓)

5.036 ×
10−1

(1.08 ×
10−2)+(†)

5.148 ×
10−1

(1.01 ×
10−1)+(†)

4.663 × 10−1

(1.11 ×
10−1)+(†)

0.000 × 100

(0.00 ×
100)+(†)

5.546 × 10−1

(2.61 × 10−2)
5.248 × 10−1

(8.89 × 10−3)

5

7.766 ×
10−1

(3.23 ×
10−2)-(↓)

1.274 ×
10−1

(1.61 ×
10−1)+(†)

4.929 ×
10−1

(2.10 ×
10−1)+(†)

7.606 ×
10−1

(1.10 ×
10−2)=(↓)

1.221 ×
10−3

(6.57 ×
10−3)+(†)

7.756 ×
10−1

(7.05 ×
10−3)-(↓)

3.779 × 10−1

(1.95 ×
10−1)+(†)

0.000 × 100

(0.00 ×
100)+(†)

7.606 × 10−1

(6.16 × 10−2)
6.724 × 10−1

(2.07 × 10−1)

8

6.727 ×
10−1

(2.16 ×
10−1)+(†)

0.000 ×
100

(0.00 ×
10−1)+(†)

0.000 ×
100

(0.00 ×
100)+(†)

8.890 ×
10−1

(9.47 ×
10−3)-(↓)

0.000 ×
100

(0.00 ×
100)+(†)

9.015 ×
10−1

(8.05 ×
10−3)-(↓)

1.670 × 10−1

(9.99 ×
10−2)+(†)

0.000 × 100

(0.00 ×
100)+(†)

7.730 × 10−1

(2.07 × 10−1)
7.109 × 10−1

(2.26 × 10−1)

10

8.311 ×
10−1

(1.48 ×
10−1)+(†)

0.000 ×
100

(0.00 ×
100)+(†)

0.000 ×
100

(0.00 ×
100)+(†)

9.484 ×
10−1

(2.84 ×
10−3)-(↓)

0.000 ×
100

(0.00 ×
100)+(†)

9.566 ×
10−1

(6.92 ×
10−3)-(↓)

1.392 × 10−1

(6.86 ×
10−2)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.334 × 10−1

(7.34 × 10−3)
8.773 × 10−1

(1.17 × 10−1)

3

3.615 ×
10−1

(1.53 ×
10−1)+(†)

5.583 ×
10−1

(1.55 ×
10−3)-(↓)

5.570 ×
10−1

(1.57 ×
10−3)-(↓)

5.298 ×
10−1

(7.38 ×
10−2)+(†)

2.688 ×
10−1

(6.04 ×
10−2)+(†)

5.571 ×
10−1

(1.65 ×
10−3)-(↓)

5.364 × 10−1

(5.65 ×
10−3)+(≡)

4.8446 ×
10−1

(6.01 ×
10−2)+(†)

5.442 × 10−1

(6.69 × 10−2)
5.364 × 10−1

(7.57 × 10−2)

5

7.059 ×
10−1

(8.25 ×
10−2)+(†)

7.857 ×
10−1

(2.54 ×
10−3)=(↓)

7.700 ×
10−1

(3.25 ×
10−3)+(†)

7.857 ×
10−1

(1.55 ×
10−2)=(↓)

3.766 ×
10−1

(5.43 ×
10−2)+(†)

7.857 ×
10−1

(2.81 ×
10−3)=(↓)

7.603 × 10−1

(3.85 ×
10−3)+(†)

2.9786 ×
10−1

(5.66 ×
10−2)+(†)

7.857 × 10−1

(3.27 × 10−2)
7.760 × 10−1

(4.59 × 10−2)

D
TL

Z
4

8

8.837 ×
10−1

(5.07 ×
10−2)+(†)

9.006 ×
10−1

(5.49 ×
10−3)+(†)

8.772 ×
10−1

(9.07 ×
10−3)+(†)

9.109 ×
10−1

(3.59 ×
10−3)+(≡)

4.998 ×
10−1

(5.74 ×
10−2)+(†)

9.243 ×
10−1

(2.37 ×
10−3)-(↓)

9.040 × 10−1

(4.47 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.144 × 10−1

(1.25× 10−2)
9.109 × 10−1

(1.36 × 10−2)

10

9.429 ×
10−1

(3.52 ×
10−2)+(†)

9.380 ×
10−1

(6.35 ×
10−3)+(†)

8.996 ×
10−1

(1.46 ×
10−2)+(†)

9.609 ×
10−1

(1.52 ×
10−3)=(†)

6.318 ×
10−1

(3.65 ×
10−2)+(†)

9.702 ×
10−1

(1.08 ×
10−3)-(↓)

9.583 × 10−1

(2.20 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

9.609 × 10−1

(3.56 × 10−3)
9.668 × 10−1

(3.66 × 10−3)
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Table A3. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

D
TL

Z
5

3

1.938 ×
10−1

(1.93 ×
10−3)+(†)

1.860 ×
10−1

(1.76 ×
10−3)+(†)

1.998 ×
10−1

(3.01 ×
10−4)=(≡)

1.982 ×
10−1

(6.43 ×
10−4)+(†)

1.998 ×
10−1

(1.99 ×
10−3)=(≡)

1.998 ×
10−1

(4.45 ×
10−4)=(≡)

1.928 × 10−1

(4.11 ×
10−3)+(†)

1.998 × 10−1

(6.01 ×
10−4)=(≡)

1.998 × 10−1

(4.50 × 10−4)
1.998 × 10−1

(5.60 × 10−4)

5

1.246 ×
10−1

(1.58 ×
10−3)=(≡)

2.536 ×
10−2

(2.30 ×
10−2)+(†)

9.292 ×
10−2

(5.92 ×
10−3)+(†)

1.064 ×
10−1

(4.15 ×
10−3)+(†)

1.246 ×
10−1

(2.91 ×
10−3)=(≡)

1.145 ×
10−1

(2.65 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

0.8839 ×
10−1

(8.31 ×
10−3)+(†)

1.246 × 10−1

(1.40 × 10−3)
1.246 × 10−1

(1.14 × 10−3)

8

9.847 ×
10−2

(1.90 ×
10−3)+(†)

3.295 ×
10−3

(1.14 ×
10−2)+(†)

8.150 ×
10−2

(5.84 ×
10−3)+(†)

4.805 ×
10−2

(1.56 ×
10−2)+(†)

7.354 ×
10−2

(9.58 ×
10−3)+(†)

8.947 ×
10−2

(5.40 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

0.4154 ×
10−1

(2.01 ×
10−2)+(†)

1.003 × 10−1

(2.23 × 10−3)
1.003 × 10−1

(3.97 × 10−3)

10

9.526 ×
10−2

(1.17 ×
10−3)=(≡)

1.470 ×
10−3

(7.63 ×
10−3)+(†)

7.226 ×
10−2

(9.91 ×
10−3)+(†)

3.393 ×
10−2

(1.99 ×
10−2)+(†)

5.544 ×
10−2

(1.23 ×
10−2)+(†)

8.530 ×
10−2

(6.39 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

4.0901 ×
10−2

(1.63 ×
10−2)+(†)

9.526 × 10−2

(2.17 × 10−3)
9.526 × 10−2

(2.81 × 10−3)

3

1.879 ×
10−1

(5.33 ×
10−3)+(†)

1.837 ×
10−1

(2.18 ×
10−3)+(†)

1.999 ×
10−1

(4.60 ×
10−4)=(≡)

1.989 ×
10−1

(1.67 ×
10−3)+(†)

1.961 ×
10−1

(1.35 ×
10−3)+(†)

1.999 ×
10−1

(4.54 ×
10−4)=(≡)

1.879 × 10−1

(6.77 ×
10−3)+(†)

0.000 × 100

(0.00 ×
100)+(†)

1.999 × 10−1

(4.83 × 10−4)
1.999 × 10−1

(9.30 × 10−4)

5

1.047 ×
10−1

(9.41 ×
10−3)+(†)

3.482 ×
10−3

(8.66 ×
10−3)+(†)

3.271 ×
10−2

(4.08 ×
10−2)+(†)

1.095 ×
10−1

(4.70 ×
10−3)+(†)

1.242 ×
10−1

(2.69 ×
10−3)-(↓)

1.150 ×
10−1

(3.68 ×
10−3)+(†)

4.538× 10−2

(4.62 ×
10−2)+(†)

0.000 × 100

(0.00 ×
100)+(†)

1.165 × 10−1

(3.42 × 10−3)
1.152 × 10−1

(2.29 × 10−2)

D
T

LZ
6

8

7.919 ×
10−2

(3.16 ×
10−2)-(↓)

0.000 ×
100

(0.00 ×
100)+(†)

0.000 ×
100

(0.00 ×
100)+(†)

7.075 ×
10−2

(2.14 ×
10−2)-(↓)

9.317 ×
10−2

(9.28 ×
10−3)-(↓)

9.434 ×
10−2

(7.31 ×
10−3)-(↓)

0.000 × 100

(0.00 ×
100)+(†)

0.000 × 100

(0.00 ×
100)+(†)

5.073 × 10−2

(4.24 × 10−2)
3.618 × 10−2

(3.55 × 10−2)

10

8.399 ×
10−2

(1.57 ×
10−2)-(↓)

0.000 ×
100

(0.00 ×
100)+(†)

0.000 ×
100

(0.00 ×
100)+(†)

5.632 ×
10−2

(2.91 ×
10−2)+(↓)

7.596 ×
10−2

(1.42 ×
10−2)=(↓)

8.682 ×
10−2

(1.18 ×
10−2)-(↓)

0.000 × 100

(0.00 ×
100)+(†)

0.000 × 100

(0.00 ×
100)+(†)

7.596 × 10−2

(2.79 × 10−2)
5.437 × 10−2

(3.99 × 10−2)

D
TL

Z
7

3

4.160 ×
10−1

(1.60 ×
10−2)-(↓)

