
Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review

Authors: 

Alberto Di Renzo, Erasmo S. Napolitano, Francesco P. Di Maio

Date Submitted: 2022-11-07

Keywords: multiphase flow, fluidization, numerical modelling, discrete element method, coarse graining, CFD-DEM

Abstract: 

In the last decade, a few of the early attempts to bring CFD-DEM of fluidized beds beyond the limits of small, lab-scale units to larger
scale systems have become popular. The simulation capabilities of the Discrete Element Method in multiphase flow and fluidized beds
have largely benefitted by the improvements offered by coarse graining approaches. In fact, the number of real particles that can be
simulated increases to the point that pilot-scale and some industrially relevant systems become approachable. Methodologically,
coarse graining procedures have been introduced by various groups, resting on different physical backgrounds. The present review
collects the most relevant contributions, critically proposing them within a unique, consistent framework for the derivations and
nomenclature. Scaling for the contact forces, with the linear and Hertz-based approaches, for the hydrodynamic and cohesive forces is
illustrated and discussed. The orders of magnitude computational savings are quantified as a function of the coarse graining degree.
An overview of the recent applications in bubbling, spouted beds and circulating fluidized bed reactors is presented. Finally, new
scaling, recent extensions and promising future directions are discussed in perspective. In addition to providing a compact
compendium of the essential aspects, the review aims at stimulating further efforts in this promising field.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2022.0129
Citation (this specific file, latest version): LAPSE:2022.0129-1
Citation (this specific file, this version): LAPSE:2022.0129-1v1

DOI of Published Version:  https://doi.org/10.3390/pr9020279

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Review

Coarse-Grain DEM Modelling in Fluidized Bed Simulation:
A Review

Alberto Di Renzo * , Erasmo S. Napolitano and Francesco P. Di Maio

����������
�������

Citation: Di Renzo, A.; Napolitano,

E.S.; Di Maio, F.P. Coarse-Grain DEM

Modelling in Fluidized Bed

Simulation: A Review. Processes 2021,

9, 279. https://doi.org/10.3390/

pr9020279

Academic Editor: Paola Ammendola

Received: 31 December 2020

Accepted: 28 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, Via P.
Bucci, Cubo 45a, 87036 Rende (CS), Italy; erasmo.napolitano@unical.it (E.S.N.);
francesco.dimaio@unical.it (F.P.D.M.)
* Correspondence: alberto.direnzo@unical.it; Tel.: +39-0984-496654

Abstract: In the last decade, a few of the early attempts to bring CFD-DEM of fluidized beds beyond
the limits of small, lab-scale units to larger scale systems have become popular. The simulation
capabilities of the Discrete Element Method in multiphase flow and fluidized beds have largely
benefitted by the improvements offered by coarse graining approaches. In fact, the number of
real particles that can be simulated increases to the point that pilot-scale and some industrially
relevant systems become approachable. Methodologically, coarse graining procedures have been
introduced by various groups, resting on different physical backgrounds. The present review collects
the most relevant contributions, critically proposing them within a unique, consistent framework for
the derivations and nomenclature. Scaling for the contact forces, with the linear and Hertz-based
approaches, for the hydrodynamic and cohesive forces is illustrated and discussed. The orders
of magnitude computational savings are quantified as a function of the coarse graining degree.
An overview of the recent applications in bubbling, spouted beds and circulating fluidized bed
reactors is presented. Finally, new scaling, recent extensions and promising future directions are
discussed in perspective. In addition to providing a compact compendium of the essential aspects,
the review aims at stimulating further efforts in this promising field.

Keywords: multiphase flow; fluidization; numerical modelling; discrete element method; coarse
graining; CFD-DEM

1. Introduction

The fluidized bed technology is at the very heart of a very broad number of industrial
processes, ranging from chemical transformations in reactors (energy conversion and
storage, (bio-)oil refining, chemical synthesis, polymerization) to physical operations
(solids mixing or separation, drying, coating, agglomeration) [1]. Specialized applications
can be found in the development of bioartificial organs [2,3].

