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Abstract: Aiming at disadvantages of particle swarm optimization in the path planning of mobile
robots, such as low convergence accuracy and easy maturity, this paper proposes an improved
particle swarm optimization algorithm based on differential evolution. First, the concept of corporate
governance is introduced, adding adaptive adjustment weights and acceleration coefficients to
improve the traditional particle swarm optimization and increase the algorithm convergence speed.
Then, in order to improve the performance of the differential evolution algorithm, the size of the
mutation is controlled by adding adaptive parameters. Moreover, a “high-intensity training” mode is
developed to use the improved differential evolution algorithm to intensively train the global optimal
position of the particle swarm optimization, which can improve the search precision of the algorithm.
Finally, the mathematical model for robot path planning is devised as a two-objective optimization
with two indices, i.e., the path length and the degree of danger to optimize the path planning. The
proposed algorithm is applied to different experiments for path planning simulation tests. The results
demonstrate the feasibility and effectiveness of it in solving a mobile robot path-planning problem.

Keywords: path planning; particle swarm optimization; differential evolution algorithm and self-adaption

1. Introduction

Path planning is one of the important research directions in mobile robot technology.
The path planning of a mobile robot refers to planning a collision-free path that meets
certain conditions (usually the optimal) in a static or dynamic environment to reach a
target point [1,2]. People can apply good path planning technology for mobile robots to
robots to explore harsh environments that humans cannot reach [3], replace humans in
high-risk rescues such as fire rescue [4], help visually impaired people with path guidance,
and provide reliability for delicate surgery [5]. It can also be applied by people to the
field of intelligent warehousing, improving material transportation efficiency and reducing
manpower and material resources, which is a very meaningful research topic [6].

The traditional particle swarm optimization (PSO) was proposed by Kennedy in 1995
to search the global optimal value of objective function by imitating the foraging behavior
of birds. It has the characteristics of simple structure, easy implementation, and wide
application [7]. Its improved algorithms are widely used in path planning [8,9]. However,
the PSO algorithm has shortcomings such as slow convergence speed, and it is easy to fall
into local optimum.

This paper proposed an improved particle swarm optimization based on differen-
tial evolution (IPSO-IDE) for path planning in mobile robots. The IPSO-IDE is based on
optimized differential evolution (IDE) and enhanced with improved particle swarm opti-
mization (IPSO) to solve the limitations of the traditional particle swarm optimization. The
main contributions of the text are as follows:

(1) The improved IPSO algorithm combines improved inertia weight ω*, adaptive
parameter β, and the concept of corporate governance to improve the traditional particle
swarm optimization and increase the algorithm convergence speed.
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(2) Aiming at the shortcomings of the traditional DE algorithm, the scaling factor F and
the cross-probability factor CR are adaptively optimized, so that the algorithm can adap-
tively control the search accuracy and the degree of mutation to improve the optimization
accuracy of the algorithm.

(3) It proposes a new objective function applied to path planning, which is composed
of a path length function and a penalty function, simplifying the path planning problem of
mobile robots into an objective function optimization problem.

The remainder of this paper is arranged as follows. Section 2 describes a bibliographic
review of related work that includes classical heuristic algorithms and provides the appli-
cation of improved algorithms in path planning problem. Section 3 describes principles of
PSO and DE. Section 4 describes the proposed improved particle swarm optimization based
on differential evolution (IPSO-IDE). Section 5 describes its application to the path-planning
problem and introduces experiments and result analysis. In the last section, conclusions
are drawn.

2. Related Work

The path-planning algorithm of mobile robots has been deeply studied at home and
abroad, and the results are remarkable. Traditional path planning algorithms mainly in-
clude artificial potential field method [10], element decomposition method [11], graph
search algorithm [12], etc., but when the obstacles are complex, there are many disad-
vantages, such as a large amount of calculation, easy to fall into local optimum, and the
obtained path is not smooth, easy to appear sharp points, which is not in line with the actual
situation, increasing the workload of mobile robots [13,14]. At present, many experts use
heuristic algorithms to optimize path planning [15], including genetic algorithm (GA) [16],
particle swarm optimization (PSO) [17], artificial bee colony algorithm (ABC) [18], grey wolf
algorithm (GWO) [19], ant colony algorithm (ACO) [20], differential evolution algorithm
(DE) [21], etc., and obtain good results.

GA is an intelligent bionic algorithm proposed earlier, which is the theoretical basis
of many algorithms. It simulates the calculation model of Darwinian biological evolution
theory, mainly including the steps of establishing the initial population, calculating the
individual fitness of the population, and iterating out the optimal individual through cross-
mutation and other operations [22]. Since the mutation operation of GA is not targeted, the
probability of forming a better offspring population is not high. As a classical algorithm, GA
is often mixed with heuristic algorithms to solve problems, such as ant colony algorithm
(ACO). Kamel et al. combined PSO and GA to improve the prediction performance of the
model [23]. Memon et al. proposed a hybrid optimization algorithm based on GA and
APSO [24]. However, the improved GA is still inefficient in solving the problem [25].

Among the heuristic algorithms, PSO and DE are simpler in structure and easier to
implement, so they are widely used [26]. The improvement of PSO generally focuses
on the adjustment of population structure and the optimization of update formulas of
speed and position [27]. Burman R et al. proposed the democracy-inspired particle swarm
optimizer with the concept of peer groups to increase the speed of convergence [28]. Zhao
et al., in order to avoid falling into local optimal solutions and increase the diversity of
particles, introduced a nonlinear recursive function to adjust the inertia weight [29]. Yu
et al. proposed a novel hybrid particle swarm optimization (PSO) algorithm, namely
SDPSO [30]. Pozna et al. proposed a hybrid metaheuristic optimization algorithm that
combines Particle Filter (PF) and Particle Swarm Optimization (PSO) algorithms [31].
Mohammed Hussein et al. proposed a modified Particle Swarm Optimization (PSO),
which is named MPSO [25]. Liu et al. proposed a hybrid path planning algorithm based
on optimized reinforcement learning (RL) and improved particle swarm optimization
(PSO) [32]. However, the improved algorithm still has some limitations, such as low
convergence accuracy, easy precocity, and so on.

The differential evolution algorithm (DE) was proposed by R. Storn et al. in 1997. It
inherits the evolutionary ideas of genetic algorithms and is more concise and effective. Due
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to its outstanding optimization effect, it is widely developed and used by experts. The DE
is also used to optimize other algorithms to achieve a more ideal effect of optimization [33].
R. Chai et al. used the theory of game theory to optimize the DE algorithm, combined
with adaptive parameter adjustment to improve the convergence accuracy [34]. Lin C et al.
introduced the concept of grouping into the DE to improve its local search ability [35].
Wang et al. proposed a distributed differential evolution (DDE) algorithm, which is called
AED-DDE, for solving MMOPs [36]. Liu et al. proposed a hybrid DE algorithm based on
the lion swarm optimization [37]. Xu M and Wang Y proposed a time series prediction
study based on improved differential evolution and echo state network to optimize the
echo state network [38].

In general, in view of the shortcomings of PSO, this paper makes the following
improvements to PSO: introducing the concept of corporate governance, adding a leader
particle to lead the population to the optimal position. In addition, to strengthen the
convergence speed of the algorithm, the paper introduces the new update formulas of
speed and position by proposing a kind of adaptive operator and introducing the adaptive
parameters that can control the size of the degree of mutation to improve the DE. The
improved DE algorithm is used to optimize the PSO model and improve the defect that PSO
is easy to fall into local optimum. Finally, the improved algorithm is applied to solve the
problem of path planning. The objective function is constructed in this paper to optimize
the path planning, which is composed of path length function and penalty function, and
the cubic spline interpolation method is used to smooth the path. The proposed algorithm
can effectively improve the path planning ability of mobile robots in static and complex
environment models, improve planning efficiency, and generate a collision-free path with
the shortest path length to the target point.

3. Principles of PSO and DE

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn. This section introduces the traditional particle swarm
optimization (PSO) [17] and differential evolution algorithm (DE) [21], which form the
basis of the proposed algorithm.