4.119 ×
10−1

(2.41 ×
10−3)-(↓)

4.178 ×
10−1

(1.63 ×
10−2)-(↓)

4.118 ×
10−1

(2.40 ×
10−2)-(↓)

3.995 ×
10−1

(6.24 ×
10−3)-(↓)

4.195 ×
10−1

(1.59 ×
10−2)-(↓)

3.844 × 10−1

(2.42 ×
10−2)=(†)

3.9261 ×
10−1

(2.83 ×
10−2)-(↓)

3.844 × 10−1

(3.70 × 10−2)
3.882 × 10−1

(3.93 × 10−2)

5

3.113 ×
10−1

(4.83 ×
10−3)+(†)

3.008 ×
10−1

(3.31 ×
10−3)+(†)

3.036 ×
10−1

(5.11 ×
10−3)+(†)

3.251 ×
10−1

(3.57 ×
10−3)-(≡)

3.171 ×
10−1

(5.86 ×
10−3)+(†)

3.010 ×
10−1

(1.18 ×
10−2)+(†)

2.583 × 10−1

(2.13 ×
10−2)+(†)

1.1457 ×
10−1

(2.52 ×
10−2)+(†)

3.239 × 10−1

(1.80 × 10−2)
3.251 × 10−1

(1.45 × 10−2)

8

2.067 ×
10−1

(7.55 ×
10−3)+(†)

1.801 ×
10−1

(1.84 ×
10−2)+(†)

1.877 ×
10−1

(8.11 ×
10−3)+(†)

9.480 ×
10−2

(1.37 ×
10−2)+(†)

2.550 ×
10−1

(4.17 ×
10−3)-(↓)

5.193 ×
10−2

(1.96 ×
10−2)+(†)

1.508 × 10−1

(1.36 ×
10−2)+(†)

3.33 × 10−8

(0.00 ×
100)+(†)

2.227 × 10−1

(3.73 × 10−2)
2.110 × 10−1

(3.09 × 10−2)

10

1.909 ×
10−1

(7.00 ×
10−3)-(↓)

1.590 ×
10−1

(1.25 ×
10−2)+(†)

1.394 ×
10−1

(1.30 ×
10−2)+(†)

1.054 ×
10−1

(2.60 ×
10−2)+(†)

2.403 ×
10−1

(2.93 ×
10−3)-(↓)

8.381 ×
10−3

(3.76 ×
10−3)+(†)

1.321 × 10−1

(1.16 ×
10−2)+(†)

0.000 × 100

(0.00 ×
100)+(†)

0.1862
(3.79 × 10−2)

1.736 × 10−1

(4.27 × 10−2)

Ad-
GrMODE1*

(+/=/-)
16/3/9 22/2/4 23/3/2 15/5/8 20/3/5 12/5/11 25/2/1 26/1/1

Ad-
GrMODE2*

(†/≡/↓)
16/2/10 22/1/5 21/3/4 13/3/12 20/2/6 13/3/12 25/1/2 26/1/1

The signs ‘+’, ‘=’, and ‘-’ depicts the instances, ad-GrMODE1* performs better, similar and worse with respect
to state-of-the-art algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the in-stances, ad-GrMODE2* performs better,
similar and worse with respect to state-of-the-art algorithms.
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Table A4. Mean and standard deviation values of HV results of proposed method with state of art
algorithms on WFG problems.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

W
FG

1

3

2.800 ×
10−1

(3.73 ×
10−2)+(†)

3.087 ×
10−1

(3.56 ×
10−4)-(↓)

3.049 ×
10−1

(1.17 ×
10−3)-(↓)

3.021 ×
10−1

(1.92 ×
10−3)-(↓)

0.000 ×
100

(0.00 ×
100)+(†)

1.414 ×
10−1

(1.48 ×
10−2)+(†)

1.625 × 10−1

(2.68 ×
10−2)+(†)

1.71 × 10−1

(2.15 ×
10−2)+(†)

2.855 × 10−1

(2.77 × 10−3)
2.827 × 10−1

(3.13 × 10−3)

5

2.597 ×
10−1

(4.04 ×
10−2)+(†)

2.431 ×
10−1

(4.29 ×
10−2)+(†)

2.843 ×
10−1

(4.47 ×
10−4)-(↓)

2.657 ×
10−1

(8.09 ×
10−4)+(†)

8.122 ×
10−3

(1.17 ×
10−2)+(†)

2.660 ×
10−1

(2.57 ×
10−3)+(†)

2.306 × 10−1

(1.44 ×
10−2)+(†)

1.78 × 10−1

(1.54 ×
10−2)+(†)

2.801 × 10−1

(9.09 × 10−4)
2.797 × 10−1

(9.22 × 10−4)

8

2.294 ×
10−1

(2.84 ×
10−3)=(≡)

2.138 ×
10−1

(1.70 ×
10−2)+(†)

2.311 ×
10−1

(4.71 ×
10−4)-(↓)

2.198 ×
10−1

(6.64 ×
10−4)+(†)

7.802 ×
10−2

(9.71 ×
10−3)+(†)

2.294 ×
10−1

(3.72 ×
10−4)=(≡)

1.966 × 10−1

(1.38 ×
10−2)+(†)

1.87 × 10−1

(1.26 ×
10−2)+(†)

2.294 × 10−1

(6.10 × 10−4)
2.294 × 10−1

(5.30 × 10−4)

10

2.071 ×
10−1

(3.94 ×
10−4)=(≡)

2.071 ×
10−1

(3.38 ×
10−4)=(≡)

2.031 ×
10−1

(4.76 ×
10−4)+(†)

2.071 ×
10−1

(4.07 ×
10−4)=(≡)

1.065 ×
10−1

(6.96 ×
10−3)+(†)

2.071 ×
10−1

(3.83 ×
10−4)=(≡)

1.816 × 10−1

(9.85 ×
10−3)+(†)

1.93 × 10−1

(7.18 ×
10−3)+(†)

2.071 × 10−1

(5.19 × 10−4)
2.071 × 10−1

(4.70 × 10−4)

3

2.352 ×
10−1

(4.84 ×
10−4)=(≡)

2.352 ×
10−1

(4.56 ×
10−4)=(≡)

2.352 ×
10−1

(5.03 ×
10−4)=(≡)

2.352 ×
10−1

(5.54 ×
10−4)=(≡)

2.352 ×
10−1

(5.49 ×
10−4)=(≡)

2.352 ×
10−1

(5.14 ×
10−4)=(≡)

2.267 × 10−1

(3.50 ×
10−3)+(†)

2.35 × 10−1

(2.83 ×
10−4)=(≡)

2.352 × 10−1

(5.35 × 10−4)
2.352 × 10−1

(4.91 × 10−4)

5

2.115 ×
10−1

(4.90 ×
10−4)=(≡)

2.115 ×
10−1

(4.13 ×
10−4)=(≡)

2.115 ×
10−1

(5.11 ×
10−4)=(≡)

2.115 ×
10−1

(4.79 ×
10−4)=(≡)

2.115 ×
10−1

(6.47 ×
10−4)=(≡)

2.115 ×
10−1

(4.10 ×
10−4)=(≡)

1.416 × 10−1

(4.46 ×
10−2)+(†)

2.11 × 10−1

(4.19 ×
10−4)=(≡)

2.115 × 10−1

(4.77 × 10−4)
2.115 × 10−1

(3.26 × 10−4)

W
FG

2

8

1.855 ×
10−1

(3.02 ×
10−4)=(≡)

1.855 ×
10−1

(4.29 ×
10−4)=(≡)

1.855 ×
10−1

(4.40 ×
10−4)=(≡)

1.855 ×
10−1

(4.73 ×
10−4)=(≡)

1.855 ×
10−1

(3.75 ×
10−4)=(≡)

1.855 ×
10−1

(4.01 ×
10−4)=(≡)

9.438× 10−2

(1.78 ×
10−2)+(†)

1.85 × 10−1

(3.58 ×
10−4)=(≡)

1.855 × 10−1

(4.80 × 10−4)
1.855 × 10−1

(3.67 × 10−4)

10

1.730 ×
10−1

(3.92×
10−4)=(≡)

1.730 ×
10−1

(3.65 ×
10−4)=(≡)

1.730 ×
10−1

(3.25 ×
10−4)=(≡)

1.730 ×
10−1

(3.92 ×
10−4)=(≡)

1.730 ×
10−1

(3.66 ×
10−4)=(≡)

1.730 ×
10−1

(3.12 ×
10−4)=(≡)

9.701× 10−2

(2.36 ×
10−2)+(†)

1.73 × 10−1

(3.10 ×
10−4)=(≡)

1.730 × 10−1

(3.11 × 10−4)
1.730 × 10−1

(3.56 × 10−4)

W
FG

3

3

8.360 ×
10−2

(5.18 ×
10−4)+(†)

8.033 ×
10−2

(5.34 ×
10−4)+(†)

8.533 ×
10−2

(3.69 ×
10−4)+(†)

8.448 ×
10−2

(5.13 ×
10−4)+(†)

8.458 ×
10−2

(3.41 ×
10−4)+(†)

8.362 ×
10−2

(4.84 ×
10−4)+(†)

3.364× 10−2

(1.20 ×
10−2)+(†)

9.10 × 10−2

(3.81 ×
10−4)+(†)

9.250 × 10−2

(6.91 × 10−4)
9.209 × 10−2

(4.94 × 10−4)

5

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 ×
100)=(≡)

0.00 × 100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 × 100)
0.000 × 100

(0.00 × 100)

8

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 ×
100)=(≡)

0.00 × 100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 × 100)
0.000 × 100

(0.00 × 100)

10

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 ×
100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 ×
100)=(≡)

0.00 × 100

(0.00 ×
100)=(≡)

0.000 × 100

(0.00 × 100)
0.000 × 100

(0.00 × 100)

3

1.964 ×
10−1

(1.12 ×
10−3)=(≡)

1.956 ×
10−1

(6.19 ×
10−4)+(†)