Modelling of the gas- and liquid-solid flow in fluidized beds has traditionally relied on
the similarity of the fluidized solid motion with a pseudo-liquid phase, through the concept
of a gas-solid suspension. Even from a lexical point of view, the terms “fluidization”, “bub-
bling”, “emulsion phase”, “floating” and “sinking” of objects in the suspended particle bed
recall the behavior of liquids. Based on this idea, the Two-Fluid Model (TFM) concept [4]
was introduced, complemented by the kinetic theory of granular flow (KTGF), giving rise
to groundbreaking success in the simulation of large-scale systems, as summarized in the
book by Gidaspow [5]. At the other extreme, i.e., the small-scale interaction between the
fluid and individual particles, discrete-continuum (or Eulerian-Lagrangian) simulations
based on the discrete element method appeared, thanks to the progress in the compu-
tational power, giving rise to the CFD-DEM (Computational Fluid Dynamics-Discrete
Element Method) approach [6]. The recognition of the discrete nature of the granular
medium proved to be a key ingredient and allowed important new features of fluidized
systems to be captured, as discussed in several reviews (e.g., [7–12]).
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The most significant drawback of CFD-DEM is the feasibility of realistic simulations,
as the combination of practical sizes, number of particles and required time to simulate
very quickly saturates the computing capability of the most powerful supercomputer.
As examples of the achievable scale in terms of numbers of particles, CFD-DEM simulations
reached 4.5 million particles in bubbling beds [13] and up to 25 million particles using
the power of the GPU [14]. In a recent review on methods for granular and particle-fluid
flow, with focus on strategies for engineering applications, Ge et al. [15] noted that the
typical time step is 10−5–10−6 s and an engineering system may contain 108–1012 particles,
with characteristic flow or transport time ranges of 101–104 s (see also [14]). The necessary
time and hardware resources to perform direct DEM simulations and post-process the
results of such systems are prohibitively costly and hence they remain infeasible.

In the last years, the push to save CPU time while maintaining the discrete nature of
the simulated elements has been a very strong driver for novel strategies and methods.
From the physical point of view, Lu et al. [16] noted that in most fluidized bed applica-
tions, only the collective behavior of the particles is of primary interest, rather than their
individual trajectories. This forms the basis of practical demand for the application of
coarse-graining to DEM. The idea behind coarse-grained DEM (or CG-DEM) is to substitute
the actual particles by a smaller number of representative elements, whose behavior shall be
equivalent in full to the original ones. These representative particles, often called “parcels”,
become the elements whose motion is tracked by the simulations. They are not required
to exist in reality, but their study provides useful data and insight on the real system they
represent. The concept of parcels is very common in the context of the MP-PIC method,
another Eulerian-Lagrangian technique which falls between TFM and CFD-DEM; the main
difference is that solid stresses are treated by indirect models rather than explicitly like
in DEM.

Previous attempts to modify the contact parameters to speed up DEM simulations is
extremely common for particulate systems in the collisional or dilute regime. At the risk
of introducing artifacts, some authors investigated different model laws to speed up the
simulation; see e.g., [17]. In the coarse graining method, the objective is to scale size and
parameters, and adapt models, so that the properties at the scale of the represented particles
are kept constant. Among the early ideas of coarse-grained DEM, the following approaches
can be mentioned: the imaginary sphere model [18], Similar Particle Assembly [19,20],
Representative Particle Model [21]; the work of Patankar and Joseph [22], in which one
model of the Lagrange treatment of the solid phase is based on a parcel-like DEM model,
deserves to be mentioned. The two CG-DEM models that found widespread adoptions
were proposed by Sakai et al. [23] for pneumatic conveying and by Bierwisch et al. [24] in
the context of simulation of the cavity filling process. In the same period, Radl et al. [25]
proposed scaling rules for parcels in dense gas-particle flows and Hilton and Cleary [26,27]
showed an application to fluidized beds. The idea of using scaling rules to save on
computational time was also tested [28], with limited success, as with exact scaling the
simulation speed-up came at the cost of longer times to simulate, frustrating the ambitions
of the method. Other interesting results related to similarity and simulations are found
in [29–31]. Overall, application of the coarse graining method to DEM simulations is
attracting a quickly growing attention in recent times, as shown by the yearly number of
papers on the subject (see Figure 1). Early applications have been reported in commercial
software packages [32] and are available in recent versions, see e.g., [33–35]. The feature is
available also in the last version (20.4) of the open-source software MFiX-DEM [36].

