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Abstract: Conventional surveillance for a security robot suffers from severe limitations, perceptual
aliasing (e.g., different places/objects can appear identical), occlusion (e.g., place/object appearance
changes between visits), illumination changes, significant viewpoint changes, etc. This paper proposes
an autonomous robotic system based on CNN (convolutional neural network) to perform visual
perception and control tasks. The visual perception aims to identify all objects moving in the scene
and to verify whether the target is an authorized person. The visual perception system includes a
motion detection module, a tracking module, face detection, and a recognition module. The control
system includes motion control and navigation (path planning and obstacle avoidance). The empirical
validation includes the evaluation metrics, such as model speed, accuracy, precision, recall, ROC
(receiver operating characteristic) curve, P-R (precision–recall) curve, F1-score for AlexNet, VggNet,
and GoogLeNet, and RMSE (root-mean-square error) value of mapping errors. The experimental
results showed that the average accuracy of VggNet under four different illumination changes is 0.95,
and it has the best performance under all unstable factors among three CNN architectures. For the
accuracy of building maps in real scenes, the mapping error is 0.222 m.

Keywords: mobile robots; face recognition; artificial intelligence; object detection; simultaneous
localization and mapping; deep learning

1. Introduction

Recent developments in AI (artificial intelligence) have led to a renewed interest in
security robots. An autonomous indoor surveillance robot based on Raspberry Pi was
designed and achieve face recognition and navigation [1]. A mobile robot of indoor
monitoring and surveillance was proposed and achieved object recognition with an RGB-D
camera [2]. A surveillance robot implemented object detection with CNN and YOLO (you
only look once) algorithm [3]. An autonomous mobile robot for surveillance was proposed
and achieved face detection and recognition [4]. A mobile robot was designed to implement
people detection and automatic guard patrol [5]. However, conventional surveillance is
severely limited by many factors. For example, at different places and viewpoints, different
objects may look the same. In addition, significant changes in illumination and pose and
random occlusion will greatly increase the recognition error rate. Several researchers have
studied how to eliminate the effects of these factors on image recognition.

Significant changes in illumination, occlusion, expression, etc., make face recognition
actually challenging, and many researchers have proposed methods to solve this problem.
A novel deep learning network of circular symmetrical Gabor filter 2D PCA (principal
component analysis) neural networks was proposed [6]. The method tested on various
databases, and it is more robust to the variations mentioned above. A multitask CNN
was proposed for face recognition [7]. Compared with the various datasets, the proposed
method has better performance than existing technologies. A conditional generative
adversarial network-based approach was presented to mitigate intraclass differences [8].
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The experimental results showed that this method is more effective than the methods on the
AffectNet and Real-world Affective Faces databases. A face recognition method based on a
directional gradient dense-grid histogram was proposed [9]. Experimental results showed
that this method is more suitable for changes in time and environment, and compared
with local binary patterns, uses fewer dimensions to obtain a better recognition rate. A
novel low-rank regularized general representation method was proposed to solve the
problem [10]. The experimental results on the four face databases showed the robustness
to expression, illumination, occlusion, and time-varying methods. Illumination variations,
random occlusion, and surface textures also cause fruits and vegetables to be judged and
positioned incorrectly. Faster R-CNN was used to locate the target in the fruit and vegetable
images obtained by two CCD (charge-coupled device) cameras [11]. Experimental results
showed that the method is robust and the average accurate recognition rate under six
different conditions is 96.33%.

Severe illumination variations are considered as tough issues for the face images
in the outdoor environment. DSP (diagonal symmetric pattern) was proposed for face
recognition under severe illumination variation [12]. The experimental results on various
databases indicate that the proposed methods are more efficient. A new method based on
the Lambert reflectance model was proposed to improve the illumination invariants [13].
The experimental results showed that the model is insensitive to complex illumination
variations. The frequency characteristic bases to construct a novel high-frequency facial
feature were utilized [14]. Experiments showed that transforming the proposed faces into
a GHSP (general high-frequency based sparse representation) model can eliminate the
specific identity information of ordinary faces.

In addition to the factors mentioned above, human faces in surveillance often suffer
from severe dramatic pose variations. TBE (trunk branch ensemble) CNN was proposed; it
extracts features from patches cropped around facial components [15]. The results showed
that TBE-CNN achieved the most advanced performance on various databases. A deep
DSN (disentangling Siamese network) was proposed for frontal face [16]. Quantitative and
qualitative evaluations of the proposed network on benchmarks showed that the proposed
network performs better than the state-of-the-art methods.

However, the literature reviewed above might have been more useful if it considered
more evaluation metrics, such as precision, recall, ROC curve, AUC value, F1-score, etc.
Only [11] considered the above evaluation metrics, and the rest only included the recogni-
tion rate and accuracy. In addition, since the security robot is not allowed to underreport
any unauthorized person, this research also discusses sensitivity. In the face recognition
algorithm part, the above literature was continued, using CNN and the Viola–Jones face
detection algorithm, and continued [1] to achieve robot navigation and obstacle avoidance.

The proposed visual perception system includes a face detection module, face tracking
module, and face recognition module. The face detection algorithm is a frontal face
Viola–Jones cascade, because it is one of the more practical ways to detect human face.
Three CNN architectures were used in this study: AlexNet, Vgg-16, and GoogLeNet, which
are all winners and runners-up of the ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge), by pretraining images under different illuminations to solve the impact of
environmental instability on the recognition rate. The evaluation metrics of the model
include accuracy, precision, recall, ROC curve, P-R curve, and F1-score, and compare the
performance of the three CNN architectures. The control system includes navigation and
obstacle avoidance. The mobile robot was equipped with the ROS (robot operating system)
and LiDAR (light detection and ranging) modules and the Hector SLAM (simultaneous
localization and mapping) algorithm. For the development tools, Python 2.7 and Keras
deep learning libraries were used as the front end and Tensorflow as the back end to build
the model. Different from other studies, the contribution of this study is to propose a
deep learning and Hector SLAM algorithm that combines the LiDAR module and the
popular ROS system and considers more evaluation metrics, such as precision, recall, ROC
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curve, AUC value, F1-score, etc., as well as bring more possibilities to the research and
development of autonomous security robots.

Section 2 presents the algorithms of face detection and face recognition, the configura-
tion of a mobile robot under an ROS environment, navigation and obstacle avoidance of an
autonomous robot using the SLAM algorithm and LiDAR module, and the program flow
chart. Section 3 describes the experimental results of face detection, CNN model training,
and the testing of three CNN models under an unstable environment and target. For each
unstable factor, this paper presents the evaluation metrics, such as accuracy, precision,
ROC curve, and P-R curve of three CNN models. For the results of the autonomous robot,
this paper presents the RMSE value of mapping errors, and the results of the security
robot performing the tasks of patrolling, path planning and surveillance in a real indoor
environment. Sections 4 and 5 describe the discussion and conclusion of the research, and
also present future work.