1.933 ×
10−1

(1.73 ×
10−3)+(†)

1.946 ×
10−1

(1.67 ×
10−3)+(†)

1.596 ×
10−1

(6.36 ×
10−3)+(†)

1.728 ×
10−1

(3.79 ×
10−3)+(†)

1.836 × 10−1

(4.02 ×
10−3)+(†)

1.70 × 10−1

(7.22 ×
10−3)+(†)

1.964 × 10−1

(1.70 × 10−3)
1.964 × 10−1

(1.66 × 10−3)

5

2.535 ×
10−1

(2.46 ×
10−3)-(↓)

2.475 ×
10−1

(1.71 ×
10−3)-(↓)

2.429 ×
10−1

(2.44 ×
10−3)-(↓)

2.355 ×
10−1

(4.35 ×
10−3)-(↓)

1.603 ×
10−1

(7.29 ×
10−3)+(†)

1.199 ×
10−1

(1.70 ×
10−2)+(†)

2.341 × 10−1

(3.47 ×
10−3)-(↓)

2.09 × 10−1

(1.13 ×
10−2)+(†)

2.257 × 10−1

(5.15 × 10−3)
2.237 × 10−1

(6.17 × 10−3)

W
FG

4

8

2.127 ×
10−1

(1.63 ×
10−2)-(↓)

2.227 ×
10−1

(4.46 ×
10−3)-(↓)

2.241 ×
10−1

(2.62 ×
10−3)-(↓)

1.949 ×
10−1

(9.35 ×
10−3)-(↓)

1.331 ×
10−1

(4.34 ×
10−3)+(†)

1.674 ×
10−2

(1.14 ×
10−2)+(†)

2.053 × 10−1

(5.61 ×
10−3)-(↓)

1.89 × 10−1

(4.74 ×
10−3)-(↓)

1.685 × 10−1

(1.10 × 10−2)
1.692 × 10−1

(9.86 × 10−3)

10

2.150 ×
10−1

(9.07 ×
10−3)-(↓)

2.178 ×
10−1

(2.47 ×
10−3)-(↓)

2.110 ×
10−1

(3.63 ×
10−3)-(↓)

2.011 ×
10−1

(6.87 ×
10−3)-(↓)

1.281 ×
10−1

(3.51 ×
10−3)+(†)

6.537 ×
10−3

(5.84 ×
10−3)+(†)

1.950 × 10−1

(3.18 ×
10−3)-(↓)

1.83 × 10−1

(3.66 ×
10−3)-(↓)

1.598 × 10−1

(1.05 × 10−2)
1.624 × 10−1

(6.79 × 10−3)
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Table A4. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

W
FG

5

3

4.584 ×
10−1

(1.49 ×
10−3)=(≡)

4.584 ×
10−1

(1.47 ×
10−3)=(≡)

4.608 ×
10−1

(8.70 ×
10−4)-(↓)

4.525 ×
10−1

(1.83 ×
10−3)+(†)

4.301 ×
10−1

(3.83 ×
10−3)+(†)

4.486 ×
10−1

(2.76 ×
10−3)+(†)

4.346 × 10−1

(5.11 ×
10−3)+(†)

4.56 × 10−1

(1.19 ×
10−3)+(†)

4.584 × 10−1

(1.55 × 10−3)
4.584 × 10−1

(1.75 × 10−3)

5

4.652 ×
10−1

(2.70 ×
10−3)+(≡)

4.458 ×
10−1

(2.88 ×
10−3)+(†)

4.708 ×
10−1

(2.17 ×
10−3)-(↓)

4.597 ×
10−1

(5.14 ×
10−3)+(†)

4.305 ×
10−1

(5.20 ×
10−3)+(†)

4.606 ×
10−1

(5.10 ×
10−3)+(†)

4.459 × 10−1

(5.07 ×
10−3)+(†)

4.68 × 10−1

(3.08 ×
10−3)-(↓)

4.671 × 10−1

(3.59 × 10−3)
4.652 × 10−1

(3.65 × 10−3)

8

4.612 ×
10−1

(3.15 ×
10−3)+(†)

4.368 ×
10−1

(4.12 ×
10−3)+(†)

4.536 ×
10−1

(2.81 ×
10−3)+(†)

4.533 ×
10−1

(3.81 ×
10−3)+(†)

4.347 ×
10−1

(4.10 ×
10−3)+(†)

4.557 ×
10−1

(4.70 ×
10−3)+(†)

4.357 × 10−1

(7.30 ×
10−3)+(†)

4.65 × 10−1

(1.36 ×
10−3)=(↓)

4.656 × 10−1

(3.69 × 10−3)
4.640 × 10−1

(3.76 × 10−3)

10

4.682 ×
10−1

(2.88 ×
10−3)+(†)

4.426 ×
10−1

(3.73 ×
10−3)+(†)

4.636 ×
10−1

(1.93 ×
10−3)+(†)

4.608 ×
10−1

(2.38 ×
10−3)+(†)

4.499 ×
10−1

(2.63 ×
10−3)+(†)

4.886 ×
10−1

(3.26 ×
10−3)-(↓)

4.356 × 10−1

(6.70 ×
10−2)+(†)

4.70 × 10−1

(1.31 ×
10−3)+(†)

4.770 × 10−1

(3.02 × 10−3)
4.763 × 10−1

(2.78 × 10−3)

3

1.878 ×
10−1

(2.09 ×
10−3)+(†)

1.887 ×
10−1

(6.67 ×
10−4)+(†)

1.894 ×
10−1

(6.80 ×
10−4)+(†)

1.897 ×
10−1

(7.73 ×
10−4)+(†)

1.858 ×
10−1

(1.35 ×
10−3)+(†)

1.915 ×
10−1

(5.98 ×
10−4)=(≡)

1.864 × 10−1

(3.84 ×
10−3)+(†)

1.89 × 10−1

(9.51 ×
10−4)+(†)

1.915 × 10−1

(5.18 × 10−4)
1.915 × 10−1

(4.54 × 10−4)

5

1.908 ×
10−1

(9.12 ×
10−4)+(†)

1.887 ×
10−1

(1.34 ×
10−3)+(†)

1.908 ×
10−1

(8.89 ×
10−4)+(†)

1.905 ×
10−1

(8.90 ×
10−4)+(†)

1.879 ×
10−1

(1.33 ×
10−3)+(†)

1.920 ×
10−1

(9.28 ×
10−4)=(≡)

1.843 × 10−1

(4.19 ×
10−3)+(†)

1.92 × 10−1

(6.58 ×
10−4)=(≡)

1.920 × 10−1

(4.44 × 10−4)
1.920 × 10−1

(4.38 × 10−4)

W
FG

6

8

1.893 ×
10−1

(1.10 ×
10−3)=(≡)

1.838 ×
10−1

(2.80 ×
10−3)+(†)

1.893 ×
10−1

(7.27 ×
10−4)=(≡)

1.874 ×
10−1

(1.34 ×
10−3)+(†)

1.862 ×
10−1

(7.79 ×
10−4)+(†)

1.882 ×
10−1

(6.69 ×
10−4)+(†)

1.810 × 10−1

(4.44 ×
10−3)+(†)

1.89 × 10−1

(5.84 ×
10−4)=(≡)

1.893 × 10−1

(5.00 × 10−4)
1.893 × 10−1

(6.27 × 10−4)

10

1.812 ×
10−1

(9.56 ×
10−4)+(†)

1.723 ×
10−1

(4.14 ×
10−3)+(†)

1.780 ×
10−1

(5.21 ×
10−4)+(†)

1.867 ×
10−1

(6.13 ×
10−4)+(†)

1.855 ×
10−1

(9.59 ×
10−4)+(†)

1.881 ×
10−1

(3.36 ×
10−4)=(≡)

1.815 × 10−1

(2.95 ×
10−3)+(†)

1.88 × 10−1

(5.15 ×
10−4)=(≡)

1.881 × 10−1

(3.57 × 10−4)
1.881 × 10−1

(3.56 × 10−4)

W
FG

7

3

8.092 ×
10−2

(1.54 ×
10−2)+(†)

8.430 ×
10−2

(2.24 ×
10−3)+(†)

9.021 ×
10−2

(1.06 ×
10−3)+(†)

9.506 ×
10−2

(9.43 ×
10−4)-(↓)

4.362 ×
10−3

(4.36 ×
10−3)+(†)

5.366 ×
10−2

(1.02 ×
10−2)+(†)

8.373× 10−2

(2.03 ×
10−3)+(†)

7.65 × 10−2

(2.14 ×
10−3)+(†)

9.312 × 10−2

(1.39 × 10−3)
9.251 × 10−2

(1.58 × 10−3)

5

7.877 ×
10−2

(5.86 ×
10−2)+(†)

1.421 ×
10−1

(1.65 ×
10−3)+(†)

1.490 ×
10−1

(1.21 ×
10−3)-(↓)

1.521 ×
10−1

(1.58 ×
10−3)-(↓)

8.289 ×
10-

(5.32 ×
10−3)+(†)

8.907 ×
10−2

(1.24 ×
10−2)+(†)

1.448 × 10−1

(3.76 ×
10−3)=(≡)

1.18 × 10−1

(9.11 ×
10−3)+(†)

1.448 × 10−1

(4.29 × 10−3)
1.448 × 10−1

(3.25 × 10−3)

8

1.175 ×
10−1

(4.62 ×
10−2)+(†)

1.502 ×
10−1

(7.26 ×
10−3)+(†)

1.490 ×
10−1

(1.40 ×
10−3)+(†)

1.641 ×
10−1

(2.13 ×
10−3)-(↓)

1.058 ×
10−2

(2.54 ×
10−3)+(†)

1.274 ×
10−1

(7.73 ×
10−3)+(†)

1.371 × 10−1

(4.09 ×
10−3)+(†)

9.86 × 10−2

(1.37 ×
10−2)+(†)