3.1. Particle Swarm Optimization (PSO)

In the target search space of dimension D, the number of particles in the popula-
tion is set to N. The ith (i = 1, 2, . . . , N) particle contains two attributes, namely position
Xi = (xi1, xi2, . . . , xiD) and velocity Vi = (vi1, vi2, . . . , viD), and the individual optimal po-
sition experienced is Pi = (pi1, pi2, . . . , piD). The global optimal position obtained after
judging the entire particle swarm G = (g1, g2, . . . , gD). The update of velocity and position
can be expressed as the following mathematical formulas:

Vt+1
i = ωVt

i + c1r1(Pi
t − Xt

i ) + c2r2(Gt − Xt
i ) (1)

Xt+1
i = Xt

i + Vt+1
i , i = 1, . . . , N (2)

where ω represents the inertia weight to suppress the inertial speed of the previous iteration,
which enables the algorithm to adaptively adjust the inertial speed during the iteration
process. As the number of iterations increases,ω decreases accordingly, which makes the
algorithm have a larger search speed at the early stages of iterations to improve the ability
of search and ensure the efficiency of operation. Then, at the later stages of iterations,
the search speed is decreased to improve the accuracy of search. The specific formula is
as follows:

ω = ωmax − (ωmax −ωmin) ·
t
T

(3)

where ωmax and ωmin represent the maximum and minimum values of ω, t is the number
of iterations, and T is the maximum number of iterations.
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In addition, r1 and r2 are random numbers in the range of [0,1], the purpose is to
increase search range of the algorithm. c1 and c2 are learning factors, which are values
greater than or equal to zero, where c1 represents the cognition factor, which refers to
the cognition of each particle to control the influence of ith particle in the local range.
c2 represents the social factor, which refers to the influence ability of social level to control
the influence of the optimal particle in the particle swarm on the entire area. The two
learning factors work together to promote the particles to continuously move closer to the
optimal position.

Pi
t is the individual optimal position of the ith particle in iteration t, Gt

i is the global
optimal position of the particle swarm in iteration t. The individual optimal position and
the global optimal position can be expressed as the following mathematical formulas:

Pi
t+1 =

{
Pi

t, i f Fit(Xt+1
i ) > Fit(Pt

i )

Xt+1
i , i f Fit(Xt+1

i ) < Fit(Pt
i )

(4)

Gt
i = min

{
Fit(Pt

1), Fit(Pt
2), . . . , Fit(Pt

N)
}

(5)

3.2. Differential Evolution Algorithm (DE)

The principle of DE algorithm is similar to that of GA [16]. It also includes three
operations: “mutation”, “crossover” and “selection”, but there are differences in mutation
and crossover operations. Among them, GA adheres to the principle of “survival of the
fittest” and directly compares the parents and offspring to select the individuals with higher
fitness, while the DE algorithm introduces difference vector to mutate, which has better
structure and higher efficiency.

The specific implementation steps of DE are as follows:

1. Establish the initial population and initialize the parameters:

Randomly generate N individuals uniformly in the solution space {xj_min, xj_max},
j = 1, 2, 3, . . . , D. The individual is the candidate solution vector. The dimension is set to D.
The expression of the ith candidate solution vector of the initial population is as follows:

Xi(0) = (xi1(0), xi2(0), . . . , xiD(0)), i = 1, 2, . . . , N

The numerical initialization formula for the ith individual in dimension j is as follows:

xij(0) = xj_min + rand(0, 1) · (xj_max − xj_min)

2. Mutation operation:

The DE algorithm randomly selects individuals for differential mutation based on the
parent individuals xi(t), i = 1, 2, . . . , M. The mutation strategy is as follows:

hi(t) = xp1(t) + F · (xp2(t)− xp3(t)) (6)

where hi(t) is the generated variation vector, xp1(t), xp2(t), xp3(t) are solution vectors num-
bered p1, p2, p3 of the population in iteration t, the numbers are randomly selected and are
different from i. F is the scaling factor to appropriately scale the difference vector, and the
value range is generally controlled at (0, 1.2].

3. Cross operation:

The parent vector xi(t), i = 1, 2, ..., M (M represents the dimension of the parent
vector) crosses the mutation vector hi(t) with the crossover probability CR to generate
a new individual vector that is the test vector vij(t), and the test vector in dimension j
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(j = 1, 2, ..., D) is selected from the parent and the mutation vector according to CR; the
formula is as follows:

vij(t + 1) =
{

hij(t), i f rand ≤ CR or j = jrand
xij(t), else

(7)

where rand is a uniform random number in the range of [0,1]. CR is crossover probability
factor, CR∈ [0,1]. jrand is a random positive integer in the range of [0,1], so that at least
one component is produced by the mutation vector, thereby ensuring that a new vector
is generated.

4. Select operation.

The vector generated after cross mutation operation vi(t + 1) is compared with the
parent vector xi(t), and the vector with better fitness value (fit(u)) is retained. The formula
is as follows:

xi(t + 1) =
{

vi(t + 1) , i f f it(vi(t + 1) ) ≥ f it(xi(t) )
vi(t) , else

(8)

4. Algorithm Improvement
4.1. Improved Particle Swarm Optimization Based on Corporate Governance Idea (IPSO)

The traditional PSO [17] contains the idea of leadership: an optimal particle is selected
from the particle swarm, representing the global optimal solution G, which is the only
leader to lead the particle swarm to the optimal position. However, the thought of single
leadership has its limitations and cannot guarantee that the direction of leader guidance will
always be correct, which causes the premature convergence and fall into a local optimum.
In response to this problem, this paper adds the idea of corporate governance into the
particle swarm optimization and optimizes its parameters.

In economics, the idea of corporate governance [39] means that there are two rights in
an enterprise, namely, Ownership and Management rights. Good owners and operators
are administrators with strong ability. The owner gives the operator the right to manage
a company and lead the company’s employees to develop in a better direction. If the
company’s profits are not good under the management of the operator, the owner will
come forward to make decisions and deprive the operator of the management right. Two
rights check and balance to promote enterprise development. Based on the above concepts,
this paper improves the algorithm. The particles temporarily occupying the management
position are named as the administrator particle (Adm). The two possible administrator
particles, the Operator particle and the Owner particle, are elected through the voting
mechanism. The Owner particle does not often come forward to make decisions. It plays a
role of supervision and control, checking whether the Operator particle has always led the
particle swarm to the optimal position. In addition, based on the corporate culture that a
good working atmosphere can improve the work efficiency of employees, and the behavior
of employees affects each other, the concept of peer group is proposed. The neighboring
particles are regarded as a peer group, and their optimal positions influence each other.
The local optimal value (Lbest) is selected in the peer group.

In this paper, the traditional PSO is improved by introducing the concept of corporate
governance and adding adaptive parameters and acceleration coefficients. The update of
particle positions in two successive iterations can be shown in Figure 1, and the specific
update formulas of velocity and position are as follows:

Vt+1
i = ω∗ ·Vt

i + c1 · r1 · (Pi
t−Xi

t)+ c2 · r2 · (Lbesti
t−Xi

t)+ β · c3 · r3 ·ψ · (Admt−Xi
t) (9)

Xt+1
i = Xt

i + c4 · r4 ·Vt+1
i (10)
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Figure 1. The update of particle positions in two successive iterations (i.e., t to t + 1).

1. ω∗ ·Vt
i

The first term of (9) is the factor of inertia, which is the product of an adaptive inertia
weight the paper proposed ω* and the velocity of the previous iteration t. The adaptive
inertia weight ω* is based on the original inertia weight ω, adding a trigonometric function.
This is because, after adding the trigonometric function, the step size can be adjusted to
increase and the speed can be accelerated to avoid the precocious search and enter the local
optimal state, thus improving the accuracy, which is expressed by following formula:

ω∗ = ω∗max − (ω∗max −ω∗min) · sin(
π · t
2 · T )

where ω*
max and ω*

min represent the maximum and minimum values of ω.

2. c1 · r1 · (Pi
t − Xt

i )

The second term of (9) calculates the distance between the current position Xi
t of

ith particle iterating to the iteration t and the individual best position of the particle Pi
t,

multiplied by the acceleration factor c1 and the random number r1 ∈ [0, 1].

3. c2 · r2 · (Lbesti
t − Xt

i )

The third term of (9) calculates the distance between the current position Xi
t and the

best position of ith particle in the peer ring or peer group area Lbesti
t when it is iterated to

the iteration t, multiplied by the acceleration factor c2 and random number r2 ∈ [0, 1].

4. β · c3 · r3 · ψ · (Admt − Xt
i )

The fourth term of (9) calculates the distance between the Xi
t and the global best

position of the particle swarm Admt when it is iterated to the iteration t and multiplied by
the acceleration factor c3 and the random number r3 ∈ [0, 1]. In addition, in order to better
control the influence of Admt on the particle swarm, this paper introduces a trigonometric
function and proposes an adaptive parameter β to speed up the algorithm’s convergence
speed. The parameter ψ means administrator regulatory factor.

Since the speed of the traditional particle swarm optimization algorithm is fixed when
searching on a path, the adaptive parameter β can be adjusted adaptively to accelerate the
speed and avoid falling into the local optimal. The formula of β is as follows:

β = βmin + (βmax − βmin). · cos(
π · t
2 · T ) (11)

where βmin and βmax are the maximum and minimum values of β.
Adm is generated based on the concept of voting [40], and particles follow the leader

elected by voting. Opvote is the number of votes cast by Operator, and Owvote is the number
of votes cast by Owner.
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As the iteration progresses, the leadership of the Operator gradually increases, i.e.,
Opvote increases and Owvote decreases, so that the influence of the Owner weakens and
the convergence speed increases. However, if the Operator cannot lead the particles to the
optimum, the Owner needs to control the power. In this case, even if the number of Owvote
is small, the influence of the Owner must be increased, so the Administrator regulatory
factor ψ = e(1−voteAdm) is introduced.