2. Materials and Methods

Since the accuracy of face recognition on the security robot will be affected under
significant changes in illumination and pose, the purpose of this study is to propose a
method of face recognition and reduce the impact caused by the above factors. A deep
learning based face recognition is proposed for a wheeled mobile robot to reduce the impact
from the variation of illumination and pose that affect the recognition accuracy. A Haar-like
feature algorithm was used to achieve face detection, and CNN was used to achieve face
recognition, and then deployed to the mobile robot to achieve face tracking. The research
scenario is shown in Figure 1: if no human face is detected, keep patrolling and avoid
obstacles until a human face is detected. For the part relating to the patrol of the security
robot, the LiDAR module, Hector SLAM algorithm, DWA (dynamic window approach)
algorithm, and navigation stack were used to achieve autonomous movement and obstacle
avoidance, robot positioning, and mapping. When a human face is detected, the face is
recognized through the trained CNN model. If the detected face is an authorized person,
the security robot will track the face; otherwise, it will send a warning message to the
mobile phone.

Figure 1. Research scenario.

2.1. Proposed Architecture

The system architecture was divided into two parts. The first part is the architecture
of deep learning, and the second is the system module architecture. As shown in Figure 2,
deep learning of neural network architecture was used to realize face recognition and
tracking. The Haar-like feature method was used to detect human faces and collect the face
images to be trained; because the CNN model training can only focus on face images, it can
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reduce the number of parameters and improve the recognition rate. Deep learning training
and validation of CNN were performed, the trained model was obtained to workstation,
then the model was tested. The face images were detected by the robot in real time and
sent movement commands to the robot to achieve face tracking.

Figure 2. Deep learning architecture of face recognition and tracking.

The second part is shown in Figure 3, which includes three modules and two types
of information collected from environment. The images obtained by PTZ (pan tilt zoom)
camera are used to perform motion detection, feature extraction, and face tracking, and ob-
tain the center point of target with face detection algorithm, via coordinate transformation,
sending the angle information to motion control module to achieve face tracking. More
information is obtained by LiDAR sensor and obtains the range from robot to target, using
the navigation algorithm of obstacle avoidance module to obtain the angle and velocity,
then sends the information to motion control module to achieve obstacle avoidance of
mobile robot.

Figure 3. System module architecture.

2.2. Face Detection Algorithm

A machine learning method called adaptive boosting is proposed [17], it’s often
applied in the situation when there are some parameters that need to be adjusted, andthe
output function can be expressed as in (1).

H(x) = sign(
N

∑
n=1

wn fn(x)), (1)

where H(x) is the output function of weak classifier, x is input data of weak classifier, N is
the number of classifiers, wn is the weight assigned to the output function, fn is the output
of weak classifier. AdaBoost and Haar-like features were applied to implement object
detection [18];
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However, because there are too many features on the face, and there will be multiple
rectangles combined to form a feature, an integral image was proposed to represent any
point in the image, which is the sum of all pixels from the point to the origin of the upper
left corner, which can easily calculate the eigenvalue of a specific area in the image, such as
the 4 rectangular features shown in Figure 4, and the integral image at location (x, y) can be
expressed as in (2).

Figure 4. The eigenvalue of area of Viola–Jones algorithm. A to D is the eigenvalue area, and 1 to 4
mean the coordinates.

ii(x, y) = ∑
x′≤x,y′≤y

i(x′, y′), (2)

where ii (x, y) is the integral image at location (x, y), x and y are the coordinates of images,
i (x, y) is the original image, the cumulative row sum can be expressed as in (3), and (2) can
be expressed as in (4). According to the above equations, the eigenvalue of designated area
D can be expressed as in (5), and the pseudo code of Viola–Jones face detection algorithm is
shown as Algorithm 1.

s(x, y) = s(x, y− 1) + i(x, y), (3)

ii(x, y) = ii(x− 1, y) + s(x, y), (4)

D = ii(4)− ii(2)− ii(3) + ii(1), (5)

where s (x, y) is the cumulative row sum of integral image and D is the eigenvalue of area
in Figure 4.

Algorithm 1 Viola–Jones

1: imagei ← downsampling of input image
2: for j = 1 to number of shift steps do
3: for k = 1 to number of stages do
4: for l = 1 to number of filters do
5: filters detect subwindow of imagei
6: wi ← accumulation filter outputs
7: if wi < threshold then
8: reject subwindows as face
9: end if
10: end for
11: end for
12: if pass all stages then
13: accept subwindows as face
14: end if
15: end for
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The object detector was extended, and eventually generated Viola–Jones Cascade
Classifier [19], and it was used in several studies. Viola–Jones algorithm and support vector
network were used to recognize faces [20]. Neural network and Viola–Jones algorithm were
used to detect center of eye [21]. A firefighting robot was designed and used Viola–Jones to
recognize human faces [22].

The Viola–Jones algorithm was applied because it is one of the more practical ways
to detect human faces and crop face pictures. Different from the above research, the face
photos obtained by the Viola–Jones algorithm were input into CNN, and the technology
of face recognition was directly applied to the autonomous mobile robot. In order for the
robot to recognize specific target under different viewpoints and illumination changes, the
human face images of various viewpoints and illuminations in an indoor environment
were collected, then input to the CNN architecture.

2.3. CNN Architecture
Several CNN architectures performed well in the ILSVRC classification competition,

and many researchers used CNN to achieve object recognition. CNN architectures were
used for emotion recognition [23]. Deep learning library was used to identify criminal
suspects [24]. An example of CNN architecture is shown in Figure 5, and three CNN archi-
tectures were used: AlexNet, Vgg-16, and GoogLeNet, and these three CNN architectures
have different numbers of layers and connection methods. AlexNet is composed of 5 convo-
lution layers and 3 fully connected layers, and uses the relu activation function and dropout
to prevent overfitting. This architecture is shown as Algorithm 2. Vgg-16 is composed
of 13 convolution layers and 3 fully connected layers. Compared with AlexNet, VggNet
contains several consecutive 3 × 3 convolution kernels instead of the larger convolution
kernels in AlexNet, which can improve the depth of the neural network, reduce the number
of parameters, and more effectively maintain the image properties. The architecture is
shown as Algorithm 3. GoogLeNet contains a total of 22 layers, of which 21 convolutional
layers are composed of Inception architecture; each contains four 1 × 1 convolution layer,
one 3 × 3 convolution layer, one 5 × 5 convolution layer, and one 3 × 3 max pooling layer.
This modular structure is adopted, which greatly increases the flexibility and reduces the
number of parameters. The architecture is shown as Algorithm 4.

Algorithm 2 CNN architecture of AlexNet

1: Convolution (96, 11, 11, padding = ‘same’, activation = ‘relu’)
2: MaxPooling (pool_size = (3, 3))
3: Convolution (256, 5, 5, padding = ‘same’, activation = ‘relu’)
4: MaxPooling (pool_size = (3, 3))
5: Convolution (384, 3, 3, padding =‘same’, activation = ‘relu’)
6: Convolution (384, 3, 3, padding =‘same’, activation = ‘relu’)
7: Convolution (384, 3, 3, padding =‘same’, activation = ‘relu’)
8: MaxPooling (pool_size = (3, 3))
9: FullConnected (4096, activation = ‘relu’, dropout = 0.5)
10: FullConnected (4096, activation = ‘relu’, dropout = 0.5)
11: FullConnected (1000, activation = ‘relu’, dropout = 0.5)
12: Classification (classes = 2, activation = ‘softmax’)

Figure 5. CNN architecture.
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Algorithm 3 CNN architecture of VggNet