1.540 × 10−1

(2.68 × 10−3)
1.512 × 10−1

(3.85 × 10−3)

10

1.544 ×
10−1

(5.14 ×
10−3)=(≡)

1.544 ×
10−1

(3.41 ×
10−3)=(≡)

1.544 ×
10−1

(1.41 ×
10−3)=(≡)

1.618 ×
10−1

(2.06 ×
10−3)-(↓)

1.201 ×
10−2

(1.77 ×
10−3)+(†)

1.430 ×
10−1

(4.65 ×
10−3)+(†)

1.409 × 10−1

(3.19 ×
10−3)+(†)

8.59 × 10−2

(7.42 ×
10−3)+(†)

1.544 × 10−1

(1.94 × 10−3)
1.544 × 10−1

(2.23 × 10−3)

3

2.257 ×
10−1

(1.14 ×
10−3)+(†)

2.281 ×
10−1

(1.00 ×
10−3)+(†)

2.236 ×
10−1

(1.24 ×
10−3)+(†)

2.277 ×
10−1

(1.08 ×
10−3)+(†)

2.314 ×
10−1

(2.40 ×
10−3)=(≡)

2.277 ×
10−1

(7.22 ×
10−4)+(†)

2.243 × 10−1

(2.88 ×
10−3)+(†)

2.24 × 10−1

(9.67 ×
10−4)+(†)

2.314 × 10−1

(7.68 × 10−4)
2.314 × 10−1

(8.87 × 10−4)

5

2.325 ×
10−1

(1.21 ×
10−3)+(†)

2.334 ×
10−1

(1.65 ×
10−3)+(†)

2.317 ×
10−1

(8.80 ×
10−4)+(†)

2.311 ×
10−1

(1.28 ×
10−3)+(†)

2.293 ×
10−1

(1.94 ×
10−3)+(†)

2.333 ×
10−1

(6.80 ×
10−4)+(†)

1.674 × 10−1

(2.49 ×
10−2)+(†)

2.32 × 10−1

(7.55 ×
10−4)+(†)

2.386 × 10−1

(6.68 × 10−4)
2.382 × 10−1

(6.27 × 10−4)

W
FG

8

8

2.299 ×
10−1

(1.58 ×
10−3)+(†)

2.180 ×
10−1

(6.92 ×
10−3)+(†)

2.355 ×
10−1

(7.91 ×
10−4)+(†)

2.334 ×
10−1

(1.32 ×
10−3)+(†)

2.325 ×
10−1

(1.64 ×
10−3)+(†)

2.345 ×
10−1

(9.49 ×
10−4)+(†)

1.428 × 10−1

(1.38 ×
10−2)+(†)

2.35 × 10−1

(8.82 ×
10−4)+(†)

2.408 × 10−1

(7.60 × 10−4)
2.403 × 10−1

(6.83 × 10−4)

10

2.334 ×
10−1

(2.07 ×
10−3)+(†)

2.217 ×
10−1

(4.81 ×
10−3)+(†)

2.385 ×
10−1

(5.64 ×
10−4)+(†)

2.374 ×
10−1

(6.99 ×
10−4) +(†)

2.342 ×
10−1

(9.34 ×
10−4)+(†)

2.360 ×
10−1

(9.87 ×
10−4)+(†)

1.451 × 10−1

(6.89 ×
10−3)+(†)

2.37 × 10−1

(6.63 ×
10−4)+(†)

2.426 × 10−1

(5.27 × 10−4)
2.424 × 10−1

(5.30 × 10−4)
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Table A4. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

W
FG

9

3

3.763 ×
10−1

(5.81 ×
10−3)=(↓)

3.720 ×
10−1

(4.90 ×
10−3)+(†)

3.682 ×
10−1

(6.89 ×
10−3)+(†)

3.828 ×
10−1

(5.06 ×
10−3)-(↓)

2.053 ×
10−1

(1.20 ×
10−2)+(†)

3.658 ×
10−1

(3.88 ×
10−3)+(†)

3.600 × 10−1

(5.93 ×
10−3)+(†)

3.40 × 10−1

(6.05 ×
10−3)+(†)

3.763 × 10−1

(4.30 × 10−3)
3.757 × 10−1

(3.68 × 10−3)

5

5.388 ×
10−1

(1.43 ×
10−2)-(↓)

5.447 ×
10−1

(9.97 ×
10−3)-(↓)

5.258 ×
10−1

(9.08 ×
10−3)-(↓)

5.209 ×
10−1

(6.09 ×
10−3)-(↓)

1.816 ×
10−1

(1.16 ×
10−2)+(†)

5.046 ×
10−1

(7.77 ×
10−3)-(↓)

4.995 × 10−1

(1.03 ×
10−2)=(↓)

4.40 × 10−1

(2.19 ×
10−2)+(†)

4.995 × 10−1

(1.20 × 10−2)
4.932 × 10−1

(1.57 × 10−2)

8

5.861 ×
10−1

(2.19 ×
10−2)-(↓)

6.050 ×
10−1

(1.54 ×
10−2)-(↓)

5.903 ×
10−1

(1.29 ×
10−2)-(↓)

5.657 ×
10−1

(1.81 ×
10−2)-(↓)

1.684 ×
10−1

(1.07 ×
10−2)+(†)

5.131 ×
10−1

(1.29 ×
10−2)-(↓)

3.683 × 10−1

(8.25 ×
10−2)+(†)

3.82 × 10−1

(1.31 ×
10−2)+(†)

4.675 × 10−1

(1.89 × 10−2)
4.597 × 10−1

(1.99 × 10−2)

10

6.254 ×
10−1

(1.56 ×
10−2)-(↓)

6.290 ×
10−1

(1.34 ×
10−2)-(↓)

5.938 ×
10−1

(9.68 ×
10−3)-(↓)

5.875 ×
10−1

(1.31 ×
10−2)-(↓)

1.706 ×
10−1

(9.90 ×
10−3)+(†)

5.407 ×
10−1

(9.80 ×
10−3)-(↓)

4.069 × 10−1

(6.41 ×
10−2)+(†)

3.98 × 10−1

(1.17 ×
10−2)+(†)

4.957 × 10−1

(1.30 × 10−2)
4.848 × 10−1

(1.30 × 10−2)

Ad-
GrMODE1*

(+/=/-)
16/14/6 19/10/7 15/9/12 16/8/12 28/8/0 20/12/4 28/5/3 22/11/3

Ad-
GrMODE2*

(†/≡/↓)
15/14/7 19/10/7 15/9/12 16/8/12 28/8/0 20/12/4 28/4/4 22/10/4

The signs ‘+’, ‘=’, and ‘-’ depicts the instances, ad-GrMODE1* performs better, similar and worse with respect
to state-of-the-art algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the in-stances, ad-GrMODE2* performs better,
similar and worse with respect to state-of-the-art algorithms.

Table A5. Mean and standard deviation values of IGD results of proposed method with state of art
algorithms on DTLZ problems.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

D
TL

Z
1

3

1.79 ×
10−2

(9.67 ×
10−2)-(↓)

1.98 ×
10−2

(2.68 ×
10−3)=(↓)

3.46 ×
10−2

(2.53 ×
10−2)+(†)

2.19 ×
10−2

(1.94 ×
10−3)+(†)

3.04 ×
10−2

(2.50 ×
10−3)+(†)

2.05 ×
10−2

(4.32 ×
10−4)+(†)

8.95 × 10−2

(1.10 ×
10−1)+(†)

1.36 × 100

(1.07 ×
100)+(†)

1.98 × 10−2

(7.92 × 10−4)
2.01 × 10−2

(7.91 × 10−4)

5

6.26 ×
10−2

(1.45 ×
10−3)+(†)

9.67 ×
10−2

(2.66 ×
10−2)+(†)

1.21 ×
10−1

(2.73 ×
10−2)+(†)

6.46 ×
10−2

(2.10 ×
10−3)+(†)

9.14 ×
10−2

(6.98 ×
10−3)+(†)

6.15 ×
10−2

(6.74 ×
10−4)+(†)

1.18 × 10−1

(3.45 ×
10−2)+(†)

1.15 × 10+1

(6.69 ×
100)+(†)

5.48 × 10−2

(1.19 × 10−3)
5.61 × 10−2

(8.45 × 10−4)

8

1.17 ×
10−1

(2.88 ×
10−2)+(†)

2.00 ×
10−1

(1.09 ×
10−1)+(†)

2.31 ×
10−1

(6.87 ×
10−2)+(†)

1.02 ×
10−1

(2.24 ×
10−3)=(≡)

1.71 ×
10−1

(1.06 ×
10−2)+(†)

9.95 ×
10−2

(6.62 ×
10−4)-(↓)

3.26 × 10−1

(7.21 ×
10−2)+(†)

4.20 × 10−1

(5.49 ×
10−1)+(†)

1.02 × 10−1

(1.72 × 10−3)
1.02 × 10−1

(1.96 × 10−3)

10

1.57 ×
10−1

(8.06 ×
10−2)+(†)

2.46 ×
10−1

(9.31 ×
10−2)+(†)

2.27 ×
10−1

(7.67 ×
10−2)+(†)

1.07 ×
10−1

(1.99 ×
10−3)+(≡)

1.86 ×
10−1

(9.50 ×
10−3)+(†)

1.02 ×
10−1

(7.09 ×
10−4)-(↓)

3.05 × 10−1

(7.48 ×
10−2)+(†)

1.49 × 10+2

(1.97 ×
10+1)+(†)

1.05 × 10−1

(1.07 × 10−3)
1.07 × 10−1

(2.44 × 10−3)

3

5.50 ×
10−2

(1.94 ×
10−4)-(↓)

5.78 ×
10−2

(1.31 ×
10−3)-(↓)

5.33 ×
10−2

(7.52 ×
10−4)-(↓)

7.75 ×
10−2

(6.61 ×
10−3)+(↓)

7.49 ×
10−2

(3.89 ×
10−3)-(↓)