The initial population is randomly generated, so it is necessary to artificially impose a
preference first by asymmetric processing of the initial voting range of two candidates of
administrator particles. The asymmetric range is controlled within [0, 1] by standardization.
Therefore, in the initial iteration, the particles choose the Operator as Adm with a greater
probability, and the Owner is their second choice that plays a supervisory role. The initial
value of Opvote is set to ϕ, and Owvote is 1-ϕ, which makes the number of votes biased,
where ϕ∈[0, 1].

The voting mechanism is realized by roulette algorithm [16]. Each particle votes to
select a leader votei

d that is a random number within the range of [0,1]. The selection of
Adm can be expressed as follows:

Admd
i =

{
Operatord, i f voted

i ≤ Opvote
Ownerd, else

(12)

The number of votes is accumulated and updated to record the influence of Operator
and Owner. The expressions are as follows:

i f voted
i < Opvote :
Opvote = Opvote + 1

M·N
else : Owvote = Owvote + 1

M·N

where M represents the number of votes that particles cast to the corresponding candidate
leader in a given dimension. The cumulative value of support votes is the total number of
support votes, which can intuitively indicate which candidate can be elected as the Adm.
In order to facilitate further calculations, the voting should be standardized after each
iteration. The expressions used for standardization are as follows:

Opvote =
Opvote

Opvote + Owvote
, Owvote =

Owvote
Opvote + Owvote

i f Opvote = ϕ : Owvote = 1− ϕ

voteAdm refers to the standardized number of votes obtained by a specific administrator
(Operator or Owner). The factor e(1−voteAdm) is calculated as follows:

Case1
Admd

i = Operatord, voteAdm = Opvote ≈ 1
e(1−voteAdm) ≈ e0 = 1
Case2
Admd

i = Ownerd, voteAdm = Owvote ≈ 0
e(1−voteAdm) ≈ e1 ≈ 2.3

The update formulas of Operator and Owner are as follows:

Ownerd =

{
φ · (Xmax − Xmin) + Xmin, i f randd < pro
Operatord, else

Operatord = gbestd

where the parameters of φ and randd are uniform random numbers in the range [0,1],
pro = 1/N, d ∈ {1, 2, 3, . . . , D}. See Algorithm 1 at the end of the article.
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5. The improved mathematical formula of pos.ition update formula

In (10), the particle position Xi
t+1 in iteration t + 1 is equal to the sum of the historical

position Xi
t and the velocity Vi

t+1 multiplied by the acceleration factor c4 and the random
number r4 ∈ [0, 1].

In addition, since particles search in the solution space at velocity v, if the particle
velocity exceeds the range and flies out of the solution space, it affects the algorithm
solution. In order to solve the above problem, this paper performs boundary treatment
on the velocity vd

i, which can quickly absorb the particle whose velocity exceeds the
velocity boundary:

i f vi
d > vmax : vi

d = vmax;
i f vi

d < vmin : vi
d = vmin

(13)

where vd
i is the component of the vi

t of generation t in dimension d, and vmin and vmax are
the minimum and maximum values of velocity.

4.2. Improved Differential Evolution Algorithm Based on Adaptive Parameters

The DE [21] has a simple structure and fast convergence speed. The algorithm has two
main parameters, namely the scaling factor F and the probability factor of cross CR. In the
standard DE, these two parameters are fixed values. In order to improve the convergence
performance and iterative accuracy of the algorithm, these parameters can be adjusted to
adaptive parameters.

1. Adaptive optimization of scaling factor F

F can control the degree of variation. A larger value of F represents a larger degree
of mutation, which can expand the search range of the algorithm to be conducive to the
overall progress, but it may be premature in the later stage of the iteration. A smaller value
of F represents a smaller degree of variation, which is conducive to the local search to
improve the search accuracy, but it is easy to fall into the local optimal solution.

Therefore, F is adaptively improved in this paper, and the expression is as follows:

Fi = Fmin + (Fmax − Fmin) ·
f it(xp2(t))− f it(xp1(t))
f it(xp3(t))− f it(xp1(t))

(14)

where Fi represents the scaling factor of the ith vector of the population. fit(xp1(t)), fit(xp2(t)),
fit(xp3(t)) represent the fitness values of the vectors xp1, xp2, xp3. Fmin, Fmax are the minimum
and maximum values of the scaling factors. If the difference between the fitness values
of xp2 and xp3 is too large, it expands the search range of the algorithm, which is not
conducive to the improvement of search accuracy, so let the algorithm have a smaller Fi.
On the contrary, the two vectors with similar fitness values are easy to fall into the local
optimal solution, so Fi is needed to expand to improve the degree of variation.

2. Adaptive optimization of cross probability factor CR

In order to improve the convergence speed of the algorithm, the crossover probability
factor is improved. CR is a factor that affects the degree of crossover between the parent
vector and the mutation vector. If CR is too large, the degree of crossover is increased,
but it may make the individuals with better fitness suffer from damage due to a too-large
mutation degree. If CR is too small, the degree of cross-mutation is not enough, which may
fall into local convergence and reduce the search efficiency. This paper proposes to compare
the fitness of a specified individual with the average of the population fitness values. If it is
smaller than the average, it means that the individual is better, and then its cross-variation
is reduced. If it is larger than the average, it means that the individual needs to be further
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optimized, i.e., to increase its variation degree and to promote the search for the optimal
individual. The specific expression is as follows:

CRi =


i f f it(xi) ≥ f itmean :

CRmin + (CRmax − CRmin) · f it(xi)− f itmin
f itmax− f itmin

else : CRmin

(15)

where CRi is the cross-probability factor corresponding to the ith vector of the population,
CRmin and CRmax are the minimum and maximum values of CR. fit(xi) is the fitness value
of the vector xi, fitmin and fitmax are the minimum and maximum values obtained after
comparison of fitness values. fitmean is the average of fitness values.

4.3. Hybrid IPSO with IDE (IPSO-IDE)
4.3.1. The Principle of IPSO-IDE Algorithm

In order to improve the optimization ability of PSO, this paper combines the concepts
of corporate governance and voting and introduces adaptive factors to optimize the con-
vergence speed. However, the principle of PSO is to update the velocity and position of
the particles through continuous iterations to move closer to the optimal position, and the
movement of the particles is simple and easily affected by other particles, i.e., the properties
of the algorithm itself make it possible for PSO to converge in a non-optimal position when
solving the optimization problem. In addition, DE compares the parent vector with the
target vector generated by mutation and crossover in the early stage, so that it has high
convergence speed and can be used to optimize PSO.

In summary, the paper improves traditional PSO and DE and integrates them. The
DE is used to break the limitation of PSO and propose a new hybrid PSO-DE optimiza-
tion mechanism, which includes the idea of “mutual benefit and win-win”, i.e., the two
algorithms are cooperative partnerships, which means that after one party optimizes its
own capabilities through the partner, in turn, it provides greater benefits to the partner
to achieve mutual benefit results for the two algorithms. Based on this idea, this paper
proposes an improved IPSO-IDE algorithm, i.e., an improved particle swarm algorithm
based on differential evolution. Both IPSO and IDE are in cooperative modes. IDE is used
to optimize the Adm of IPSO to make the Adm position closer to the optimal position and
improve its ability to guide particles to the optimal position. In this way, the performance of
the population after iteration is better. This kind of population is called “elite population”,
and it can obtain better results by using elite population to train IDE algorithm.

The implementation steps of proposed IPSO-IDE are as follows:

step1:Initialization parameters, including acceleration factor, number of support votes
Opvote, and number of negative votes Owvote, etc.

step2:Initialize the particle swarm randomly, including dimension D, number of population
particle N, position X, velocity V, etc.

step3:Calculate the particle fitness value Fit according to the set objective function.
step4:Based on the fitness value Fit, calculate the individual best position Pi

t, the local best
position Lbesti

t, and elect Adm according to (12) to obtain the global best position.
step5:Update position X and velocity V according to the improved (9) (10) to generate the

elite population with high quality.
step6:Use (13) to process the boundary.
step7:Use the elite population as the initial population of IDE, combine the adaptive param-

eters (14) (15), and use (6) (7) (8) to perform “high intensity” iterative optimization.
step8:Apply the optimized result of IDE algorithm to Leader of the updated particle swarm.
step9:If the termination condition is met, stop the algorithm and output the optimal results.

Otherwise, go to Step2.