1: Convolution (64, 3, 3, padding = ‘same’, activation = ‘relu’)
2: Convolution (64, 3, 3, padding = ‘same’, activation = ‘relu’)
3: MaxPooling (pool_size = (2, 2))
4: Convolution (128, 3, 3, padding = ‘same’, activation = ‘relu’)
5: Convolution (128, 3, 3, padding = ‘same’, activation = ‘relu’)
6: MaxPooling (pool_size = (2, 2))
7: Convolution (256, 3, 3, padding = ‘same’, activation = ‘relu’)
8: Convolution (256, 3, 3, padding = ‘same’, activation = ‘relu’)
9: Convolution (256, 3, 3, padding = ‘same’, activation = ‘relu’)
10: MaxPooling (pool_size = (2, 2))
11: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
12: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
13: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
14: MaxPooling (pool_size = (2, 2))
15: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
16: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
17: Convolution (512, 3, 3, padding = ‘same’, activation = ‘relu’)
18: MaxPooling (pool_size = (2, 2))
19: FullConnected (4096, activation = ‘relu’, dropout = 0.5)
20: FullConnected (4096, activation = ‘relu’, dropout = 0.5)
21: FullConnected (1000, activation = ‘relu’, dropout = 0.5)
22: Classification (classes = 2, activation = ‘softmax’)

Algorithm 4 CNN architecture of GoogLeNet

1: Conv_Batch_normalization (64, 7, 7, padding = ‘same’)
2: MaxPooling (pool_size = (3, 3))
3: Conv_Batch_normalization (192, 3, 3, padding = ‘same’)
4: MaxPooling (pool_size = (3, 3))
5: Inception ((64), (96, 128), (16, 32), (32))
6: Inception ((128), (128, 192), (32, 96), (64))
7: MaxPooling (pool_size = (3, 3))
8: Inception ((192), (96, 208), (16, 48), (64))
9: Inception ((160), (112, 224), (24, 64), (64))
10: Inception ((128), (128, 256), (24, 64), (64))
11: Inception ((112), (144, 288), (32, 64), (64))
12: Inception ((256), (160, 320), (32, 128), (128))
13: MaxPooling (pool_size = (3, 3))
14: Inception ((256), (160, 320), (32, 128), (128))
15: Inception ((384), (192, 384), (48, 128), (128))
16: AveragePooling (pool_size = (7, 7))
17: FullConnected (1000, activation = ‘relu’)
18: Classification (classes = 2, activation = ‘softmax’)

Input the face images into the input layer, next, the convolutional layer of same
padding was used to extract the features from pictures: if the size of each patch was m × n,
then the sum of the m × n data multiplied by the filter data was computed; so that the
features of the pictures are more obvious, the equation can be expressed as in (6), and the
dimensions of the output matrix can be expressed as in (7). The relu activation function
was added behind each convolution layer; the data can be subtracted from the negative
value by the relu function, as expressed in (8). The shape of the object can be more obvious.

conv(I, K)x,y = ∑nH
i=1 ∑nW

j=1 ∑nC
k=1 Ki,j,k Ix+i−1,y+j−1,k, (6)

nout =
nin + 2p− nk

s
+ 1, (7)

f (r) = max(0, r), (8)
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where conv (I, K) is the convolution equation, I is feature map, K is kernel, x and y are
the row and column of feature map, nH is the size of the height of the image, nW is the
size of the width of the image, nC is the number of channels, nk is the kernel size, p is
the convolution padding size, s is the convolution stride size, nin is the number of input
features, nout is the number of output features, f (r) is the relu function, and r is the input
data of relu function.

In order to retain important features, reduce the parameters, and prevent overfitting,
max pooling layer was added behind the activation function layer; the kernel size was 2 × 2,
the size of data was half after the pooling layer. At the end of the CNN, fully connected
layer was added, which can flatten the previous results, and the number of dimensions of
fully connected layer can be expressed as in (9).

ni−1 = nH
i−1 × nW

i−1 × nC
i−1, (9)

where ni−1 is the number of dimensions of fully connected layer; i is the number of layers;
nH, nW, and nC are as mentioned in (6). The last layer is softmax activation function layer,
as expressed in (10) to (12); this is a Gaussian function layer used to obtain the probability
of class, and classify the result to achieve object recognition.

yr(x) =
exp(ar(x))

k
∑

j=1
exp(aj(x))

, 0 ≤ yr ≤ 1, (10)

k

∑
r=1

yr = 1, (11)

P(cr|x) =
exp(ar(x))

k
∑

j=1
exp(aj(x))

, 0 ≤ P(cr|x) ≤ 1, (12)

where yr is the softmax function, x is the input data of conditional probability, k is the
number of classes, ar and aj are the element of each vector of specified layer, cr is specified
class to be calculated, and P(cr|x) is the class prior probability. For the error of multiclass
classification, the cross-entropy loss can be expressed as in (13).

loss (cross-entropy) =
n

∑
i=1

k

∑
j=1

tijln(yij), (13)

where n is the number of samples, k is the number of classes, tij is the indicator that the ith

sample belongs to the jth class, yij is the output for sample i for class j. The regression layer is
also used to add behind the fully connected layer, and the loss of HMSE (half-mean-squared
error) of regression layer can be expressed as in (14).

loss (HMSE) =
1
2

R

∑
i=1

(ti − yi)
2

R
, (14)

where R is the number of responses, ti is the target output, and yi is the prediction of
network for response i. After building the entire CNN structure, training of the CNN
model starts. The most important thing is to minimize the value of the loss function. There
are many methods to optimize the training process, instead of inputting all the data into
the model at once, adjust the learning speed and number of trainings. Gradient descent
method requires all training samples when updating each parameter; the training process
becomes abnormally slow as the number of samples increases. SGD (stochastic gradient
descent) is proposed to solve the disadvantage of gradient descent.

SGD optimizer was used to improve the training process of neural network and
iteratively update the weights by calculating the gradient of the loss function on the small
batch of data; the weight will be updated with (15).
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∆w(l) = −η
∂E(m)

∂w(l)
, (15)

where w is the weight value, E is the loss function, m is the training mode, η is learning
rate, l is specified layer. In addition to using pooling layer to reduce parameters to prevent
overfitting, dropout layer was used to discard some neurons randomly; the equation can
be expressed as in (16).

zi =
1
p∑N

j=1 wi,j
(
aj × Bernoulli(p)

)
, (16)

where zi is the output of dropout function, p is the specified probability, wi,j is the weight
between the element and each element of previous layer, aj is the element of each vector of
specified layer, N is the number of vectors of specified layer, p is the specified probability,
Bernoulli function takes the value 1 with probability p and the value 0 with the probability
1 − p. The pseudo code is shown as in Algorithm 5.

Algorithm 5 CNN training

1: input: dataset
2: output: score of CNN trained model on testing dataset
3: for f in dataset do
4: f train, f validate, f test ← split dataset into training subset,

validate subset, and test subset
5: M← CNN (f train, f validate)
6: score← evaluate (f test, M)
7: return score
8: end for

2.4. Two-Wheeled Mobile Robot

In order to realize the autonomous movement of the security robot, two-wheeled
mobile robot was used. To achieve the best control, the mathematics model of two-wheeled
robot was explored [25,26]. As shown in Figure 6, the coordinate system of the two-wheeled
robot can be divided into two types. In inertial coordinate system, the coordinates can be
expressed as in (17), and in robot coordinate system, the coordinates can be expressed as
in (18). The relationship between the two coordinate systems and the orthogonal rotation
matrix can be expressed as in (19) and (20).