The present contribution aims at critically reviewing the work done so far, presenting
the approaches that found widespread adoption within a consistent and coherent frame-
work, occasionally comparing the formulations; quantifying the theoretical computational
savings as well as discussing the most critical issues affecting accuracy and reliability;
presenting a picture of the state-of-the-art and finally discussing the most recent extensions
and the questions still open.
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A final introductory note to the reader: One should be aware that the topics covered
here do not include other methods incidentally also known as “coarse graining” in DEM,
which are used to migrate quantities from the micro- to the macroscale (like e.g., [37]) or
smoothing discrete quantities for coupling ([38]).
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2. Conventional Approach
2.1. CFD-DEM Modelling for Fluidized Beds

In CFD-DEM, the equations governing the two phases are solved separately, i.e.,
sequentially. Since the characteristic times can be different, distinct time-steps are used for
the CFD and the DEM parts, so that generally the fluid flow remains constant for a number
of DEM (smaller) time-steps.

The fluid phase flow is solved by a locally averaged approximation of the continuity
and Navier–Stokes equations. The velocity and pressure fields are obtained by numerically
integrating the following set of differential equations:

∂ερ f

∂t
+∇ ·

(
ερ f u

)
= 0 (1)

∂ερ f u
∂t

+∇·
(

ερ f uu
)
= −∇p +∇·τ + F f p + ερ f g (2)

where F f p represents the interphase momentum transfer per unit volume between the
particles and the fluid. The full system is closed with the definition of such term, which in
our formulation reads:

F f p = −∑
Np
i wi(Fd,i + Fb,i)

Ψ
, (3)

in which Np is the number of particles in the volume Ψ; the forces Fd and Fb represent
the drag and pressure gradient (or generalized buoyancy) force, respectively; and wi is a
weight function evaluated at the particle center, which allows the resulting source term in
Equation (2) to be smoothed out over grid cells.

Our simulations are based on a modelling approach combining the Discrete Element
Method for the solid phase and a local average CFD approach for the fluid phase. The physical
equations governing the motion of the particles and of the fluid are summarized below.
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To track the translational and rotational motion of each individual particle in the
system, the following equations are solved:

mi
dvi
dt

=
Nc

∑
j=1

Fc,ij + Fh,i + Fg,i + Fk,i; (4)

Ii
dωi
dt

=
Nc

∑
j=1

(
Tc,ij + Tr,ij

)
+ T f p,i, (5)

where mi, vi, Ii and ωi are the i-th particle mass, velocity, moment of inertia and angular
velocity, respectively. The summation of external actions includes contact forces, ∑Nc

j=1 Fc,ij,
the total hydrodynamic force (i.e. drag + pressure gradient), Fh,i, gravity, Fg,i, and cohe-
sive/adhesive forces Fk,i. The cohesive forces allow for the inclusion of different models,
such as van der Waals, capillary bridge, and electrostatic effects.

In the rotational direction, the summation is on all torque contributions generated by
non-collinear collisions, Tc,ij, and the corresponding rolling friction torque, Tr,ij, and the
fluid-particle torque, T f p,i.

2.2. Contact Models

The contact force is computed using the linear spring-dashpot-slider [39] model whose
expressions for the normal and tangential component of the force are

F(n)
c,ij = −Knδn,ij − ηnvn,ij; (6)

F(t)
c,ij = −min

(
µF(n)

c,ij , Ktδt,ij + ηtvt,ij

)
, (7)

where the δ’s represent the (normal, sub n, and tangential, sub t) displacements between
the contacting particles, v their relative velocity components at the contact point, K the
spring stiffness constants, η the dashpot damping coefficients and µ the slider friction
coefficient. Note that the tangential contribution of the force is capped in magnitude by
Coulomb’s sliding limit,

Fct ≤ µFcn, (8)

the rest of the associated energy being dissipated as friction.
The coefficient of restitution, en, determines the damping coefficient, ηn, according to

ηn =
−2 ln en

√
m ∗ Kn√

(ln en)
2 + π2

. (9)

A more adequate representation of the interparticle contact is through Hertz–Mindlin
theory [40–42], which, neglecting micro-slip on the contacting surfaces (no-slip approxima-
tion), is characterized by parameters that can be related to the linear counterpart.