See Algorithm 2 at the end of the article.
Among them, the proposed algorithm is divided into two parts, which are cooperated

by IPSO and IDE. DE has the advantage of fast convergence in the early stage. Updating
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the particle position by the elite population optimized by IDE can make the algorithm have
faster optimization speed and reduce the overall influence of IPSO. In addition, because
the algorithm has two possible administrator particles, the selected Adm can better lead the
particles to the optimal position. Therefore, the paper increases the influence of Adm, and
sets up the following parameters: c1 = 0.5, c2 = 0.5, c3 = 1.2, c4 = 1, φ = 0.7.

4.3.2. Experimental Verification of IPSO-IDE Model

In order to prove the performance superiority of IPSO-IDE proposed, the paper selects
nine classical test functions for verification. The specific form of the function is given
in Table 1, including the name of test function, expression, value range of independent
variables, the minimum value (min) in the interval, and the dimension of function (Dim).

Table 1. Performance of IPSO-IDE with other algorithms based on test functions.

Test Function Expression Value Range Min Dim

Sphere f1 =
D
∑

i=1
x2

i
[−100,100] 0 30

Step f2 =
D
∑

i=1
( f loor(xi + 0.5))2 [−10,10] 0 30

H14 f3 = exp(0.5 ·
D
∑

i=1
x2

i )− 1 [−1.28,1.28] 0 30

Schwefel’s P2.22 f4 =
D
∑

i=1
|xi|+

D
∏
i=1
|xi| [−10,10] 0 30

Alpine f5 =
D
∑

i=1
|xi · sin xi|+ 0.1 · |xi| [−10,10] 0 30

Quadric f6 =
D
∑

j=1
(

j
∑
i

xi)
2 [−100,100] 0 30

Rastrigin f7 =
D
∑

i=1
[x2

i − 10 · cos 2πxi + 10] [−5.12,5.12] 0 30

Ackley
f8 = −20 · exp(−0.2 ·

√
1
D ·

D
∑

i=1
x2

i )−

exp( 1
D ·

D
∑

i=1
cos 2πxi) + 20 + e

[−32,32] 0 30

Griewank f9 = 1
4000 ·

D
∑

i=1
xD

i −
D
∏
i=1

cos( xi√
i
) + 1 [−600,600] 0 30

The algorithm is tested on each test function, and it makes a comparison with other
representative algorithms such as traditional particle swarm optimization (PSO) [17],
democracy-inspired particle swarm optimizer with the concept of peer groups (DPG-
PSO) [37], hybrid algorithm based on PSO and ABC (PSO-ABC) [9], and improved differen-
tial evolution algorithm (IDE). The parameters are shown in Table 2. The initial parameters
for all competitor algorithms are set the same as the proposed algorithm. The maximum
number of iterations is 2000, and the population size is set to 20. In order to ensure the
validity of the algorithm results, each test function is independently tested 20 times. The
experimental results are shown in Table 3, where Mean denotes the average of output re-
sults from 20 tests, Best represents the best value in the results of 20 tests, Miter denotes the
number of iterations used for the best value, and Std denotes the standard deviation, which
can determine the stability of the algorithms. Figure 2 shows the relationship between the
optimal fitness of the test functions and the number of iterations.
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Table 2. Parameter settings of the different test algorithms (meaning of the symbols are provided in
the respective literates).

Algorithm Parameter

IPSO-IDE c1 = 0.5, c2 = 0.5, c3 = 1.2, c4 = 1; ω = 0.4–0.2; φ = 0.7; β = 1–1.5; Vmax = 0.6 × Range; F = 0.6; CR = 0.9–0.1
PSO c1 = 2; c2 = 2; ω = 1; Vmax = 0.5 × Range; Vmax = 0.1 × Range

DPG-PSO c1 = 2, c2 = 1.5, c3 = 0.5, c4 = 0.8; ω = 0.2; φ = 0.7; Vmax = 0.5 × Range
PSO-ABC c1 = 2, c2 = 2; ω = 0.95–0.4; Vmax = Range

IDE F = 0.6; CR = 0.9–0.1; Vmax = Range
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Table 3. Test function.

Algorithm Evaluation Index IPSO-IDE PSO DPG-PSO PSO-ABC IDE

f 1 Mean 0 1.539 0.075 2.9 × 10−5 1.7 × 10−27

Best 0 1.330 0.002 2.83 × 10−5 1.12 × 10−30

Worst 0 1.86 0.236 3.0 × 10−5 1.6 × 10−26

Std 0 0.1809 0.0573 4.29 × 10−7 3.93 × 10−27

M-iters 332 1180 214 425 1993

f 2 Mean 0 0 0 0 0
Best 0 0 0 0 0

Worst 0 0 0 0 0
Std 0 0 0 0 0

M-iters 15 1118 21 100 384

f 3 Mean 0 1.1045 2.79 × 10−6 5.36 × 10−6 0
Best 0 0.88 1.36 × 10−8 3.82 × 10−6 0

Worst 0 1.15 1.21 × 10−5 6.84 × 10−6 0
Std 0 0.1067 4.06 × 10−6 9.82 × 10−7 0

M-iters 16 286 279 1065 1173

f 4 Mean 0 5.36 0.362 0.029 1.01 × 10−21

Best 0 5.04 0.19 0.029 1.94 × 10−22

Worst 0 5.83 0.7 0.029 2.04 × 10−21

Std 0 0.2892 0.1968 3.88 × 10−18 7.3 × 10−22

M-iters 19 1248 135 186 1997

f 5 Mean 0 3.6045 0.0116 1.7435 2.88 × 10-19

Best 0 1.99 0.002 0.039 8.01 × 10−28

Worst 0 4.8 0.04 2.41 6.73 × 10−19

Std 0 1.1845 0.0123 1.1265 6.73 × 10−19

M-iters 18 335 126 2000 2000

f 6 Mean 0 9.582 0.923 4.11 × 10−4 3.98 × 10−29

Best 0 7.5 0.105 4 × 10−4 3.14 × 10−29

Worst 0 10.27 2.56 4.2 × 10−4 4.76 × 10−29

Std 0 1.0278 1.2421 1.15 × 10−5 1.13 × 10−29

M-iters 400 1432 463 765 2000

f 7 Mean 0 38.066 26.629 0.0051 15.17
Best 0 27.98 19.14 0.004 10.94

Worst 0 59.34 35.63 0.0058 19.9
Std 0 12.1852 7.5275 0.001 4.4048

M-iters 25 503 208 665 738

f 8 Mean 3.09 × 10−16 8.432 9 × 10−4 0.004 0.4575
Best 4.4 × 10−17 7.18 6.58 × 10−5 0.004 7.55 × 10−15

Worst 4.44 × 10−16 9.51 1.8 × 10−3 0.004 1.34
Std 2.31 × 10−16 0.8422 8.26 × 10−4 0 0.6338

M-iters 51 430 182 548 1831
Grade N - - - -

f 9 Mean 0 35.96 0.0664 2.01 × 10−6 0.0147
Best 0 31.05 0.037 2.01 × 10−6 0

Worst 0 41.02 0.147 2.01 × 10−6 0.0172
Std 0 3.97 0.0495 0 0.0218

M-iters 21 2000 341 112 1222

5. Path Planning Based on IPSO-IDE Algorithm

Through functional tests, the new IPSO-IDE optimization algorithm proposed in this
paper has good performance. In order to verify the practicability of the algorithm, different
scenarios are set to carry out the path-planning simulation experiment of the algorithm.
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5.1. Design of Fitness Function

Fitness function has an important impact on the function of evolutionary algorithms.
According to the actual needs of the path-planning problem, the evaluation index mainly
includes two factors: path length and degree of risk. The fitness function needs to be con-
structed based on the evaluation index, so the objective function of this paper is composed
of path length function and penalty function. The paper sets the coordinate of starting
point as Start (x0, y0) and the coordinate of target point as Goal (x0, y0). Each particle in the
particle swarm represents a set of node coordinates along a path, denoted by H = {Start,
(x1, y1), (x2, y2), . . . , (xn, yn), Goal}.

1. Path length function

The path length function fL is used to calculate the path length of the mobile robot
from the start pointing Start to the target pointing Goal, which can be expressed by the
following formula:

CRi =


i f f it(xi) ≥ f itmean :

CRmin + (CRmax − CRmin) · f it(xi)− f itmin
f itmax− f itmin

else : CRmin

(16)

2. Penalty function

The path planning of the mobile robot must ensure the safety of the generated path.
The more times a path intersects an obstacle, the higher the degree of risk. The degree of
risk is used to set a penalty function to punish the path nodes that intersect with obstacles.