Figure 6. Two coordinate systems of two-wheeled robot.

.
ξR =

XR
YR
θR

, (17)

.
ξI =

XI
YI
θI

, (18)

.
ξ I = R(θ)

.
ξR, (19)
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R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

, (20)

where
.
ξR is the robot coordinate system,

.
ξI is the inertial coordinate system, XI and YI are

the inertial coordinates, XR and YR are the robot coordinates, θ is the orientation angle, and
R is the orthogonal rotation matrix. The kinematic modeling is the motion of mechanical
systems without considering the forces that affect the motion; for the differential-drive
mobile robot, as shown in Figure 7, the linear velocity and angular velocity in the robot
coordinate can be expressed as in (21) and (22).

Figure 7. Forward kinematic model of two-wheeled robot.

v =
vR + vL

2
= r

(
.
ϕR +

.
ϕL)

2
, (21)

ω =
vR − vL

L
= r

(
.
ϕR −

.
ϕL)

2
, (22)

where v is average speed of two rounds, ω is the angular velocity, vR is the speed of right
wheel, vL is the speed of left wheel, L is the distance between left wheel and right wheel,
r is the radius of the wheel,

.
ϕR and

.
ϕL are the angles of rotation of left wheel and right

wheel. The velocities in the robot coordinate system can be expressed as in (23) and (24),
and it can be also expressed in matrix form in (25).

.
XR = r

(
.
ϕR +

.
ϕL)

2
,

.
YR = 0, (23)

.
θ = r

(
.
ϕR +

.
ϕL)

L
, (24)

.
XR.
YR.
θ

 =

 r
2

r
2

0 0
r
L − r

L

[ .
ϕR.
ϕL

]
, (25)

For the partial moments of inertia, if the moment of inertia and mass of the two-
wheeled robot are considered; the dynamic model, the partial moments of inertia, the
matrix of Coriolis forces, the total mass m of the robot, and the moment of inertia J can be
expressed as in (26) to (30).

M
[ .

ϕR.
ϕL

]
+ V

[
ϕR
ϕL

]
= Bτ, (26)

M =

[
Jω + r2

L2 (m L2

4 + J) r2

L2 (m L2

4 − J)
r2

L2 (m L2

4 − J) Jω + r2

L2 (m L2

4 + J)

]
, (27)

V =

[
0 r2

L mcdω
−r2

L mcdω 0

]
, (28)

m = mc + 2mω, (29)
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J = mcd2 + mω
L2

2
+ Jc + 2Jm, (30)

where M is matrix of the moments of inertia, V is matrix of Coriolis forces, B is matrix
of input, τ is matrix of motor torques, m is the mass, J is the moment of inertia, L is the
distance between left wheel and right wheel, r is the radius of the wheel, mc is the mass
of the chassis, mω is the mass of the wheel, Jω is the moment of inertia of each driving
wheel with a motor about the wheel axis, Jc is the moment of inertia of the chassis, and Jm
is the moment of inertia of the wheel. According to the kinematic model, the wheel angular
velocities can be expressed as in (31), and the torque of the two wheels can be expressed as
in (32) and (33). [

ωR
ωL

]
=

[ 1
r 0
0 1

r

][
vR
vL

]
, (31)

τR = JωωR +
rmv

2
+

rJ
L

ω +
r2

L
mcdω

.
ϕL, (32)

τL = JωωL +
rmv

2
− rJ

L
ω +

r2

L
mcdω

.
ϕR, (33)

where ωR and ωL are the angular velocities of two wheels, and τL and τR are the torque of
the two wheels.

2.5. Navigation and Hector SLAM Algorithm

In order to realize the navigation and obstacle avoidance of the robot, LiDAR was used
to measure the range, direction, point cloud, and other parameters of target by irradiating
a pulse of laser light to the target. As shown in Figure 8, the laser ranging is a triangulation
measurement system.

Figure 8. Triangulation measurement system of LiDAR.

SLAM technology enables the robots to localize in unknown environment. During
the movement process, the LiDAR features such as walls and pillars are obtained by
repeated scanning through LiDAR and self-localized to build a map to achieve simultaneous
positioning and map construction. This technique was used in [27–29]. Hector SLAM is
one of the most popular SLAM methods [30], and it is widely used in the research of mobile
robots [31–35].

Hector SLAM algorithm was used to obtain the distance between the robot and the
surrounding obstacles through the LiDAR sensor module. It uses a grid with a unit length
of 1 to represent the surrounding environment, and each grid contains a current state value,
which represents whether the grid is idle or occupied. The occupancy grid map is shown in
Figure 9 as in [30]. The occupancy value and the gradient can be expressed as in (34) and (35).
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Figure 9. The occupancy grid map.

M(Pm) ≈ y−y0
y1−y0

(
x−x0
x1−x0

M(P11)− x1−x
x1−x0

M(P01)
)

+ y1−y
y1−y0

(
x−x0
x1−x0

M(P10)− x1−x
x1−x0

M(P00)
) (34)

∇M(Pm) =

(
∂M
∂x

(Pm),
∂M
∂y

(Pm)

)
, (35)

where Pm is a single point of continuous map coordinate, M(Pm) is the occupancy value
of Pm, x and y are the coordinates in Figure 9, and P00, P01, P10, P11 are the coordinates of
grids surrounding. The derivatives of (34) can be expressed as in (36) and (37).

∂M
∂x (Pm) ≈ y−y0

y1−y0
(M(P11)−M(P01))

+ y1−y
y1−y0

(M(P10)−M(P00))
(36)

∂M
∂y (Pm) ≈ x−x0

x1−x0
(M(P11)−M(P10))

+ x1−x
x1−x0

(M(P01)−M(P00))
(37)

According to (34) to (37), the pose of the robot, the scan endpoint, and the pose of the
robot in world coordinates can expressed as in (38) to (40).

ξ = (px, py, θ)T , (38)

Si = (Si, x, Si, y)
T , (39)

Si(ξ) =

(
cos θ
sin θ
− sin θ
cos θ

)(
Si, x
Si, y

)
+

(
px
py

)
, (40)

where ξ is the rigid transformation, px and py represent the position of the robot, θ is the
orientation angle, Si is scan endpoint, Si, x is the scan endpoint of x-axis, Si, y is the scan
endpoint of y-axis. Then, the future pose ∆ξ is estimated according to (41). By first-order
Taylor expansion, (41) can be expressed as in (42), then the Gauss-Newton equation is used
to obtain the optimum alignment with the map, and the new optimized pose of robot and
updated scanning map are obtained.

∑n
i=1(1−M(Si(ξ + ∆ξ)))2 → 0, (41)

∑n
i=1

(
1−M(Si(ξ))−∇M(Si(ξ))

∂Si(ξ)

∂ξ
∆ξ

)2

→ 0, (42)

where n is the number of world coordinates. Using LiDAR on mobile robot and detecting the
range of the environment around the robot, Hector SLAM algorithm was used to obtain the
real-time position and orientation of the robot and the scanned map at the same time, to achieve
robot navigation and obstacle avoidance. Navigation means that the robot can move steadily in
space and effectively avoid obstacles by establishing the surrounding map environment.