5.73 ×
10−2

(1.52 ×
10−3)-(↓)

6.84 × 10−2

(2.77 ×
10−3)-(↓)

7.09 × 10−2

(2.62 ×
10−3)-(↓)

7.58 × 10−2

(5.70 × 10−3)
7.85 × 10−2

(3.76 × 10−3)

5

1.85 ×
10−1

(5.10 ×
10−4)-(↓)

1.90 ×
10−1

(2.87 ×
10−3)-(↓)

1.93 ×
10−1

(1.18 ×
10−3)-(↓)

2.07 ×
10−1

(2.94 ×
10−3)-(↓)

2.62 ×
10−1

(1.34 ×
10−2)+(†)

1.92 ×
10−1

(1.65 ×
10−3)-(↓)

2.08 × 10−1

(3.83 ×
10−3)-(↓)

6.72 × 10−1

(4.28 ×
10−2)+(†)

2.20 × 10−1

(3.66 × 10−3)
2.19 × 10−1

(3.77 × 10−3)

D
TL

Z
2

8

3.77 ×
10−1

(6.88 ×
10−2)+(†)

3.43 ×
10−1

(2.19 ×
10−3)+(†)

3.72 ×
10−1

(2.59 ×
10−3)+(†)

3.59 ×
10−1

(2.61 ×
10−3)+(†)

5.18 ×
10−1

(1.77 ×
10−2)+(†)

3.55 ×
10−1

(1.87 ×
10−3)+(†)

3.74 × 10−1

(4.65 ×
10−3)+(†)

1.81 × 100

(3.05 ×
10−1)+(†)

2.76 × 10−1

(1.22 × 10−2)
2.85 × 10−1

(2.44 × 10−2)

10

4.56 ×
10−1

(3.87 ×
10−2)+(†)

4.32 ×
10−1

(3.72 ×
10−3)=(↓)

4.39 ×
10−1

(8.31 ×
10−3)+(†)

4.09 ×
10−1

(1.97 ×
10−3)-(↓)

6.03 ×
10−1

(1.88 ×
10−2)+(†)

4.08 ×
10−1

(1.49 ×
10−3)-(↓)

4.22 × 10−1

(5.87 ×
10−3)-(↓)

1.45 × 100

(6.20 ×
10−2)+(†)

4.32 × 10−1

(1.58 × 10−2)
4.37 × 10−1

(1.94 × 10−2)
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Table A5. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

D
TL

Z
3

3

5.64 ×
10−2

(2.61 ×
10−3)-(↓)

2.3 × 10−1

(1.10 ×
10−1)+(†)

5.57 ×
10−2

(4.74 ×
10−3)-(↓)

7.96 ×
10−2

(5.58 ×
10−3)+(↓)

1.72 ×
10−1

(1.95 ×
10−2)+(†)

8.96 ×
10−2

(1.73 ×
10−3)+(†)

1.59 × 10−1

(1.68 ×
10−1)+(†)

6.89 × 10−1

(1.63 ×
10−1)+(†)

7.70 × 10−2

(1.04 × 10−2)
8.06 × 10−2

(7.97 × 10−2)

5

1.93 ×
10−1

(2.54 ×
10−2)+(†)

1.28 × 100

(9.29 ×
10−1)+(†)

4.85 ×
10−1

(3.92 ×
10−1)+(†)

2.12 ×
10−1

(5.38 ×
10−3)+(†)

1.41 × 100

(4.20 ×
10−1)+(†)

1.89 ×
10−1

(2.32 ×
10−3)+(†)

6.32 × 10−1

(2.48 ×
10−1)+(†)

1.91 × 10+2

(5.27 ×
10+1)+(†)

1.79 × 10−1

(3.76 × 10−2)
1.77 × 10−1

(1.73 × 10−1)

8

5.44 ×
10−1

(1.61 ×
10−1)+(†)

1.17 ×
10−1

(5.50 ×
100)+(†)

5.32 × 100

(2.97 ×
100)+(†)

3.64 ×
10−1

(3.54 ×
10−3)+(†)

9.79 × 100

(1.26 ×
100)+(†)

3.49 ×
10−1

(2.86 ×
10−3)+(†)

1.15 × 100

(1.75 ×
10−1)+(†)

7.79 × 10+2

(2.13 ×
10+2)+(†)

3.22 × 10−1

(1.24 × 10−1)
3.41 × 10−1

(2.60 × 10−1)

10

5.55 ×
10−1

(1.11 ×
10−1)+(†)

2.57 ×
10+1

(1.52 ×
10+1)+(†)

1.09 ×
10+1

(4.06 ×
100)+(†)

4.10 ×
10−1

(2.45 ×
10−3)+(†)

1.74 ×
10+1

(2.76 ×
100)+(†)

4.02 ×
10−1

(4.57 ×
10−3)+(†)

1.19 × 100

(4.81 ×
10−2)+(†)

9.29 × 10+2

(1.05 ×
10+2)+(†)

3.40 × 10−1

(1.20 × 10−2)
3.75 × 10−1

(6.40 × 10−2)

3

4.65 ×
10−1

(2.93 ×
10−1)+(†)

5.83 ×
10−2

(1.67 ×
10−3)-(↓)

5.33 ×
10−2

(1.01 ×
10−3)-(↓)

1.40 ×
10−1

(1.68 ×
10−1)+(≡)

4.88 ×
10−1

(1.18 ×
10−1)+(†)

5.76 ×
10−2

(1.41 ×
10−3)-(↓)

7.25 × 10−2

(3.01 ×
10−3)-(↓)

2.09 × 10−1

(1.66 ×
10−1)+(†)

1.23 × 10−1

(1.44 × 10−1)
1.40 × 10−1

(1.70 × 10−1)

5

3.42 ×
10−1

(1.46 ×
10−1)+(†)

1.90 ×
10−1

(2.68 ×
10−3)+(†)

1.95 ×
10−1

(1.45 ×
10−3)+(†)

2.17 ×
10−1

(4.08 ×
10−2)+(†)

6.60 ×
10−1

(7.93 ×
10−2)+(†)

1.98 ×
10−1

(2.46 ×
10−3)+(†)

2.25 × 10−1

(5.47 ×
10−3)+(†)

4.91 × 10−1

(3.07 ×
10−2)+(†)

1.67 × 10−1

(7.58 × 10−2)
1.80 × 10−1

(8.60 × 10−2)

D
T

LZ
4

8

4.29 ×
10−1

(8.58 ×
10−2)+(†)

3.75 ×
10−1

(4.82 ×
10−3)+(†)

3.75 ×
10−1

(4.43 ×
10−3)+(†)

3.65 ×
10−1

(2.48 ×
10−3)+(†)

7.29 ×
10−1

(4.92 ×
10−2)+(†)

3.71 ×
10−1

(2.47 ×
10−3)+(†)

4.10 × 10−1

(6.69 ×
10−3)+(†)

1.59 × 100

(1.91 ×
10−1)+(†)

3.29 × 10−1

(2.59 × 10−2)
3.38 × 10−1

(3.22 × 10−2)

10

5.07 ×
10−1

(6.52 ×
10−2)+(†)

4.83 ×
10−1

(6.29 ×
10−3)+(†)

4.51 ×
10−1

(1.02 ×
10−2)+(†)

4.11 ×
10−1

(2.88 ×
10−3)-(↓)

7.45 ×
10−1

(2.54 ×
10−2)+(†)

4.38 ×
10−1

(1.78 ×
10−3)=(†)

4.79 × 10−1

(5.64 ×
10−3)+(†)

1.56 × 100

(1.94 ×
10−1)+(†)

4.38 × 10−1

(1.37 × 10−2)
4.12 × 10−1

(1.21 × 10−2)

D
T

LZ
5

3

1.58 ×
10−2

(4.30 ×
10−3)+(†)

2.96 ×
10−2

(3.53 ×
10−3)+(†)

4.45 ×
10−3

(1.76 ×
10−4)+(†)

5.18 ×
10−3

(7.31 ×
10−4)+(†)

7.71 ×
10−3

(1.20 ×
10−3)+(†)

4.78 ×
10−3

(2.44 ×
10−4)+(†)

1.04 × 10−2

(1.76 ×
10−3)+(†)

4.18 × 10−3

(1.41 ×
10−4)=(†)

4.18 × 10−3

(4.05 × 10−4)
4.09 × 10−3

(3.50 × 10−4)

5

6.27 ×
10−2

(1.51 ×
10−2)+(†)

2.41 ×
10−1

(6.50 ×
10−2)+(†)

1.55 ×
10−1

(4.47 ×
10−2)+(†)

4.11 ×
10−2

(7.24 ×
10−3)+(†)

1.22 ×
10−2

(2.57 ×
10−3)-(↓)

4.08 ×
10−2

(5.06 ×
10−3)+(†)

7.34 × 10−1

(5.05 ×
10−2)+(†)

1.22 × 10−1

(2.56 ×
10−2)+(†)

1.91 × 10−2

(4.04 × 10−3)
1.65 × 10−2

(3.16 × 10−3)

8

9.24 ×
10−2

(2.28 ×
10−2)+(†)

3.71 ×
10−1

(8.17 ×
10−2)+(†)

3.45 ×
10−1

(6.47 ×
10−2)+(†)

1.01 ×
10−1

(1.83 ×
10−2)+(†)

4.17 ×
10−2

(6.11 ×
10−3)+(†)

6.75 ×
10−2

(1.25 ×
10−2)+(†)

1.35 × 100

(9.23 ×
10−2)+(†)

2.17 × 10−1

(3.27 ×
10−2)+(†)

2.27 × 10−2

(5.41 × 10−3)
2.11 × 10−2

(5.47 × 10−3)

10

8.20 ×
10−2

(2.15 ×
10−2)+(†)

4.72 ×
10−1

(1.61 ×
10−1)+(†)

4.05 ×
10−1

(8.55 ×
10−2)+(†)

1.17 ×
10−1

(1.69 ×
10−2)+(†)