To facilitate the calculation, the obstacles in the environment model are regarded as
circles, denoted as Ck. The center is Ok, and c is the number of obstacles. For irregular
obstacles, the method of circular approximation is used to simplify them. The obstacle
radius is set as the safety threshold, expressed as R = {r0, r1, . . . , rc}. In order to obtain a
collision-free path, it is necessary to ensure that the distance between the path node and the
obstacle is greater than the safety threshold, and the line of adjacent path nodes does not
intersect the obstacles. Based on this requirement, the concept of mid-node is introduced:
take m points on the connecting line of two adjacent path nodes, and this kind of path point
is called mid-node. The paper uses the mid-nodes to judge whether the path intersects
with obstacles, as Figure 3 shows. The Euclidean distance Disk (k = 1, 2, ..., c) between
each node (i.e., mid-node and path node) and the obstacle center is calculated, and the
calculation method of penalty degree between node i and node i−1 is expressed by the
following formulas:

Disk =

√
(xi −Ox

k )
2 + (yi −Oy

k )
2

riskk =

{
0,
1,

Disk ≤ rk
Disk > rk

, Risk(xi, yi) =
c

∑
k=1

riskk

where riskk represents the penalty factor under the Ck, which is set to two values of 0
and 1. If distance between the node (i.e., mid-node and path node) is less than the safety
threshold rk, the node is punished by setting the riskk to 1. Otherwise, the riskk is set to 0.
Then, the formula of penalty function fP is as follows:

fP = η ·
n+1

∑
j=1

m+2

∑
i=1

Risk(xi, yi) (17)

where n is the number of path nodes, m is the number of mid-nodes, and η is the weight
coefficient, indicating the degree of influence of the penalty degree Risk (xi, yi) on the
path nodes.
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In summary, the fitness function of IPSO-IDE is expressed by the following formula:

Fit = fL + fP (18)

5.2. Path Smoothing

Combined with the analysis of the actual situation of the mobile robot operation, the
path turning cannot be too sharp, and the generated path needs to be smoothed. In this
paper, cubic spline interpolation [41] is added to IPSO-IDE for path planning to obtain a
smooth path.

1. Basic principle of cubic spline interpolation

Cubic spline interpolation is abbreviated as Spline interpolation, which is an effective
piecewise interpolation method to obtain smooth curves. A set of points is assumed to be:{

X= {x 0, x1, . . . xn}
Y= {y 0, y1, . . . yn

} , where X and Y correspond one to one.

The interval of the spline curve is set to [xmin, xmax]. The n + 1 data points are taken in
the interval to generate n subintervals. S(x) as cubic spline interpolation function needs to
meet the following stipulations:

• In n subintervals [xi, xi+1] (i = 0, 1, . . . , n − 1), S(x) is a cubic polynomial.
• S(xi) = yi (i = 0, 1, 2, . . . , n − 1).
• The first derivative and the second derivative of S(x) in the interval [xmin, xmax]

are continuous.

2. Determine the equation of Spline Interpolation

Based on the stipulations that the cubic spline interpolation function must meet, the
calculation method is proposed as follows:

• According to S(x), which is composed of n cubic polynomials, the polynomial expres-
sion can be obtained as:

Si(x) = ai + bi · (x− xi) + ci · (x− xi)
2 + di · (x− xi)

3

where ai, bi, ci, di (i = 0, 1, 2, . . . , n−1) are undetermined coefficients, so S(x) has 4n
undetermined coefficients in total.

• According to S(xi) = yi(i = 0, 1, 2, . . . , n− 1), it can be concluded that:

S(xi+1) = yi+1, (i = 0, 1, 2, . . . , n− 1), ai = yi
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Determine step size: hi = xi+1 − xi, i = 0, 1, . . . , n− 2

ai + bi · hi + ci · hi
2 + di · hi

3 = yi+1

• According to the continuity of the differential, it can be concluded that:

Si′(xi+1) = Si+1′(xi+1), (i = 0, 1, 2, . . . , n− 1)

S′′i (xi+1) = S′′i+1(xi+1), (i = 0, 1, 2, . . . , n− 1)

To sum up, according to the differential continuity, 2(n−1) conditions can be obtained.
In addition, according to the free boundary condition, the second derivatives of the two end-
points of interval are 0, so S(x) can be determined. Figure 4 shows the trajectory with spline
through n points.
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3. Smoothing by spline interpolation

Since the path generated by IPSO-IDE is represented by H = {Start, (x1, y1), (x2, y2),
. . . , (xn, yn), Goal}, i.e., there are n + 2 path nodes including the starting point and the
target point. The calculation is performed by cubic spline interpolation on the intervals
(x0, x1, . . . , xn + 2) and (y0, y1, . . . , yn + 2). The path is obtained by the connecting lines of
the adjacent nodes (i.e., path nodes, interpolation points, starting point and target point).

The paper carries out a path-planning experiment based on the IPSO-IDE fused with
cubic spline interpolation, which is conducted by PYTHON 3.7.5 (Beijing, China) software.
The path is planned in a simple environment model, and it is smoothed using cubic spline
interpolation to obtain the final optimal path that is shown in Figure 5, where the green
curve is the original path before smoothing, and the red line is the final path after smoothing.
It can be seen that the final path has no sharp points and is smoother, which meets the
requirement of dynamics and kinematics, and fits the actual situation better. The direction
and shape of the final path are roughly consistent with the original path, and almost
no change.
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Figure 6 is a detailed flowchart of the improved IPSO-IDE fused with cubic spline
interpolation applied to path planning. The improved algorithm can efficiently find the
optimal position and improve the path-planning ability.

Processes 2022, 10, x FOR PEER REVIEW 16 of 27 
 

 

curve is the original path before smoothing, and the red line is the final path after smooth-

ing. It can be seen that the final path has no sharp points and is smoother, which meets 

the requirement of dynamics and kinematics, and fits the actual situation better. The di-

rection and shape of the final path are roughly consistent with the original path, and al-

most no change. 

 

Figure 5. Trajectory with spline through n points. Comparison of generated paths before and after 

path smoothing. 

Figure 6 is a detailed flowchart of the improved IPSO-IDE fused with cubic spline 

interpolation applied to path planning. The improved algorithm can efficiently find the 

optimal position and improve the path-planning ability. 

Yes

No

Initialization path

Input map model

Start

End

Initialize the relevant parameters of the IPSO-IDE 

algorithm, particle position X and velocity V

Calculate the fitness function Fit

Calculate Lbest、P、
Leader

Update X、V

Mutation operation

Cross operation

Select operation

Generate a new Leader, 

update X, V

Boundary treatment

Update path

Update parameters

Meet the 

termination 

condition

Output original path

Smooth the path by cubic spline interpolation

“high-intensity training”mode of 

IDE algorithm

Output final path

 

Figure 6. Flowchart of robot path planning based on the proposed algorithm. Figure 6. Flowchart of robot path planning based on the proposed algorithm.

In order to verify the practicability of the algorithm, different scenarios are set to carry
out the path-planning simulation experiment of the algorithm, so that the path planning
algorithm can be applied to the mobile robots in the future. The mobile robot uses the path-
planning algorithm package Move_base delivered with ROS to complete the path-planning
task based on its dynamic model, which mainly includes global path planning and local
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path planning and design. Global path planning constructs the shortest distance from the
start to the end based on global map information.

6. Simulation Experiments and Analysis

In order to validate the algorithm proposed in this paper in solving the path planning
and analyze the influence of the number of path nodes on the performance of the algorithm,
the simulation experiments are conducted by PYTHON 3.7.5 (Beijing, China) software. The
performances of the proposed algorithm are compared with those of PSO [17], DE [21],
ABC [18], PSO-ABC [9], DPG-PSO [28], hybrid algorithm based on PSO and DE (PSO-
DE) [42,43], and IDE.

6.1. The Number of Path Nodes Experiment

The purpose of this experiment is to analyze the influence of the number of path nodes
on the performance of path planning. The paper selects environment 1 for experiment,
where the domains of x and y were between 0 and 10, the starting point coordinate is
(0,0), which is represented by a red square, the end point coordinates are (10,10), which is
represented by a red “X”, the path node is represented by a blue circle, and the red line
represents the final path. In this experiment, the population size is set to 15, the number of
path nodes is 1 to 10, the maximum number of iterations is 100, and the output result is
shown in Figure 7. Figure 8 shows the convergence curve of path length based on IPSO-IDE
when the number of path nodes ranged from 1 to 10.
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6.2. Path Planning Experiment

The path planning experiments are conducted based on IPSO-IDE in different envi-
ronments, and the results are compared with other algorithms. In the experiments, the
parameters of the Table 4 are used to test.

Table 4. Parameter settings of the different test algorithms (meaning of the symbols are provided in
the respective literatures.