Processes 2022, 10, 2175 13 of 32

The entire navigation stack architecture is shown in Figure 10. Through the scanning
and mapping of the LiDAR sensor module, the dynamic map is obtained and input into the
global planner. According to the specified goal of navigation, the global path is calculated.
Since there may be dynamic obstacles on the estimated route, it is necessary to use the local
planner of DWA algorithm to calculate a path that can avoid obstacles based on the local
cost map and achieve robot navigation and obstacle avoidance. DWA is an algorithm of
path planning [36], assuming that the objective function can be expressed as in (43).

G(v, ω) = σ(α× angle(v, ω) + β× dist(v, ω) + γ× vel(v, ω)), (43)

where G is the objective function of DWA, v is velocity, ω is angular velocity, angle is
measure of progress towards the goal location, dist is the distance to the closet obstacle
on the trajectory, vel is the forward velocity of the robot, σ is a function that smooths the
weighted sum of the three components and results in more side clearance from obstacles,
and α, β, γ are the weighting factors for each one of those terms. The set Va of admissible
velocities can be expressed as in (44), and the set Vd of all reachable velocities in a time can
be expressed as in (45).

Figure 10. Navigation stack architecture.

Va =

(v, ω)|
v ≤

√
2·dist(v, ω)· .vb

ω ≤
√

2·dist(v, ω)· .
ωb

, (44)

Vd =

{
(v, ω)| v ∈ [va −

.
vt, va +

.
vt]

ω ∈ [ωa −
.

ωt, ωa +
.

ωt]

}
, (45)

where Va is the admissible velocities,
.
vb is acceleration for breakage,

.
ωb is angular accel-

eration for breakage, Vd is the reachable velocities, va is actual linear velocity, ωa is actual
linear angular velocity,

.
v is acceleration,

.
ω is angular acceleration, and t is the time interval

during the acceleration will be applied. Finally, the resulting search space can be expressed
as in (46).

Vr = Vs ∩Va ∩Vd, (46)

where Vr is the intersection of the restricted areas, Vs is the space of possible velocities,
Va and Vd are mentioned as in (44) and (45). As shown in Figure 11, a goal is sent to the
navigation stack to let the robot autonomously patrol and avoid obstacles in the indoor
environment, then human faces are detected and the map is built in the process. If no
human face is detected, patrolling continues until a human face is detected. If a face is
detected, the obtained human face image is input into the trained CNN model to perform
face recognition. If the result is an authorized person, face tracking is performed. Otherwise,
a warning notification is sent to mobile phone. The pseudo code of program procedure is
shown as Algorithm 6.
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Algorithm 6 Program procedure of proposed security robot.

1: while robot_is_running do
2: if face_detect () = true then
3: if face_recognize () > threshold then
4: action = face_track ()
5: else
6: action = send_warn ()
7: end if
8: else
9: action = robot_navigation ()
10: end if
11: end while

Figure 11. Program flow chart.

3. Results

Conventional surveillance is severely limited by many factors, such as different view-
points and different objects potentially looking the same. In addition, significant changes in
illumination and pose will greatly affect the accuracy of face recognition. However, several
studies were tested in a static environment, but while a security robot is moving, there
are more unstable factors to image recognition. The purpose of this study is to propose
a visual perception system on a security robot that can identify specified persons during
patrol under changes in illumination and pose and identify the target as the person to be
tracked or a suspicious person. In this research, a deep learning facial recognition method
was proposed, and an algorithm on the two-wheeled mobile robot and ROS environment
was performed. The patrol part of the security robot combines the LiDAR sensor module
to realize navigation and obstacle avoidance of an autonomous robot.
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In order to solve the factors mentioned above that affect image recognition, many
researchers have proposed many methods to improve it, such as circular symmetrical Gabor
filter 2D PCA neural networks; a face recognition method based on directional histogram
of oriented gradient; DSP for face recognition; the Lambert reflectance model; TBE-CNN,
which extracts features from patches cropped around facial components; and deep DSN.
Among them, Faster R-CNN and two CCD cameras were used; the experimental results
showed that the average recognition rate is 96.33% under six different illumination and
occlusion situations [11]. The DSN face recognition method was proposed; the experi-
mental results showed that under 20 illumination changes and 6 different angle changes,
compared with 8 different algorithms, the average rate of facial recognition of the DSN
algorithm is 91.0% under different illuminations and different poses, which is better than
other algorithms [16].

In the part relating to robot navigation and obstacle avoidance, many researchers have
also proposed SLAM methods. Stereo VIL (visual-inertial LiDAR) SLAM was proposed; the
experimental results showed that the ATE (absolute trajectory error) is less than 0.2 m [29].
An original 2D LiDAR SLAM based on point-and-line features was proposed; the exper-
imental results showed that the absolute error of mapping is about 5% on average [33].
A visual-inertial SLAM was proposed. The experimental results showed that compared
with ORB-SLAM (oriented fast and rotated brief) and OKVIS (open keyframe-based visual-
inertial SLAM), the absolute trajectory of the root-mean-square error of the proposed SLAM
is less than 0.1 m, which is better than other algorithms [28].

The Viola–Jones face detection algorithm was used to collect face images under various
illumination changes, then three CNN models were trained, including AlexNet, VggNet,
and GoogLeNet; the average accuracy of face recognition under four different illumination
changes is 0.95, 0.95, and 0.6. The accuracy under a 15-degree viewpoint is 0.39, 0.7, and
0.63, respectively. In order to realize the navigation and obstacle avoidance of a mobile
robot, the Hector SLAM algorithm and ROS navigation stack were used, so that the mobile
robot can locate and build a map at the same time. In the first indoor environment, the
RMSE of the mapping error was 0.134 m (0.957%), and in the second indoor environment it
was 0.222 m (0.653%). The experimental flow diagram is shown in Figure 12.

Figure 12. Experimental workflow diagram.

3.1. Face Detection and CNN Model Training

In the first experiment, the face detection of the Haar-like feature algorithm was tested
in an indoor room environment. Human face images under different illumination changes
were collected through the switching of different illuminations; there were a total of six
fluorescent lamps in the scene—three lamps are directly above the target, and three lamps
are located above the target, each with 20 watts. The top left figure shows six lights fully
on, a total of 120 watts; the top right figure shows the three lights on the upper right that
are fully on, a total of 60 watts; the bottom left figure shows three lights on the upper right
that are fully on, a total of 60 watts; the bottom right figure shows that the lights are all off.
As shown in Figure 13, some images of four different kinds of illumination changes were
collected: 50 images under each illumination, and a total of 200 images of each target; as
shown in Figure 14, images of 10 targets were collected. After obtaining the face images,
the images must be preprocessed. First, the unclear face images were deleted, then the
face images were cropped through the Viola–Jones algorithm, and finally the images were
resized to a specific size. The images for the models of AlexNet and VggNet needed to be
resized to 224 × 224, and the images for GoogLeNet were resized to 299 × 299.
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Figure 13. Different illumination images. (Top left) Normal; (top right) high illumination; (bottom
left) middle illumination; (bottom right) low Illumination.

Figure 14. Collected images of ten targets.