5.59 ×
10−2

(8.06 ×
10−3)+(†)

6.50 ×
10−2

(1.47 ×
10−2)+(†)

1.37 × 100

(1.43 ×
10−1)+(†)

1.77 × 10−1

(3.73 ×
10−2)+(†)

2.27 × 10−2

(6.19 × 10−3)
1.95 × 10−2

(5.94 × 10−3)

3

3.71 ×
10−2

(2.01 ×
10−2)+(†)

3.44 ×
10−2

(4.42 ×
10−3)+(†)

4.31 ×
10−3

(2.63 ×
10−4)+(≡)

5.59 ×
10−3

(2.93 ×
10−3)+(†)

8.70 ×
10−3

(1.30 ×
10−3)+(†)

4.91 ×
10−3

(1.87 ×
10−4)+(†)

1.83 × 10−2

(2.13 ×
10−2)+(†)

4.43 × 100

(2.22 ×
10−1)+(†)

4.24 × 10−3

(4.25 × 10−4)
4.31 × 10−3

(7.13 × 10−4)

5

1.41 ×
10−1

(6.70 ×
10−2)+(†)

7.20 ×
10−1

(3.76 ×
10−1)+(†)

4.33 ×
10−1

(2.03 ×
10−1)+(†)

6.46 ×
10−2

(1.59 ×
10−2)+(†)

1.05 ×
10−2

(1.52 ×
10−3)-(↓)

5.41 ×
10−2

(1.40 ×
10−2)+(†)

7.02 × 10−1

(1.11 ×
10−1)+(†)

9.44 × 100

(6.58 ×
10−1)+(†)

4.34 × 10−2

(8.72 × 10−3)
4.94 × 10−2

(3.11 × 10−2)

D
TL

Z
6

8

2.56 ×
10−1

(2.57 ×
10−1)+(↓)

2.11 × 100

(7.06 ×
10−1)+(†)

3.11 × 100

(9.10 ×
10−1)+(†)

1.68 ×
10−1

(3.13 ×
10−2)-(↓)

2.29 ×
10−2

(5.43 ×
10−3)-(↓)

8.22 ×
10−2

(2.23 ×
10−2)-(↓)

1.04 × 100

(1.15 ×
10−1)+(†)

9.90 × 100

(4.57 ×
10−2)+(†)

2.27 × 10−1

(3.55 × 10−1)

3.26 × 10−1

(4. × 10 ×
10−1)

10

2.32 ×
10−1

(5.65 ×
10−2)+(†)

3.43 × 100

(7.72 ×
10−1)+(†)

3.07 × 100

(6.55 ×
10−1)+(†)

2.03 ×
10−1

(5.65 ×
10−2)+(†)

4.47 ×
10−2

(2.30 ×
10−2)-(↓)

9.96 ×
10−2

(3.81 ×
10−2)+(†)

1.00 × 100

(1.02 ×
10−1)+(†)

9.82 × 100

(2.17 ×
10−1)+(†)

8.81 × 10−2

(1.36 × 10−1)
8.98 × 10−2

(3.31 × 10−1)



Processes 2022, 10, 2316 29 of 33

Table A5. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

D
T

LZ
7

3

9.03 ×
10−2

(9.14 ×
10−2)+(†)

8.71 ×
10−2

(2.94 ×
10−3)+(†)

8.54 ×
10−2

(9.16 ×
10−2)+(†)

1.28 ×
10−1

(1.39 ×
10−1)+(†)

1.71 ×
10−1

(6.14 ×
10−2)+(†)

8.21 ×
10−2

(9.40 ×
10−2)+(†)

3.88 × 10−1

(1.06 ×
10−1)+(†)

1.50 × 10−1

(2.04 ×
10−1)+(†)

3.61 × 10−2

(2.09 × 10−1)
3.12 × 10−2

(2.42 × 10−1)

5

3.09 ×
10−1

(1.01 ×
10−2)+(†)

3.65 ×
10−1

(7.01 ×
10−3)+(†)

3.20 ×
10−1

(9.75 ×
10−3)+(†)

2.95 ×
10−1

(2.96 ×
10−2)+(†)

5.03 ×
10−1

(5.79 ×
10−2)+(†)

2.91 ×
10−1

(1.01 ×
10−2)+(≡)

8.14 × 10−1

(1.11 ×
10−1)+(†)

5.18 × 10−1

(3.60 ×
10−2)+(†)

2.13 × 10−1

(2.39 × 10−1)
2.91 × 10−1

(2.15 × 10−1)

8

6.99 ×
10−1

(2.30 ×
10−2)+(†)

9.27 ×
10−1

(3.42 ×
10−2)+(†)

6.74 ×
10−1

(1.93 ×
10−2)=(†)

7.76 ×
10−1

(2.32 ×
10−2)+(†)

1.16 × 100

(1.15 ×
10−1)+(†)

8.03 ×
10−1

(4.76 ×
10−2)+(†)

3.30 × 100

(4.94 ×
10−1)+(†)

2.86 × 100

(8.59 ×
10−1)+(†)

6.74 × 10−1

(1.66 × 10−1)
6.42 × 10−1

(1.20 × 10−1)

10

7.48 ×
10−1

(3.52 ×
10−2)=(≡)

1.60 × 100

(4.42 ×
10−2)+(†)

9.40 ×
10−1

(2.95 ×
10−2)+(†)

8.34 ×
10−1

(1.01 ×
10−2)+(†)

1.45 × 100

(1.63 ×
10−1)+(†)

1.04 × 100

(5.04 ×
10−2)+(†)

4.55 × 100

(5.21 ×
10−1)+(†)

3.96 × 100

(1.34 ×
100)+(†)

7.48 × 10−1

(1.75 × 10−1)
7.48 × 10−1

(6.33 × 10−2)

Ad-
GrMODE1*

(+/=/-)
23/1/4 23/2/3 23/1/4 23/1/4 23/0/5 20/1/7 24/0/4 26/1/1

Ad-
GrMODE2*

(†/≡/↓)
22/1/5 23/0/5 23/1/4 19/3/6 23/0/5 20/1/7 24/0/4 27/0/1

The signs ‘+’, ‘=’, and ‘-’ depicts the instances, ad-GrMODE1* performs better, similar and worse with respect
to state-of-the-art algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the in-stances, ad-GrMODE2* performs better,
similar and worse with respect to state-of-the-art algorithms.

Table A6. Mean and standard deviation values of IGD results of proposed method with state of art
algorithms on WFG problems.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

W
FG

1

3
1.58 × 100

(9.52 ×
10−2)+(†)

1.53 × 100

(7.83 ×
10−4)+(†)

1.53 × 100

(2.09 ×
10−3)+(†)

1.53 × 100

(3.97 ×
10−3)+(†)

2.38 × 100

(5.74 ×
10−2)+(†)

1.83 × 100

(2.05 ×
10−2)+(†)

1.89 × 100

(6.79 ×
10−2)+(†)

1.68 × 100

(5.81 ×
10−2)+(†)

1.46 × 100

(4.75 × 10−3)
1.46 × 100

(6.31 × 10−3)

5
2.14 × 100

(1.33 ×
10−1)+(†)

2.39 × 100

(3.06 ×
10−1)+(†)

2.21 × 100

(5.80 ×
10−3)+(†)

1.99 × 100

(6.43 ×
10−3)-(↓)

2.58 × 100

(3.63 ×
10−2)+(†)

2.10 × 100

(1.11 ×
10−2)+(†)

2.66 × 100

(4.07 ×
10−1)+(†)

2.08 × 100

(3.08 ×
10−2)+(†)

2.04 × 100

(1.61 × 10−2)
2.05 × 100

(1.70 × 10−2)

8
2.72 × 100

(7.44 ×
10−2)+(†)

2.78 × 100

(1.91 ×
10−1)+(†)

2.66 × 100

(1.53 ×
10−2)-(↓)

2.63 × 100

(2.25 ×
10−2)-(↓)

2.96 × 100

(2.20 ×
10−2)+(†)

2.70 × 100

(8.69 ×
10−3)=(≡)

3.89 × 100

(6.35 ×
10−1)+(†)

2.65 × 100

(2.35 ×
10−2)-(↓)

2.70 × 100

(1.75 × 10−2)
2.70 × 100

(1.94 × 10−2)

10
3.01 × 100

(5.28 ×
10−2)-(↓)

3.02 × 100

(3.70 ×
10−2)-(↓)

3.02 × 100

(1.90 ×
10−2)-(↓)

3.19 × 100

(2.06 ×
10−2)+(†)

3.19 × 100

(9.09 ×
10−3)+(†)

3.03 × 100

(9.74 ×
10−3)-(↓)

4.59 × 100

(8.47 ×
10−1)+(†)

2.99 × 100

(1.57 ×
10−2)-(↓)

3.05 × 100

(2.25 × 10−2)
3.06 × 100

(2.51 × 10−2)

3
3.04 × 100

(3.90 ×
10−3)-(↓)

3.04 × 100

(2.37 ×
10−3)-(↓)

3.04 × 100

(2.27 ×
10−3)-(↓)

3.05 × 100

(2.96 ×
10−3)=(≡)

3.05 × 100

(5.13 ×
10−3)=(≡)

3.04 × 100

(4.62 ×
10−3)-(↓)

3.12 × 100

(2.94 ×
10−2)+(†)

3.04 × 100

(1.11 ×
10−3)-(↓)

3.05 × 100

(3.13 × 10−3)
3.05 × 100

(4.04 × 10−3)

5
5.69 × 100

(4.83 ×
10−3)+(†)

5.69 × 100

(2.95 ×
10−3)+(†)

5.69 × 100

(2.55 ×
10−3)+(†)

5.69 × 100

(1.20 ×
10−3)+(†)

5.71 × 100

(1.18 ×
10−2)+(†)

5.69 × 100

(3.04 ×
10−3)+(†)

7.12 × 100

(9.66 ×
10−1)+(†)