Algorithm Parameter

IPSO-IDE c1 = 0.5, c2 = 0.5, c3 = 1.2, c4 = 1;ω = 0.4–0.2; φ = 0.7; β = 1–1.5; Vmax = 0.6 × Range; F = 0.9–0.1; CR = 0.9–0.1
DE F = 0.6; CR = 0.7; Vmax = Range

PSO c1 = 2, c2= 2; ω = 1; Vmax = 0.5 × Range;Vmax = 0.1 × Range
ABC nOnLooker = 10; ϕ = 1.2; P = 0.5; Vmax = Range

PSO-ABC c1 = 2, c2 = 2; ω = 0.95–0.4; Vmax = Range
DPG-PSO c1 = 2, c2 = 1.5, c3 = 0.5, c4 = 0.8;ω = 0.2; φ = 0.7; Vmax = 0.5 × Range
PSO-DE c1 = 2, c2 = 2; F = 0.7; CR = 0.7; Vmax = 0.6 × Range

IDE F = 0.9–0.1; CR = 0.9–0.1; Vmax = Range

6.2.1. First Experiment: Compared with Different Traditional Heuristic Algorithms

This experiment aims to analyze the path planning results of the proposed algorithm
and compare with the traditional heuristic algorithms of PSO, DE, and ABC in environ-
ment 2. The environment 2 is a mixed map of square and circular obstacles, with a total of
10 obstacles, where the domains of x and y were between 0 and 10, and the red square and
red “X” represent the start and end points. Since the obstacles are dense, the number of
path nodes is selected as 5. The population size of all algorithms is 15, and the maximum
number of iterations is 100. For each algorithm, each experiment is performed 20 times.

Figure 9 shows the optimal path in environment 2 generated by the different algo-
rithms during 20 tests, and Figure 10 shows the convergence curves of optimal fitness
values based on different algorithms during the 20 times. Based on four indicators of Mean,
Best, Worst, Std, and Time, the algorithms are compared. Among them, Mean represents
the average of the average of output results from 20 tests, Best and Worst represent the
best value and the worst value in the results, respectively, Time represents the average
of running time from 20 tests, and Std denotes the standard deviation. The experimental
results including the above indicators are shown in Table 5. As can be seen from Figure 10,
in the simple mixed scenario, DE and ABC algorithms fall into local optimal before iteration
of the 20th generation, while the IPSO-IDE algorithm proposed in this paper converges only
after iteration of the 40th generation. Compared with DE and ABC algorithms, IPSO-IDE
algorithm has the advantage of not being precocious. As can be seen from the path planning
results in Table 5, the experimental operation result of IPSO-IDE algorithm proposed in this
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paper is the smallest, indicating that the convergence accuracy of the algorithm proposed
in this paper is higher than that of DE, ABC, and ABC algorithms.

Processes 2022, 10, x FOR PEER REVIEW 20 of 27 
 

 

 

Figure 9. Optimal path results based on different algorithms in environment 2. 

 

Figure 10. Convergence curves of optimal fitness values based on different algorithms in environ-

ment 2. 

6.2.2. Second Experiment: Compared with Different Improved Algorithms 

This experiment aims to analyze the path-planning results of the proposed algorithm 

and compare with the improved algorithms of PSO-ABC, DPG-PSO, and ABC in environ-

ment 3. Compared with environment 2, the types of obstacles in environment 3 are in-

creased, which is a more complex map, as shown in Figure 11. In here, the domains of x 

and y were between 0 and 10, and the red square and red “X” represent the start and end 

points, respectively. The algorithm parameters and the number of path nodes are the same 

as the first experiment. Figure 12 shows the convergence curves of optimal fitness values 

based on different algorithms during the 20 times. Based on four indicators of Mean, Best, 

Worst, and Std, the algorithms are compared, and the experimental results including the 

above indicators are shown in Table 6. As can be seen from Figures 11 and 12, in complex 

mixed scenarios, although IPSO-IDE algorithm proposed in this paper also falls into local 

optimal earlier, compared with PSO-ABC, DPGPSO, PSO-DE, and IDE algorithm, IPSO-

IDE algorithm can find a better path. In addition, we can see from the path planning re-

sults in Table 6 that the proposed algorithm has higher convergence accuracy than other 

algorithms. 

Table 6. Path planning results of different algorithms in environment 3. 

Algorithm Mean Best Worst Std Time 

IPSO-IDE 14.656 14.374 15.487 0.376 7.08 

PSO-ABC 15.896 15.257 16.364 0.463 9.13 

DPG-PSO 17.636 16.325 18.689 0.971 7.52 

PSO-DE 15.147 14.572 15.793 0.547 11.13 

IDE 14.843 14.534 15.635 0.426 9.74 

10

15

20

25

30

35

40

0 20 40 60 80 100

F
it

n
es

s 
V

al
u
e

Number of iterations

IPSO-IDE

DE

PSO

ABC

Figure 9. Optimal path results based on different algorithms in environment 2.

Processes 2022, 10, x FOR PEER REVIEW 20 of 27 
 

 

 

Figure 9. Optimal path results based on different algorithms in environment 2. 

 

Figure 10. Convergence curves of optimal fitness values based on different algorithms in environ-

ment 2. 

6.2.2. Second Experiment: Compared with Different Improved Algorithms 

This experiment aims to analyze the path-planning results of the proposed algorithm 

and compare with the improved algorithms of PSO-ABC, DPG-PSO, and ABC in environ-

ment 3. Compared with environment 2, the types of obstacles in environment 3 are in-

creased, which is a more complex map, as shown in Figure 11. In here, the domains of x 

and y were between 0 and 10, and the red square and red “X” represent the start and end 

points, respectively. The algorithm parameters and the number of path nodes are the same 

as the first experiment. Figure 12 shows the convergence curves of optimal fitness values 

based on different algorithms during the 20 times. Based on four indicators of Mean, Best, 

Worst, and Std, the algorithms are compared, and the experimental results including the 

above indicators are shown in Table 6. As can be seen from Figures 11 and 12, in complex 

mixed scenarios, although IPSO-IDE algorithm proposed in this paper also falls into local 

optimal earlier, compared with PSO-ABC, DPGPSO, PSO-DE, and IDE algorithm, IPSO-

IDE algorithm can find a better path. In addition, we can see from the path planning re-

sults in Table 6 that the proposed algorithm has higher convergence accuracy than other 

algorithms. 

Table 6. Path planning results of different algorithms in environment 3. 

Algorithm Mean Best Worst Std Time 

IPSO-IDE 14.656 14.374 15.487 0.376 7.08 

PSO-ABC 15.896 15.257 16.364 0.463 9.13 

DPG-PSO 17.636 16.325 18.689 0.971 7.52 

PSO-DE 15.147 14.572 15.793 0.547 11.13 

IDE 14.843 14.534 15.635 0.426 9.74 

10

15

20

25

30

35

40

0 20 40 60 80 100

F
it

n
es

s 
V

al
u
e

Number of iterations

IPSO-IDE

DE

PSO

ABC

Figure 10. Convergence curves of optimal fitness values based on different algorithms in environment 2.

Table 5. Path-planning results of different algorithms in environment 2.

Algorithm Mean Best Worst Std Time

IPSO-IDE 15.273 14.562 18.311 1.255 5.83
DE 16.461 15.514 18.317 1.359 7.52

PSO 22.735 18.919 33.489 4.833 6.53
ABC 16.865 15.557 18.356 1.330 7.90

6.2.2. Second Experiment: Compared with Different Improved Algorithms

This experiment aims to analyze the path-planning results of the proposed algorithm
and compare with the improved algorithms of PSO-ABC, DPG-PSO, and ABC in envi-
ronment 3. Compared with environment 2, the types of obstacles in environment 3 are
increased, which is a more complex map, as shown in Figure 11. In here, the domains of x
and y were between 0 and 10, and the red square and red “X” represent the start and end
points, respectively. The algorithm parameters and the number of path nodes are the same
as the first experiment. Figure 12 shows the convergence curves of optimal fitness values
based on different algorithms during the 20 times. Based on four indicators of Mean, Best,
Worst, and Std, the algorithms are compared, and the experimental results including the
above indicators are shown in Table 6. As can be seen from Figures 11 and 12, in complex
mixed scenarios, although IPSO-IDE algorithm proposed in this paper also falls into local
optimal earlier, compared with PSO-ABC, DPGPSO, PSO-DE, and IDE algorithm, IPSO-IDE
algorithm can find a better path. In addition, we can see from the path planning results in
Table 6 that the proposed algorithm has higher convergence accuracy than other algorithms.
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Table 6. Path planning results of different algorithms in environment 3.