A total of 200 images of each target were preprepared, including four kinds of different
illumination changes, and containing five authorized people and five unauthorized people.
Using the Keras model class, the three different CNN architectures of AlexNet, VggNet,
and GoogLeNet were constructed, and then machine learning was realized through the
sk-learn library. The machine learning model of the cross-validation method and the SGD
optimizer were used. The images of the faces were saved in two different folders, and
then the tags of the two folders were set. After the labeling was completed, the training
parameters were set. The training data parameter was 70%, the validating data parameter
was 30%, the test data parameter was 50%, the batch size is 20, the learning rate is 0.001,
and the parameter of dropout is 0.5. After setting the parameters, the model is compiled
and then training of the model starts, and finally the trained CNN model is obtained.
Figures 15 and 16 show epoch to accuracy and epoch to loss of three CNN models. The
comparison of the parameters of the three CNN models is shown as Table 1. The results of
the experiment showed that AlexNet takes the least time, and has the fewest parameters,
so the execution speed is faster. VggNet spends the most time and has the most parameters,
and GoogLeNet is somewhere in between.

Figure 15. Accuracy–epoch curve of three CNN models.
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Figure 16. Loss–epoch curve of three CNN models.

Table 1. Parameters of three CNN models’ training.

Specification AlexNet VggNet GoogLeNet

Total Layer 8 16 22
Convolution Layer 5 13 21

Pooling Layer 3 5 5
Fully Connected Layer 3 3 1

Parameters 62,388,354 110,406,986 23,851,784
Training Accuracy 0.997 0.998 0.999
Cross Entropy Loss 0.12 0.006 0.004

Root-Mean-Squared Error 0.09 0.08 0.07
Training Time 22 min 210 min 120 min

3.2. Model Testing under Unstable Environment

For the model evaluation part, various perceptual algorithm evaluation indicators
were used, including the speed, accuracy, complexity, ROC curve, precision and recall rate,
P-R curve, and F1-score of the CNN model. As shown in Figure 17, the confusion matrix,
including the true positive rate, false negative rate, false positive rate, and true negative
rate, is obtained first. According to (47), the accuracy is calculated. To further evaluate
the model, the precision, specificity, recall (sensitivity), TPR (true positive rate), and FPR
(false positive rate) were calculated; the equations can be expressed as in (48) to (52). To
neutralize the error in precision and recall, the F1-score was also calculated, which is the
harmonic mean of precision and recall, and can be expressed as in (53).

Figure 17. Confusion matrix.

Accuaracy =
TP + TN

TP + FP + FN + TN
, (47)
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Precision =
TP

TP + FP
, (48)

Recall (Sensitivity) =
TP

TP + FN
, (49)

Specificity =
TN

TN + FP
, (50)

TPR =
TP

TP + FN
, (51)

FPR =
FP

FP + TN
, (52)

F1-score =
2× Precision× Recall

Precision + Recall
, (53)

where TP, FP, TN, FN are true positive, false positive, true negative, and false negative
in the confusion matrix. After training the three CNN models, the model is first tested in
an unstable environment where the illumination changes, and four illumination changes
are achieved through the switching of the indoor illumination. The classification layer of
the CNN model is 2, so that the robot can recognize the authorized and unauthorized people.
According to the confusion matrix of Figure 17, the identification results of the three CNN
models under four illumination changes are shown in Figures 18–20; the number of testing
samples for each illumination is 100, including 50 unauthorized people and 50 authorized
people; and the identification threshold is set to 0.8. The results of the experiment show
that AlexNet and VggNet have higher recognition rates under different illumination, but
GoogLeNet has worse performance. According to (47)–(53), the average metric core of model
evaluation under four illumination changes is obtained; the comparison is shown in Table 2.

Figure 18. The confusion matrix of AlexNet under different illuminations.
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Figure 19. The confusion matrix of VggNet under different illuminations.

Figure 20. The confusion matrix of GoogLeNet under different illuminations.
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Table 2. Metric comparison under different illuminations.

Specification AlexNet VggNet GoogLeNet

Accuracy 0.95 0.95 0.60
Precision 1.00 0.97 0.69

Recall 0.90 0.93 0.35
F1-score 0.94 0.95 0.45

Sensitivity 0.90 0.93 0.35
Specificity 1.00 0.97 0.86

In order to evaluate the recognition rate under different thresholds, as shown in
Figures 21–26, the ROC curves and P-R curves of three CNN models under four illumination
changes were drawn, and the ROC curves were further evaluated to find the AUC. The
comparison of various models is shown in Table 3. The results of the experiment showed
that AlexNet and VggNet can maintain good recognition rates under different illuminations.
GoogLeNet has poor recognition rates under certain situations of illumination, so the AUC
will be significantly different under four illumination changes.

Figure 21. The ROC curve of AlexNet under different illuminations.

Figure 22. The ROC curve of VggNet under different illuminations.

Figure 23. The ROC curve of GoogLeNet under different illuminations.



Processes 2022, 10, 2175 21 of 32

Figure 24. The P-R curve of AlexNet under different illuminations.

Figure 25. The P-R curve of VggNet under different illuminations.

Figure 26. The P-R curve of GoogLeNet under different illuminations.

Table 3. AUC comparison under different illuminations.

Illumination AlexNet VggNet GoogLeNet

Illumination1 1.00 1.00 0.84
Illumination2 1.00 1.00 0.84
Illumination3 0.96 0.97 0.82
Illumination4 0.87 0.90 0.66

Average 0.96 0.97 0.79

The second unstable environment to test is under different viewpoints; since the
algorithm of face detection used in the research is the Haar-like frontal face cascade, the
experimental unstable factor of viewpoint can only be up to 15 degrees, and the face will not
be detected if this is exceeded. The confusion matrix of the three CNN models is shown in
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Figure 27; the threshold is set to 0.7. The result showed that the accuracy of face recognition
under different viewpoints is not as good as under different illuminations. The metric
comparison of the three CNN models is shown in Table 4; the ROC curve and P-R curve
of three CNN models are shown in Figures 28 and 29; the AUC value is shown in Table 5.
The AUC values of AlexNet, VggNet, and GoogLeNet are 0.44, 0.73, and 0.71, respectively.
The results showed that VggNet has the best recognition performance under viewpoints
and different thresholds. GoogLeNet is second, while the AUC of AlexNet is only 0.44, and
the average accuracy is only 0.39, which cannot achieve face recognition under uncertain
factors of viewpoint.

Figure 27. The confusion matrix of three CNN models under different viewpoints.

Table 4. Metric comparison under different viewpoints.

Metrics AlexNet VggNet GoogLeNet

Accuracy 0.39 0.70 0.63
Precision 0.39 0.63 0.63

Recall 0.38 1.00 0.64
F1-score 0.38 0.77 0.63

Sensitivity 0.38 1.00 0.64
Specificity 0.40 0.40 0.62

Figure 28. The ROC curve of three CNN models under different viewpoints.

Table 5. AUC comparison under different viewpoints.

AlexNet VggNet GoogLeNet

0.44 0.73 0.71
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Figure 29. The P-R curve of three CNN models under different viewpoints.

The third unstable environment to test is the change in distance between robot and
target; the average metrics of face recognition of three CNN models under different ranges
are shown in Table 6, the threshold is set to 0.8, and the comparison of AUC of three CNN
models is shown in Table 7. The results showed that AlexNet has a good performance
in face recognition under the change of distance between robot and target, while the
recognition rate of GoogLeNet will be greatly reduced when the range is far away, and the
AUC is less than 0.8 and the average accuracy is only 0.56.

Table 6. Metric comparison under range change.