5.69 × 100

(1.26 ×
10−3)+(†)

4.66 × 100

(2.01 × 10−3)
4.67 × 100

(1.56 × 10−3)

W
FG

2

8
9.41 × 100

(1.26 ×
10−2)=(≡)

9.41 × 100

(9.11 ×
10−4)=(≡)

9.41 × 100

(1.44 ×
10−3)=(≡)

9.41 × 100

(1.11 ×
10−3)=(≡)

9.45 × 100

(2.70 ×
10−2)+(†)

9.41 × 100

(3.40 ×
10−3)=(≡)

1.29 × 10+1

(7.06 ×
10−1)+(†)

9.41 × 100

(1.42 ×
10−3)=(≡)

9.41 × 100

(1.51 × 10−3)
9.41 × 100

(1.40 × 10−3)

10

1.20 ×
10+1

(4.55 ×
10−3)=(≡)

1.20 ×
10+1

(1.41 ×
10−3)=(≡)

1.20 ×
10+1

(1.54 ×
10−3)=(≡)

1.20 ×
10+1

(1.11 ×
10−3)=(≡)

1.20 ×
10+1

(2.44 ×
10−2)=(≡)

1.20 ×
10+1

(4.57 ×
10−3)=(≡)

1.60 × 10+1

(1.27 ×
100)+(†)

1.20 × 10+1

(1.39 ×
10−3)=(≡)

1.20 × 10+1

(1.03 × 10−3)
1.20 × 10+1

(8.86 × 10−4)

W
FG

3

3
1.39 × 100

(4.46 ×
10−3)+(†)

1.39 × 100

(1.02 ×
10−3)+(†)

1.38 × 100

(1.82 ×
10−3)+(†)

1.38 × 100

(7.19 ×
10−4)+(†)

1.39 × 100

(6.16 ×
10−3)+(†)

1.38 × 100

(5.49 ×
10−4)+(†)

2.74 × 100

(2.31 ×
10−1)+(†)

1.44 × 100

(2.08 ×
10−3)+(†)

1.23 × 100

(4.63 × 10−4)
1.13 × 100

(2.39 × 10−4)

5
2.33 × 100

(8.13 ×
10−2)+(†)

2.28 × 100

(5.09 ×
10−3)+(†)

2.25 × 100

(1.68 ×
10−3)+(†)

2.25 × 100

(1.52 ×
10−3)+(†)

2.27 × 100

(1.41 ×
10−2)+(†)

2.24 × 100

(1.77 ×
10−3)+(†)

5.84 × 100

(3.18 ×
10−2)+(†)

2.32 × 100

(3.04 ×
10−3)+(†)

1.61 × 100

(1.14 × 10−3)
1.31 × 100

(2.06 × 10−3)

8
3.72 × 100

(4.15 ×
10−2)=(†)

6.28 × 100

(8.42 ×
10−1)+(†)

3.67 × 100

(3.84 ×
10−3)-(↓)

3.67 × 100

(5.33 ×
10−3)-(↓)

3.71 × 100

(1.95 ×
10−2)-(≡)

3.66 × 100

(3.58 ×
10−3)-(↓)

1.04 × 10+1

(9.96 ×
10−2)+(†)

3.74 × 100

(4.92 ×
10−3)+(†)

3.72 × 100

(5.00 × 10−3)
3.71 × 100

(5.44 × 10−3)

10
3.47 × 100

(1.70 ×
10−2)+(†)

4.88 × 100

(8.23 ×
10−1)+(†)

3.41 × 100

(2.19 ×
10−3)+(†)

3.41 × 100

(4.35 ×
10−3)+(†)

3.44 × 100

(2.11 ×
10−2)+(†)

3.40 × 100

(2.74 ×
10−3)+(†)

9.94 × 100

(1.05 ×
10−1)+(†)

3.53 × 100

(2.55 ×
10−3)+(†)

3.21 × 100

(1.74 × 10−3)
3.12 × 100

(2.33 × 10−3)
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Table A6. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

3
7.95 × 100

(2.20 ×
10−3)+(†)

7.93 ×
10−1

(1.22 ×
10−3)+(†)

8.06 ×
10−1

(4.13 ×
10−3)+(†)

8.47 ×
10−1

(9.26 ×
10−3)+(†)

1.06 × 100

(6.75 ×
10−2)+(†)

8.24 ×
10−1

(7.07 ×
10−3)+(†)

8.20 × 10−1

(6.89 ×
10−3)+(†)

8.61 × 10−1

(2.14 ×
10−2)+(†)

6.48 × 10−1

(1.01 × 10−2)
6.48 × 10−1

(7.88 × 10−3)

5
1.62 × 100

(8.33 ×
10−3)+(†)

1.65 × 100

(3.48 ×
10−3)+(†)

1.64 × 100

(9.27 ×
10−3)+(†)

1.78 × 100

(2.31 ×
10−2)+(†)

2.95 × 100

(2.61 ×
10−1)+(†)

2.10 × 100

(1.13 ×
10−1)+(†)

1.71 × 100

(2.18 ×
10−2)+(†)

1.75 × 100

(3.61 ×
10−2)+(†)

1.42 × 100

(3.74 × 10−2)
1.49 × 100

(4.77 × 10−2)

W
FG

4

8
3.71 × 100

(1.55 ×
10−1)-(↓)

3.57 × 100

(2.96 ×
10−2)-(↓)

3.36 × 100

(1.85 ×
10−2)-(↓)

3.94 × 100

(1.68 ×
10−1)-(↓)

6.73 × 100

(4.36 ×
10−1)+(†)

4.93 × 100

(1.84 ×
10−1)+(†)

3.73 × 100

(8.90 ×
10−2)-(↓)

3.76 × 100

(5.93 ×
10−2)-(↓)

4.23 × 100

(2.10 × 10−1)
4.22 × 100

(2.00 × 10−1)

10
4.82 × 100

(1.59 ×
10−1)-(↓)

4.87 × 100

(1.72 ×
10−2)-(↓)

4.32 × 100

(2.24 ×
10−2)-(↓)

5.67 × 100

(3.55 ×
10−1)-(↓)

8.68 × 100

(5.27 ×
10−1)+(†)

6.54 × 100

(2.26 ×
10−1)+(†)

4.93 × 100

(9.02 ×
10−2)-(↓)

4.98 × 100

(9.08 ×
10−2)-(↓)

5.86 × 100

(3.09 × 10−1)
5.77 × 100

(4.54 × 10−1)

W
FG

5

3

3.39 ×
10−1

(7.17 ×
10−3)+(↓)

3.49 ×
10−1

(1.01 ×
10−3)+(↓)

3.17 ×
10−1

(3.06 ×
10−3)-(↓)

3.72 ×
10−1

(1.17 ×
10−2)+(†)

3.83 ×
10−1

(9.54 ×
10−3)+(†)

3.23 ×
10−1

(3.63 ×
10−3)+(↓)

3.68 × 10−1

(1.02 ×
10−2)+(≡)

3.29 × 10−1

(2.52 ×
10−3)+(↓)

3.20 × 10−1

(1.33 × 10−2)
3.68 × 10−1

(1.09 × 10−2)

5
2.31 × 100

(2.43 ×
10−2)-(≡)

2.50 × 100

(2.41 ×
10−2) +(†)

2.23 × 100

(7.90 ×
10−3)-(↓)

2.29 × 100

(1.71 ×
10−2)-(↓)

2.51 × 100

(5.59 ×
10−2)+(†)

2.20 × 100

(9.98 ×
10−3)-(↓)

2.34 × 100

(4.35 ×
10−2)=(†)

2.25 × 100

(1.06 ×
10−2)-(↓)

2.34 × 100

(2.07 × 10−2)
2.31 × 100

(1.89 × 10−2)

8
6.76 × 100

(2.51 ×
10−2)+(†)

6.83 × 100

(2.64 ×
10−2)+(†)

6.68 × 100

(1.16 ×
10−2)+(†)

6.80 × 100

(2.60 ×
10−2)+(†)

7.23E ×
100

(8.51 ×
10−2)+(†)

6.64 × 100

(8.54 ×
10−3)+(†)

7.21 × 100

(1.27 ×
10−1)+(†)

6.74 × 100

(1.84 ×
10−2)+(†)

6.02 × 100

(8.29 × 10−2)
6.00 × 100

(6.95 × 10−2)

10
9.82 × 100

(2.31 ×
10−2)-(↓)

9.92 × 100

(2.27 ×
10−2)-(↓)

9.76 × 100

(1.29 ×
10−2)-(↓)

9.94 × 100

(3.74 ×
10−2)-(↓)

1.04 ×
10+1

(7.00 ×
10−2)+(†)

9.72 × 100

(1.07 ×
10−2)-(↓)

1.07 × 10+1

(1.50 ×
100)+(†)

9.85 × 100

(1.25 ×
10−2)-(↓)

1.01 × 10+1

(9.71 × 10−2)
1.01 × 10+1

(8.99 × 10−2)

3
2.20 × 100

(3.96 ×
10−2)+(†)

2.18 × 100

(3.01 ×
10−3)+(†)

2.17 × 100

(4.27 ×
10−3)+(†)

2.17 × 100

(3.79 ×
10−3)+(†)

2.22 × 100

(1.57 ×
10−2)+(†)

2.17 × 100

(6.04 ×
10−3)+(†)

2.25 × 100

(3.90 ×
10−2)+(†)

2.18 × 100

(3.00 ×
10−3)+(†)

2.13 × 100

(2.53 × 10−3)
2.11 × 100

(2.46 × 10−3)

5
5.78 × 100

(6.65 ×
10−3)=(↓)

5.78 × 100

(7.77 ×
10−3)=(↓)

5.78 × 100

(5.21 ×
10−3)=(↓)

5.81 × 100

(8.17 ×
10−3)+(↓)

5.87 × 100

(3.39 ×
10−2)+(†)

5.78 × 100

(1.16 ×
10−2)=(↓)