The necessary formulas are reported below:

Kn =
4
3

Eeq

√
Reqδn; (10)

Kt = κKn; (11)

κ =
Kt

Kn
=

1−ν1
G1

+ 1−ν2
G2

1− 1
2 ν1

G1
+

1− 1
2 ν2

G2

; (12)

in which the equivalent properties, Eeq, Req, are used in the case of particles of different
materials or size [42]. The forces can be conveniently expressed as

Fn = −Knδn − ηH
n vn; (13)
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Ft = −Ktδt − ηH
t vt, (14)

The velocity dependent dissipative terms depend on the parameters ηH
n and ηH

t which
are related to the corresponding restitution coefficients, en and et, respectively, according to:

ηH
n =

−
√

5 ln en
√

m ∗ Kn√
(ln en)

2 + π2
(15)

ηH
t =

−
√

10/3 ln en
√

m ∗ Kt√
(ln en)

2 + π2
(16)

in which Equation (10) should be used for Kn (see e.g., [43,44]). The same Coulomb limit
for the tangential force as in Equation (8) applies also to the non-linear contact model.

2.3. Hydrodynamic Interaction Models

Models for the drag force or drag coefficient as a function of the slip velocity and
voidage are abundant and cover a broad range of slip velocities and voidage values. Avail-
able commercial and open-source packages such as Fluent, Star-CCM+, MFiX, openFOAM
offer several alternatives. The most common general form is expressed as:

Fd =
Vp

1− ε
β(u− v), (17)

in which β contains the dependence on the particle Reynolds number
(

Rep =
ρ f dε|u−v|

µ f

)
and voidage ε and can take a complex form. We exemplarily report here the classical model
known as Gidaspow [5]:

β =

 150 (1−ε)2

ε
µ

D2
p
+ 1.75

(1−ε)ρ f |u−v|
Dp

, ε < 0.8
3

4Dp
Cd0ε(1− ε)ρ f |u− v|ε−2.65, ε ≥ 0.8

(18)

The expressions of other models utilized in simulations of fluidized beds are omit-
ted for brevity, but the interested reader finds useful references in the following (non-
exhaustive) list: Di Felice [45], Beetstra or BVK [46], HYS [47,48], Rong et al. [49], Cello
et al. [50] and Tang et al. [51].

A set of models has been developed to deal with the presence of polydisperse particles,
as DEM requires the force on each individual particle, and semi-empirical expressions can
only estimate the average drag force in (portions of) the bed. Their general for is

Fdi = γiFd,avg, (19)

where Fd,avg is evaluated with monodisperse models and the specification (or repartition)
coefficient γi distributes such average force across the different particle size classes. It is
itself a function of the flow conditions (Rep and ε) and the local polydispersion index

yi =
Di

Davg
, (20)

in which Davg is Sauter mean diameter Davg =
(

∑k
xk
Dk

)−1
, and xk is the volume fraction

of the particle size class. Examples of such models are available in [46–49] and [52].
The pressure gradient, or generalized buoyancy, force is

Fb = −Vp∇p, (21)

where Vp is the particle volume, and ∇p is the gradient of the averaged pressure.



Processes 2021, 9, 279 6 of 30

Other contributions such as transient forces (added mass, Basset’s history integral),
Saffman and Magnus lift, and fluid torque are not commonly employed for fluid beds
as the prevalence of dense regions and typical applications to gas-solids systems make
them negligible. Moreover, the use of a relatively coarse grid does not make CFD-DEM
easily amenable to include them. For reference, some applicable formulations can be found
in [53].