Algorithm Mean Best Worst Std Time

IPSO-IDE 14.656 14.374 15.487 0.376 7.08
PSO-ABC 15.896 15.257 16.364 0.463 9.13
DPG-PSO 17.636 16.325 18.689 0.971 7.52
PSO-DE 15.147 14.572 15.793 0.547 11.13

IDE 14.843 14.534 15.635 0.426 9.74

6.2.3. Third Experiment: Verification of Big Map

This experiment aims to analyze the path-planning results of the proposed algorithm
and compare with the of the improved algorithms of PSO-ABC, DPG-PSO, and ABC in
environment 4. Environment 4 is a map of dense obstacles, and the map range is expanded,
as shown in Figure 13. In here, the domains of x and y were between 0 and 100, and the
red square and red “X” represent the start and end points, respectively. The algorithm
parameters and the number of path nodes are the same as the first experiment. Figure 14
shows the convergence curves of optimal fitness values based on different algorithms
during the 20 times. Based on five indicators of Mean, Best, Worst, Std, and Time, where
Time means the average of running time from 20 tests, the algorithms are compared, and
the experimental results including the above indicators are shown in Table 7. It can be
seen from Figures 13 and 14, in a scenario with dense obstacles, although the IPSO-IDE
algorithm proposed in this paper also falls into local optimal earlier, compared with PSO-
ABC, DPGPSO, PSO-DE, and IDE algorithms, IPSO-IDE can find a better path. In addition,
we can see from the path planning results in Table 7 that the proposed algorithm has higher
convergence accuracy than other algorithms.
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Table 7. Path planning results of different algorithms in environment 4.

Algorithm Mean Best Worst Std Time

IPSO-IDE 143.982 143.362 144.527 0.738 16.51
PSO-ABC 158.504 157.924 151.457 1.120 43.02
DPG-PSO 157.771 157.158 159.090 0.819 35.21
PSO-DE 145.137 144.443 146.481 0.781 43.12

IDE 145.703 145.180 147.504 1.021 45.34

7. Conclusions

This paper studies the application of the PSO algorithm in the path planning of mobile
robots and proposes an IPSO-IDE algorithm based on cubic spline interpolation. The
proposed algorithm is mainly based on the traditional PSO algorithm to make the improve-
ments. It combines improved inertia weight ω*, adaptive parameter β, and the concept of
corporate governance. Aiming at the shortcomings of the traditional DE algorithm, the
scaling factor F and the cross-probability factor CR are adaptively optimized, so that the
algorithm can adaptively control the search accuracy and the degree of mutation to improve
the optimization accuracy of the algorithm. Then, the improved IDE algorithm is used to
improve the global optimal position of the IPSO algorithm to prevent the IPSO algorithm
from falling into the local optimal solution. A new objective function applied to path plan-
ning, which is composed of a path length function and a penalty function, simplifying the
path planning problem of mobile robots into an objective function optimization problem.
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The proposed algorithm is tested on nine classical test functions. The results show that
the proposed algorithm has high optimization capabilities and search efficiency without
requiring a large amount of sample data, and in addition to the f9 test functions, the results
of this algorithm have reached the optimum. Although the results of the f9 test function
have not reached the optimum, the accuracy of the worst results has also reached the 10−6

overall level, it shows superiority compared with comparison algorithms such as PSO,
DPG-PSO, PSO-ABC, IDE, etc. Then, the algorithm is applied to various experimental
environments for path-planning experiments. The experimental results show that, com-
pared with the traditional path-planning algorithm, the proposed IPSO-IDE algorithm not
only has higher convergence accuracy, but also has the advantages of not being precocious.
At the same time, compared with the other two improved particle swarm optimization
algorithms, although the IPSO-IDE algorithm proposed in this paper is also prone to fall
into the precocious state, compared with other algorithms, the algorithm can find a better
path and the final convergence accuracy is higher. The results show that the algorithm
improves the global search ability and has certain practical value. However, this algorithm
is only applicable to the path planning problem of mobile robots with complex static maps.
In the subsequent research, this paper plans to use the proposed algorithm to solve the path
planning problem under the dynamic scene model, increase the real-time scene acquisition
and processing functions, and improve the effect of path planning.
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List of Abbreviations.

Abbreviation meaning
PSO particle swarm optimization
IPSO improved particle swarm optimization
DE differential evolution
IDE optimized differential evolution
IPSO- IDE improved particle swarm optimization based on differential evolution
GA genetic algorithm
CR crossover probability factor
DPG-PSO democracy-inspired particle swarm optimizer with the concept of peer groups
ABC artificial bee colony
PSO-ABC hybrid algorithm based on PSO and ABC
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The pseudo code of manager selects.

Algorithm 1: Code for manager selects

//Initialize operator, Owner, operator vote, manager vote, administrator particle.
Initialize : Opvote := Œ, ovote := 1−Œ , Operator, Owner, Adm, Admd

i ,votei
d: [0,1].

1. While (fit > fitmin)
2. For t = 1 to T //T is the number of iterations.
3. For i = 1 to N //N is the number of particles in the population.
4. For d = 1 to D //D for dimension.
5. If (votei

d < Opvote)
6. Admd

i ← Operatord //If the particles vote for the operator.
7. Opvote← Opvote + 1/(M.N) //Add up the votes.
8. Opvote← Opvote/(Opvote+Owvote) //Standardize voting.
9. Else
10. Admd

i ← Ownerd //If the particle votes for the owner.
11. Owvote← Owvote + 1/(M.N) //Add up the votes.
12. Owvote←Owvote/(Opvote+Owvote) //Standardize voting.
13. End if
14. //The e(1−voteAdm) expressed as follows.

15. If
(

Admd
i = Operatord )

16. e(1−voteAdm) ←1
17. End if
18. If

(
Admd

i = Ownerd )

19. e(1−voteAdm) ←2.3
20. End if
21. Update Operatord and Vt
22. End for
23. End for
24. End while

The pseudo code of IPSO-IDE.

Algorithm2: Code for IPSO-IDE

Initialize: pro = 1/N, φ← 0.7, Opvote: = φ, ovote: = 1− φ,
c1 ← 0.5, c2 ← 0.5, c3 ← 1.2, c4 ← 1, X, V, Operator, Owner, Leader, Lbest, P.
1. While (fit > fitmin)
2. For t = 1 to T //T is the number of iterations.
3. For i = 1 to N //N is the number of particles in the population.
4. For d = 1 to D //D for dimension.
//The following is the calculation of the optimal position of an individual based on

the fitness value fit.
5. If (fit (Xi(t)) ≤ fit (Pi(t)))
6. Pi(t)← Xi(t)
7. Else
8. Pi(t)← Xi(t)
9. End if
//The following is the calculation of the local optimal position based on the fitness

value fit.
10. If (fit(Xi(t)) ≤ fit(Lbesti(t)))
11. Lbesti(t)← Xi(t)
12. Else
13. Lbesti(t)←Lbesti(t − 1)
14. End if
//The following is the calculation of the global optimal position based on the fitness

value fit.



Processes 2023, 11, 26 24 of 26

15. If (fit(Xi(t)) ≤ fit(Lbesti±1(t)) or (fit(Xi(t)) ≤ fit(Lbesti±2(t)))
16. Lbesti±1 (t)← Lbesti(t)
//Elect an Adm according to the expression (3-15)
17. Leader, Leader_fit, Opvote, Owvote← Choose_Leader (Operator, Owner)

//Update position X and speed V to generate a better elite group, and take
the elite group as the initial group of IDE algorithm.

18. DE_list← X
19. h(t)←Mutation (DE_list(t), fit(DE_list(t))) //variation.
20. v(t)← Crossover (DE_list(t), h(t), fit(DE_list(t))) //cross.
//Selection.
21. DE_list(t)← Selection (v(t), DE_list(t)) (Mutation, Crossover, and Selection:
respectively refer to the mutation, crossover, and selection operations in the DE algorithm)
//Apply the optimized result of IDE algorithm to Leader of the updated particle swarm.
22. DE_fitness← fit (DE_list(t))
23. min_f ←Minimum DE_fitness
24. min_position←Minimum DE_fitness position
25. If (min_f ← Leader_fit)
26. Leader←min_position
27. End if
28. Normalize Opvote and Owvote
29. If (Leaderd(t) = Opvotei

d(t))
30. e(1−voteleader)← 1
31. Else
32. e(1−voteleader)← 2.3
33. End if
34. Update Xt and Vt //Update the position and velocity of the particle.
35. End for
36. End for
37. End while

References
1. Chipade, V.S.; Panagou, D. Multiagent Planning and Control for Swarm Herding in 2-D Obstacle Environments Under Bounded

Inputs. IEEE Trans. Robot. 2021, 37, 1956–1972. [CrossRef]
2. Ren, Z.; Rathinam, S.; Likhachev, M.; Choset, H. Multi-Objective Safe-Interval Path Planning With Dynamic Obstacles. IEEE

Robot. Autom. Lett. 2022, 7, 8154–8161. [CrossRef]
3. Pei, M.; An, H.; Liu, B.; Wang, C. An Improved Dyna-Q Algorithm for Mobile Robot Path Planning in Unknown Dynamic