Metrics AlexNet VggNet GoogLeNet

Accuracy 0.82 0.82 0.56
Precision 1.00 0.84 0.65

Recall 0.64 0.79 0.24
F1-score 0.77 0.81 0.34

Sensitivity 0.64 0.79 0.24
Specificity 1.00 0.85 0.87

Table 7. AUC comparison under range change.

Range AlexNet VggNet GoogLeNet

Near 0.99 0.91 0.82
Far 0.96 0.88 0.76

Average 0.98 0.89 0.79

For unstable environments under different occlusion changes, because the face detec-
tion algorithm used in this research can only detect the complete front human face, when
the face is occluded, it will not be able to achieve face recognition, so the unstable factor
of different occlusion conditions will not be discussed in this experiment. To improve
this problem, other face detection algorithms must be used, such as the YOLO detection
algorithm, which will be discussed in later sections.

3.3. Model Testing under Unstable Target

The first unstable target to test is a target without glasses; the average metrics of face
recognition of the three CNN models when the target does not wear glasses are shown in
Table 8, and the comparison of AUC of the three CNN models is shown in Table 9. The
results showed that when the target is not wearing glasses, the face recognition performance
of AlexNet and VggNet were both very good and the AUC of both is greater than 0.9, while
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the average accuracy of GoogLeNet is less than 0.6, which leads to poor evaluation metrics,
and an AUC of only 0.73.

Table 8. Metric comparison when target is without glasses.

Metrics AlexNet VggNet GoogLeNet

Accuracy 0.90 1.00 0.58
Precision 1.00 1.00 0.72

Recall 0.80 1.00 0.26
F1-score 0.89 1.00 0.38

Sensitivity 0.80 1.00 0.26
Specificity 1.00 1.00 0.90

Table 9. AUC comparison when target is without glasses.

AlexNet VggNet GoogLeNet

1.00 1.00 0.73

The second unstable factor of the target to test is hairstyle change; the average metrics
of face recognition of the three CNN models are shown as Table 10, and the comparison
of AUC of the three CNN models is shown as Table 11. The results showed that if the
hairstyle of the target is greatly changed, the face recognition rate will be greatly reduced.
The average accuracy of face recognition of AlexNet is only 0.47, and the AUC is only 0.55;
however, the performance of GoogLeNet is better than AlexNet and VggNet, with the AUC
of GoogLeNet under hairstyle change being 0.99.

Table 10. Metric comparison under hairstyle change.

Metrics AlexNet VggNet GoogLeNet

Accuracy 0.47 0.64 0.71
Precision 0.40 0.60 0.42

Recall 0.47 0.65 1.00
F1-score 0.43 0.63 0.59

Sensitivity 0.47 0.65 1.00
Specificity 0.47 0.63 0.63

Table 11. AUC comparison under hairstyle change.

AlexNet VggNet GoogLeNet

0.55 0.79 0.99

The last unstable target to test is when authorized and unauthorized people appear
at the same time. When two human faces are detected at a time, both targets will be
framed, and the faces will be recognized through the CNN models, respectively, and the
recognition rate of the two targets will be obtained. Therefore, it can still maintain the
original performance of face recognition under the unstable factors of multiple targets
appearing at the same time. To summarize the above, the average AUC values under all
uncertain factors of the three CNN models were compared, as shown in Table 12; the result
showed that VggNet has the best performance under uncertain factors among the three
CNN models, followed by GoogLeNet, and finally AlexNet.
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Table 12. AUC comparison under all unstable factors.

Uncertain Factors AlexNet VggNet GoogLeNet

Illumination change 0.96 0.97 0.79
Viewpoint change 0.44 0.73 0.71

Different range 0.98 0.89 0.79
Without glasses 1.00 1.00 0.73

Hairstyle change 0.55 0.79 0.99
Average 0.79 0.88 0.80

3.4. Hector SLAM and Navigation of ROS Turtlebot

ROS is an open-source robot development platform. Under this common platform,
robot developers can easily share robotic research such as navigation, perception, cognition,
and motor driver algorithm, and also easily develop robot applications with the stable
simulation test platform of ROS. As shown in Figure 30, there is also a good simulation
environment, RVIZ, for easy development.

Figure 30. RVIZ simulation environment of ROS.

The ROS platform is often used in mobile robot control systems (navigation and obstacle
avoidance). A dynamic obstacle avoidance method was proposed for mobile manipulators,
which was verified in the ROS gazebo simulation environment [37]. DWA was used on the
ROS two-wheeled robot to experiment with obstacle avoidance and path planning [38]. In
addition, many researchers also developed robotic image recognition systems under ROS
environments. Mobile robots and neural networks were used in ROS environments to realize
the navigation and license plate recognition of autonomous mobile robots [39]. ROS robots
and RGB-D cameras were used to achieve target location detection [40].

Turtlebot was equipped with RP-LiDAR-A1 with a sweep frequency of 5.5 Hz, range of
0.15 to 6 m, measurement frequency of 2000 Hz, and laser triangulation ranging technology.
Turtlebot was also equipped with a USB webcam; the hardware configuration is shown
in Figure 31. The program was run via PC and connected to Turtlebot via USB. The ROS
environment was used to execute the program, and the ROS launch file was opened for face
detection, face recognition, face tracking, RP-LiDAR, Hector SLAM, and navigation stack.
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Figure 31. Turtlebot hardware configuration.

Through the navigation, obstacle avoidance, and map building of the mobile robot,
the map of the indoor environment is obtained, and the result of the mapping is 5 cm per
pixel. The experimental result of the mapping of the first indoor environment is shown
in Figure 32, and the mapping error is shown in Table 13; through (54), the RMSE of
the mapping error is 0.134 m and the percentage value is 0.957%. In order to improve
the authenticity of the experimental environment, the second indoor environment of the
experiment is shown in Figure 33. The mapping error is shown in Table 14; the RMSE of
mapping error is 0.222 m, and the percentage value is 0.653%.

Mapping Error (RMSE) =

√
1
n∑n

i=1 (Ei − Ti)
2, (54)

where n is the number of side lengths to be calculated, Ei is the estimated value of the side
length, and Ti is the true value of the side length.

Figure 32. Mapping results of first environment, number 1–9 mean the length of each side.
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Table 13. Mapping errors of first environment.

Number Estimate Value (cm) True Value (cm) Absolute Error (cm)

1 185 180 5
2 85 90 5
3 200 210 10
4 230 255 25
5 15 13 2
6 110 110 0
7 445 474 29
8 25 25 0
9 45 43 2

Figure 33. Mapping results of second environment, number 1–9 mean the length of each side.

Table 14. Mapping errors of second environment.

Number Estimate Value (cm) True Value (cm) Absolute Error (cm)

1 185 190 5
2 255 260 5
3 650 680 30
4 235 245 10
5 245 245 0
6 75 90 15
7 155 180 25
8 1200 1250 50
9 255 260 5

Face detection, face recognition, navigation and obstacle avoidance of mobile robot
are integrated, according to the system program procedure of Algorithm 6. When a human
face is detected, it will start to perform face recognition and tracking; the experimental
result of the first indoor environment is shown in Figure 34. If the recognition result is an
unauthorized person, a warning message will be sent through the Line Notify service to
the phone; the result is shown in Figure 35. When no human face is detected, the robot will
perform an autonomous patrol and start navigation and obstacle avoidance. Because the
odometer error of Turtlebot 1 was found to be relatively large during the experiment, the
second indoor experimental environment was replaced with Turtlebot 2 for testing. The
experimental result of the second indoor environment is shown in Figures 36–38; the green
line represents the path planning of the patrol.
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Figure 34. Face recognition of authorized target in first indoor environment.