6.08 × 100

(7.74 ×
10−2)+(†)

5.78 × 100

(3.60 ×
10−3)=(↓)

5.78 × 100

(6.74 × 10−3)
5.82 × 100

(9.97 × 10−3)

W
FG

6

8

1.17 ×
10+1

(1.30 ×
10−2)+(†)

1.17 ×
10+1

(2.65 ×
10−2)+(†)

1.17 ×
10+1

(3.99 ×
10−3)+(†)

1.17 ×
10+1

(1.92 ×
10−2)+(†)

1.18 ×
10+1

(3.86 ×
10−2)+(†)

1.17 ×
10+1

(1.62 ×
10−2)+(†)

1.23 × 10+1

(7.11 ×
10−2)+(†)

1.17 × 10+1

(4.49 ×
10−3)+(†)

1.07 × 10+1

(1.33 × 10−2)
1.07 × 10+1

(1.08 × 10−2)

10

1.56 ×
10+1

(4.64 ×
10−2)=(≡)

1.56 ×
10+1

(3.33 ×
10−2)=(≡)

1.56 ×
10+1

(2.20 ×
10−3)=(≡)

1.56 ×
10+1

(3.95 ×
10−2)=(≡)

1.56 ×
10+1

(3.34 ×
10−2)=(≡)

1.55 ×
10+1

(1.55 ×
10−2)-(↓)

1.63 × 10+1

(5.04 ×
10−2)+(†)

1.54 × 10+1

(3.90 ×
10−3)-(↓)

1.56 × 10+1

(1.03 × 10−2)
1.56 × 10+1

(1.00 × 10−2)

W
FG

7

3
1.34 × 100

(2.46 ×
10−1)+(†)

1.30 × 100

(7.80 ×
10−3)+(†)

1.29 × 100

(4.36 ×
10−3)+(†)

1.30 × 100

(7.11 ×
10−3)+(†)

1.68 × 100

(6.05 ×
10−2)+(†)

1.32 × 100

(1.00 ×
10−2)+(†)

1.34 × 100

(1.44 ×
10−2)+(†)

1.33 × 100

(9.56 ×
10−3)+(†)

1.21 × 100

(6.55 × 10−3)
1.11 × 100

(8.02 × 10−3)

5
2.78 × 100

(7.06 ×
10−1)+(†)

2.21 × 100

(6.47 ×
10−3)+(†)

2.30 × 100

(1.04 ×
10−2)+(†)

2.39 × 100

(2.74 ×
10−2)+(†)

3.16 × 100

(6.71 ×
10−2)+(†)

2.37 × 100

(3.92 ×
10−2)+(†)

2.47 × 100

(4.19 ×
10−2)+(†)

2.42 × 100

(2.69 ×
10−2)+(†)

2.11 × 100

(3.14 × 10−2)
2.15 × 100

(3.29 × 10−2)

8
4.59 × 100

(7.77 ×
10−1)+(†)

4.29 × 100

(8.99 ×
10−2)+(†)

4.51 × 100

(3.46 ×
10−2)+(†)

4.56 × 100

(5.53 ×
10−2)+(†)

5.76 × 100

(8.00 ×
10−2)+(†)

4.45 × 100

(5.71 ×
10−2)+(†)

4.68 × 100

(6.66 ×
10−2)+(†)

4.58 × 100

(3.98 ×
10−2)+(†)

3.63 × 100

(6.23 × 10−2)
3.64 × 100

(4.62 × 10−2)

10
5.33 × 100

(5.34 ×
10−2)+(†)

5.51 × 100

(3.60 ×
10−2)+(†)

5.65 × 100

(3.19 ×
10−2)+(†)

5.61 × 100

(5.15 ×
10−2)+(†)

6.99 × 100

(6.45 ×
10−2)+(†)

5.47 × 100

(4.98 ×
10−2)+(†)

5.83 × 100

(4.02 ×
10−2)+(†)

5.80 × 100

(3.95 ×
10−2)+(†)

4.76 × 100

(8.51 × 10−2)
4.77 × 100

(7.68 × 10−2)

3
2.17 × 100

(2.83 ×
10−2)+(†)

2.09 × 100

(2.54 ×
10−3)+(†)

2.11 × 100

(2.34 ×
10−2)+(†)

2.15 × 100

(2.72 ×
10−2)+(†)

2.14 × 100

(1.71 ×
10−2)+(†)

2.08 × 100

(3.12 ×
10−3)+(†)

2.17 × 100

(3.74 ×
10−2)+(†)

2.10 × 100

(2.43 ×
10−3)+(†)

2.03 × 100

(3.20 × 10−2)
2.04 × 100

(2.25 × 10−2)

5
5.77 × 100

(1.57 ×
10−2)+(†)

5.71 × 100

(3.38 ×
10−3)+(†)

5.72 × 100

(6.52 ×
10−3)+(†)

5.74 × 100

(1.55 ×
10−2)+(†)

5.80 × 100

(2.80 ×
10−2)+(†)

5.70 × 100

(1.07 ×
10−2)+(†)

6.34 × 100

(1.36 ×
10−1)+(†)

5.70 × 100

(4.83 ×
10−3)+(†)

5.59 × 100

(9.66 × 10−3)
5.52 × 100

(1.12 × 10−2)

W
FG

8

8

1.17 ×
10+1

(2.68 ×
10−2)+(†)

1.17 ×
10+1

(2.64 ×
10−2)+(†)

1.16 ×
10+1

(1.04 ×
10−2)+(†)

1.17 ×
10+1

(1.58 ×
10−2)+(†)

1.17 ×
10+1

(5.16 ×
10−2)+(†)

1.16 ×
10+1

(1.29 ×
10−2)+(†)

1.28 × 10+1

(2.00 ×
10−1)+(†)

1.16 × 10+1

(4.33 ×
10−3)+(†)

1.13 × 10+1

(1.23 × 10−2)
1.12 × 10+1

(1.85 × 10−2)

10

1.55 ×
10+1

(2.09 ×
10−2)=(≡)

1.55 ×
10+1

(2.22 ×
10−2)=(≡)

1.55 ×
10+1

(7.43 ×
10−3)=(≡)

1.55 ×
10+1

(1.17 ×
10−2)=(≡)

1.55 ×
10+1

(4.88 ×
10−2)=(≡)

1.55 ×
10+1

(1.71 ×
10−2)=(≡)

1.67 × 10+1

(2.53 ×
10−1)+(†)

1.55 × 10+1

(4.99 ×
10−3)=(≡)

1.55 × 10+1

(2.09 × 10−2)
1.55 × 10+1

(3.08 × 10−2)



Processes 2022, 10, 2316 31 of 33

Table A6. Cont.

# M NSGAIII SPEA-R VaEA SRA MODE EMyO-C MyODEMR GAMODE adGrMOEA1* adGrMOEA2*

W
FG

9

3

4.00 ×
10−1

(9.52 ×
10−3)-(↓)

4.14 ×
10−1

(7.36 ×
10−3)+(†)

4.15 ×
10−1

(1.17 ×
10−2)+(†)

4.53 ×
10−1

(1.60 ×
10−2)+(†)

1.27 × 100

(1.57 ×
10−1)+(†)

4.07 ×
10−1

(6.94 ×
10−3)+(†)

4.35 × 10−1

(8.79 ×
10−3)+(†)

4.80 × 10−1

(8.67 ×
10−3)+(†)

4.05 × 10−1

(1.35 × 10−2)
4.01 × 10−1

(1.35 × 10−2)

5
1.13 × 100

(4.00 ×
10−2)+(↓)

1.11 × 100

(8.65 ×
10−3)=(↓)

1.18 × 100

(1.16 ×
10−2)+(†)

1.28 × 100

(1.89 ×
10−2)+(†)

4.57 × 100

(4.04 ×
10−1)+(†)

1.27 × 100

(3.00 ×
10−2)+(†)

1.35 × 100

(4.03 ×
10−2)+(†)

1.51 × 100

(1.62 ×
10−1)+(†)

1.11 × 100

(2.87 × 10−2)
1.15 × 100

(6.58 × 10−2)

8
3.45 × 100

(1.69 ×
10−1)+(†)

3.22 × 100

(1.16 ×
10−1)+(†)

3.09 × 100

(3.57 ×
10−2)+(†)

3.29 × 100

(1.38 ×
10−1)+(†)

1.01 ×
10+1

(4.22 ×
10−1)+(†)

3.80 × 100

(1.94 ×
10−1)+(†)

6.64 × 100

(1.91 ×
100)+(†)

5.59 × 100

(3.66 ×
10−1)+(†)

2.46 × 100

(3.40 × 10−1)
2.47 × 100

(3.96 × 10−1)

10
4.65 × 100

(2.94 ×
10−1)+(†)

4.66 × 100

(9.98 ×
10−2)+(†)

4.25 × 100

(8.17 ×
10−2)-(↓)

4.54 × 100

(2.39 ×
10−1)+(†)

1.34 ×
10+1

(4.62 ×
10−1)+(†)

5.70 × 100

(2.17 ×
10−1)+(†)

8.90 × 100

(1.65 ×
100)+(†)

8.16 × 100

(4.16 ×
10−1)+(†)

4.51 × 100

(4.74 × 10−1)
4.52 × 100

(3.85 × 10−1)

Ad-
GrMODE1*

(+/=/-)
23/6/7 25/5/6 21/5/10 24/5/7 31/4/1 25/5/6 33/1/2 24/4/8

Ad-
GrMODE2*

(†/≡/↓)
22/5/9 24/8/4 21/4/11 23/5/8 31/5/0 24/4/8 33/1/2 23/3/10

The signs ‘+’, ‘=’, and ‘-’ depicts the instances, ad-GrMODE1* performs better, similar and worse with respect to
state-of-the-art algorithms. The signs ‘†’, ‘≡’, and ‘↓’ depicts the instances, ad-GrMODE2* performs better, similar
and worse with respect to state-of-the-art algorithms.
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