Environment. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 4415–4425. [CrossRef]
4. Nguyen, V.-L.; Hwang, R.-H.; Lin, P.-C. Controllable Path Planning and Traffic Scheduling for Emergency Services in the Internet

of Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12399–12413. [CrossRef]
5. Favaro, A.; Segato, A.; Muretti, F.; De Momi, E. An Evolutionary-Optimized Surgical Path Planner for a Programmable Bevel-Tip

Needle. IEEE Trans. Robot. 2021, 37, 1039–1050. [CrossRef]
6. Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface vehicles

I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306. [CrossRef]
7. Chen, P.; Li, Q.; Zhang, C.; Cui, J.; Zhou, H. Hybrid chaos-based particle swarm optimization-ant colony optimization algorithm

with asynchro-nous pheromone updating strategy for path planning of landfill inspection robots. Int. J. Adv. Robot. Syst. 2019,
16, 255795084. [CrossRef]

8. Li, G.; Chou, W. Path planning for mobile robot using self-adaptive learning particle swarm optimization. Sci. China Inf. Sci. 2018,
61, 052204. [CrossRef]

9. Gul, F.; Rahiman, W.; Alhady, S.S.N.; Ali, A.; Mir, I.; Jalil, A. Meta-heuristic approach for solving multi-objective path planning for
autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient. Intell. Humaniz.
Comput. 2021, 12, 7873–7890. [CrossRef]

10. Xie, S.; Hu, J.; Bhowmick, P.; Ding, Z.; Arvin, F. Distributed Motion Planning for Safe Autonomous Vehicle Overtaking via
Artificial Poten-tial Field. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21531–21547. [CrossRef]

11. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques:
Technical Per-spectives and Future Directions. Electronics 2021, 10, 2250. [CrossRef]

12. Jian, Z.; Zhang, S.; Chen, S.; Nan, Z.; Zheng, N. A Global-Local Coupling Two-Stage Path Planning Method for Mobile Robots.
IEEE Robot. Autom. Lett. 2021, 6, 5349–5356. [CrossRef]



Processes 2023, 11, 26 25 of 26

13. Qi, Z.; Wang, T.; Chen, J.; Narang, D.; Wang, Y.; Yang, H. Learning-based Path Planning and Predictive Control for Autonomous
Vehicles With Low-Cost Positioning. IEEE Trans. Intell. Veh. 2021, early access. [CrossRef]

14. Zhang, Z.; Wu, R.; Pan, Y.; Wang, Y.; Wang, Y.; Guan, X.; Hao, J.; Zhang, J.; Li, G. A Robust Reference Path Selection Method for
Path Planning Algorithm. IEEE Robot. Autom. Lett. 2022, 7, 4837–4844. [CrossRef]

15. Wen, J.; Yang, J.; Wang, T. Path Planning for Autonomous Underwater Vehicles Under the Influence of Ocean Currents Based on a
Fusion Heuristic Algorithm. IEEE Trans. Veh. Technol. 2021, 70, 8529–8544. [CrossRef]

16. Awad, A.; Hawash, A.; Abdalhaq, B. A Genetic Algorithm (GA) and Swarm Based Binary Decision Diagram (BDD) Reordering
Optimizer Reinforced with Recent Operators. IEEE Trans. Evol. Comput. 2021, early access. [CrossRef]

17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks,
Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

18. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]

19. Liu, E.; Yao, X.; Liu, M.; Jin, H. AGV path planning based on improved grey wolf optimization algorithm and its implementation
prototype platform. Comput. Integr. Manuf. Syst. 2018, 24, 2779–2791.

20. Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:
Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]

21. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

22. Zhang, H.-Y.; Lin, W.-M.; Chen, A.-X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
23. Kamel, M.A.; Yu, X.; Zhang, Y. Real-Time Fault-Tolerant Formation Control of Multiple WMRs Based on Hybrid GA–PSO

Algorithm. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1263–1276. [CrossRef]
24. Memon, M.A.; Siddique, M.D.; Mekhilef, S.; Mubin, M. Asynchronous Particle Swarm Optimization-Genetic Algorithm (APSO-

GA) Based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter. IEEE Trans. Ind. Electron. 2022, 69,
1477–1487. [CrossRef]

25. Mohammed Hussein, H.; Katzis, K.; Mfupe, L.P.; Bekele, E.T. Performance Optimization of High-Altitude Platform Wireless
Communication Network Exploiting TVWS Spectrums Based on Modified PSO. IEEE Open J. Veh. Technol. 2022, 3, 356–366.
[CrossRef]

26. Fan, Q.; Zhang, Y.; Li, N. An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator
and its Ap-plication. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2422–2436. [CrossRef]

27. Patle, B.K.; Ganesh Babu, L.; Anish, P.; Parhi, D.R.K. A review: On path planning strategies for navigation of mobile robot. Def.
Technol. 2019, 4, 582–606. [CrossRef]

28. Burman, R.; Chakrabarti, S.; Das, S. Democracy-inspired particle swarm optimizer with the concept of peer groups. Soft Comput.
2017, 21, 3267–3286. [CrossRef]

29. Zhao, C.; Guo, D. Particle Swarm Optimization Algorithm With Self-Organizing Mapping for Nash Equilibrium Strategy in
Application of Multiobjective Optimization. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 5179–5193. [CrossRef]

30. Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H. A Novel Hybrid Particle Swarm Optimization Algorithm for Path Planning of UAVs.
IEEE Internet Things J. 2022, 9, 22547–22558. [CrossRef]

31. Pozna, C.; Precup, R.; Horvath, E.; Petriu, E.M. Hybrid Particle Filter-Particle Swarm Optimization Algorithm and Application to
Fuzzy Con-trolled Servo Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 4286–4297. [CrossRef]

32. Liu, X.; Zhang, D.; Zhang, T.; Zhang, J.; Wang, J. A new path plan method based on hybrid algorithm of reinforcement learning
and particle swarm optimization. Eng. Comput. 2021, ahead of print. [CrossRef]

33. Zhou, S.; Xing, L.; Zheng, X.; Du, N.; Wang, L.; Zhang, Q. A Self-Adaptive Differential Evolution Algorithm for Scheduling a
Single Batch-Processing Machine With Arbitrary Job Sizes and Release Times. IEEE Trans. Cybern. 2021, 51, 1430–1442. [CrossRef]
[PubMed]

34. Chai, R.; Savvaris, A.; Tsourdos, A.; Chai, S. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive
differential evolution and modified game theory. Acta Astronaut. 2017, 136, 273–280. [CrossRef]

35. Lin, C. An adaptive-group-based differential evolution algorithm for inspecting machined workpiece path planning. Int. J. Adv.
Manuf. Technol. 2019, 105, 2647–2657. [CrossRef]

36. Wang, Z.-J.; Zhou, Y.-R.; Zhang, J. Adaptive Estimation Distribution Distributed Differential Evolution for Multimodal Optimiza-
tion Problems. IEEE Trans. Cybern. 2022, 52, 6059–6070. [CrossRef]

37. Liu, H.; Chen, Q.; Pan, N.; Sun, Y.; An, Y.; Pan, D. UAV Stocktaking Task-Planning for Industrial Warehouses Based on the
Improved Hybrid Differential Evolution Algorithm. IEEE Trans. Ind. Informatics 2022, 18, 582–591. [CrossRef]

38. Xu, M.; Wang, Y. Time Series Prediction Based on Improved Differential Evolution and Echo State Network. Acta Autom. Sin.
2019, 45, 1–9.

39. Zhang, B.; Lei, T. The Relationship between Corporate Governance and Corporate Performance in China’s Civilian-Owned Listed
En-terprise. In Proceedings of the 2009 International Conference on Business Intelligence and Financial Engineering, Beijing,
China, 24–26 July 2009; pp. 782–785.



Processes 2023, 11, 26 26 of 26

40. Kashyap, S.; Jeyasekar, A. A Competent and Accurate BlockChain based E-Voting System on Liquid Democracy. In Proceedings
of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris,
France, 28–30 September 2020; pp. 202–203.

41. Sadikin, R.; Swardiana, I.W.A.; Wirahman, T. Cubic spline interpolation for large regular 3D grid in cylindrical coordinate:
(Invited pa-per). In Proceedings of the 2017 International Conference on Computer, Control, Informatics and its Applications
(IC3INA), Jakarta, Indonesia, 23–26 October 2017; pp. 1–6.

42. Bogdanov, V.V.; Volkov, Y.S. Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines.
Numer. Algorithms 2021, 86, 833–861. [CrossRef]

43. Tang, B.; Xiang, K.; Pang, M. An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm
optimization with a modified differential evolution. Neural Comput. Appl. 2020, 32, 4849–4883. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