Figure 35. Face recognition of unauthorized person in first indoor environment.

Figure 36. Face recognition of authorized target in second indoor environment.

Figure 37. Face recognition of unauthorized person in second indoor environment.
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Figure 38. Path planning of the patrol of the second indoor environment.

4. Discussion

Summarizing the above results, the face recognition algorithm of the security robot
proposed in this research showed that AlexNet and VggNet perform better under illumina-
tion changes. For home security, the main concern is sensitivity; the unauthorized target is
not allowed to be regarded as the authorized target. As shown in Table 2, the sensitivity of
AlexNet and VggNet are both greater than 0.9, while GoogLeNet is only 0.35. Therefore,
considering the performance of the sensitivity, the most suitable algorithms are AlexNet
and VggNet. However, if the viewpoint changes of security robots are considered, as
shown in Table 4, the performance of AlexNet is poor, with the average accuracy, sensitivity,
and specificity all being less than 0.5, which will greatly increase the chance of misjudging
authorized people and missing unauthorized people. Under all uncertain factors, as shown
in Table 7, VggNet has the best performance in face recognition, but from Table 1 it is shown
that the CNN model of VggNet has the most parameters and takes the most time to train.

Compared with the experimental results of [11], the recognition rate under 6 different
illumination and occlusion conditions is 0.96, while [16] has the recognition rate of 0.91 un-
der 20 different illuminations and 6 different viewpoints. In this study, the average accuracy
of face recognition under four different illumination changes was obtained; AlexNet and
VggNet both reached 0.95, and the average accuracy of VggNet was 0.7 under a 15-degree
viewpoint. However, when the target was under a viewpoint of more than 15 degrees,
under occlusion, and when the hairstyle changes significantly, face recognition could not be
achieved, because the face detection algorithm used in this study is a frontal face cascade.
When under too-drastic changes to the face, face detection cannot be achieved. To overcome
all of the above uncertain factors, a more complex algorithm of face recognition will be
required, the required processor will be more demanding, it will be replaced by a GPU, and
higher costs will be required.

In the part relating to robot navigation and mapping, the security robot can patrol
autonomously through the LiDAR module and algorithms of Hector SLAM and ROS
navigation. Different from the original algorithm, the map of the navigation stack was
changed to a dynamic map, then the pose and position of the robot were obtained through
the Hector SLAM algorithm, and finally a goal topic was published so that the robot could
calculate a path to avoid obstacles. However, in the course of the experiment, it was found
that the odometer of Turtlebot 1 has a large error. When the path is too tortuous, such as
when it needs to turn or when the goal is too far, it will cause errors in the positioning of
the robot, so it is replaced with Turtlebot 2, which greatly improves this problem, since no
matter whether the path is very tortuous or far away, it can locate and navigate correctly.

In the part relating to building the map of the experimental results, compared with the
experimental results of [29], the ATE of the proposed algorithm is 0.2 m, and the mapping
error of the algorithm proposed in [33] is 5%; in this research, the experimental result of the
RMSE of the mapping error is 0.134 m (0.957%) in the first indoor environment and 0.222 m
(0.653%) in second indoor environment. The results showed that the map can be accurately
built using the Hector SLAM algorithm and LiDAR module.
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5. Conclusions

Routine surveillance of security robots is affected by many factors, including envi-
ronmental instability factors, such as different illuminations, viewpoint, occlusion, and
unstable factors in the target, such as changes of the hairstyle of target and whether they
wear glasses. The above factors will affect the accuracy of face recognition. When the face
recognition system is executed on a mobile robot, there will be more instability. This re-
search proposes a deep learning algorithm of CNN on the security robot, which can identify
authorized people under factors such as illumination changes and achieve autonomous
movement and obstacle avoidance through the Hector SLAM and ROS navigation al-
gorithms. When no human face is detected, it can autonomously patrol in the indoor
environment and build a map.

Three CNN models, namely AlexNet, VggNet, and GoogLeNet, were used in this
research. The evaluation indicators include accuracy, precision, recall, sensitivity, specificity,
F1-score, ROC curve, AUC value, and P-R curve. The first step of the experiment was to
collect human face images under different illuminations, and then train three CNN models.
The experimental results showed that AlexNet has the fewest parameters and the shortest
training time, while VggNet has the largest number of parameters and training time, and
GoogLeNet is somewhere in between. The next experiment is to test the performance of
three CNN models under different unstable factors of environment. The experimental
results showed that the average accuracy of the three CNN models is 0.95, 0.95, and 0.6 for
face recognition performance under four different illuminations, respectively. The AUC of
the ROC curve is 0.96, 0.97, and 0.79, respectively. Under a viewpoint change of 15 degrees,
the average accuracy of the three CNN models is 0.39, 0.7, and 0.63, and the AUC of the
ROC curve is 0.44, 0.73, and 0.71, respectively. Moreover, under the change of the distance
between the robot and target, and when the target does not wear glasses, it can also have a
good face recognition performance. However, when under occlusion, or when the hairstyle
of target changes significantly, none of the three CNN models can achieve face recognition,
because the face detection algorithm used is a frontal face cascade, so there are restrictions,
as mentioned above.

In the part relating to the autonomous patrol of the security robot, in order to achieve
navigation and obstacle avoidance of the robot, the LiDAR module and the Hector SLAM
algorithm were used to achieve the robot locating and building a map at the same time. The
experimental results showed that the robot moved autonomously and avoided obstacles
in two indoor environments, while from measuring the error of the established map, the
RMSE of the mapping error was 0.134 m and 0.222 m.

The experimental results showed that VggNet has the best performance under the
influence of various uncertain factors; however, the model has the largest number of
parameters, and the training speed and execution speed are the slowest. Although the
proposed face recognition algorithm cannot achieve face recognition under all unstable
factors, the combination of the frontal face detection algorithm and the two-dimensional
CNN model is small in scale and relatively fast in execution. The algorithm can be applied
on embedded systems, such as Raspberry Pi. If we want to improve the recognition rate,
we need to use higher-level neural networks and object recognition algorithms; therefore,
we need to greatly increase the cost and replace higher-level controllers. Otherwise, it will
be impossible to identify strangers in time due to the large amount of computation, and it
will not be possible to achieve an autonomous security robot. Therefore, this study adopts
an algorithm with a lower computational amount and can achieve the expected effect.

The future extension of this research is to add a PTZ camera to allow the security robot
to monitor all aspects, and to add a motion detection module, so that the monitoring system
is not limited to human faces. When a dynamic change is detected, further face detection
and recognition are performed. In addition, replacing the deep learning algorithm with
a more complex model, such as replacing the Viola–Jones face detection algorithm with
the YOLO object detection algorithm, will mean that the face recognition rate will not be
restricted under occlusion or too-large changes in viewpoint, and the part relating to deep
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learning can also be replaced with models with higher accuracy, such as ResNet and Faster
R-CNN, and the hardware can be replaced with a GPU controller, so that the security robot
can achieve face recognition under more complex unstable factors.
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