2.4. Cohesive Forces

Finally, common applications of fluidized beds require the consideration of cohesive
and interparticle forces. Examples include fluidization of fine and ultrafine particles, fluid
bed granulation and coating, fluidized beds of insulating (e.g., polymer, organic) particles.
Detail treatment of the formulation for each case is out of the scope of this review, so a short
list of the typical models and recent relevant references is presented below, and additional
details will be provided in the context of their coarse graining version:

• Van der Waals [54];
• JKR/DMT [55];
• Liquid bridge forces [56];
• Triboelectric and electrostatic forces [57,58].

3. From Real to Computational Particles (Grains)

Rather than tracking the trajectories of each individual particle in the system, the coarse
graining approach offers the attractive idea of lumping together close particles into a
computational, representative element. Ideally, the same properties as the original system
will be obtained in the coarse-grained system. From a statistical point of view, there are
different possibilities to reduce the order of the system. In the context of CG for DEM,
the most important ingredient is that the discrete nature of the multi-particle system is
maintained. Thus, opposed to considering cell-averaging in a Eulerian grid, the coarse-
grained particles are modelled as distinct elements that interact through collision events
(among themselves and with walls) and are subjected to the action of fluid drag.

The intended focus of this review is on those methods that clearly rely on a DEM-like
approach, for which the equations of motions of the representative and actual particles
share the same structure, so that numerical methods and libraries developed for DEM can
be readily utilized also for coarse-grained simulations.

The procedure to move from actual to representative particles is the key element of
the coarse graining procedure. To keep a consistent nomenclature, we assume here to name
as particles the original solid elements, and as grains the representative, or computational
coarse-grained elements, corresponding to the parcels (Figure 2). The word “grain” has
the advantage that is directly related to the coarse graining procedure it originates from.
In addition, a subscript “g” can be used to discriminate grains from particles, for which the
subscript “p” will be used.

Two key parameters to define the coarse graining are introduced: the coarse grain
factor f and the number of particles per grain nCG, whose definitions are reported Table 1.

Table 1. Definitions of the coarse-graining parameters.

Variable, [Units] Description

f =
Rg
Rp

, [–] coarse grain factor, grain-to-particle size ratio

nCG =
np
ng

, [–]
coarse grain number, number of particles in a
grain

The derivation of relations linking the physical particles’ properties to those of the
computational grains has followed different approaches. After a short historical context,
the following subsections summarize the procedures to link the real particle properties and
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those of the corresponding coarse grains, separately for the general properties, the contact
forces (with both the linear and non-linear Hertz-based approaches), the drag forces and
other contributions.
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3.1. Context of the Early Coarse-Graining Approaches

In the earliest approaches, the concept of representative particle assumed a statistical
representation meaning, mostly in the context of scaling rules and dimensionless groups
for fluidized beds. In their attempt, Sakano et al. [18] introduced in DEM the Imaginary
sphere model, in which the actual particles were assumed represented by grains 4 to 9.5 times
bigger, with appropriately scaled solid density. Collisions were assumed to occur between
grains as with the particles, and the drag force was assumed to apply in the same way to
the grains as to the particles. Kuwagi et al. [19] introduced the Similar Particle Assembly
(SPA) concept, according to which the solids mass and volume were kept constant upon
coarse graining, and volume fraction and flow similarity of the particles and the grains was
assumed, i.e., εg = εp and vg = vp (vp = average particle velocity), respectively. They later
used the SPA model to model thermoset particles with a large coarse graining factor,
f = 200 (corresponding to 8000 grains for 64 billion particles) [14] and later validated it for
bubble size distribution in a 2D gas-fluidized bed of Geldart’s group A and D particles [59].
Washino et al. [60] also introduced scaling rules considerations by dimensionless groups
in DEM simulations of fluid beds, showing attractive computational scaling properties
(log CPUtime = −2.55·log f ).

3.2. General Particle and Bed Properties
3.2.1. Compact Grains

In the majority of the coarse graining approaches, the assumptions on the conservation
of mass, volume and density of the particles apply in a similar fashion. Grains are assumed
to be compact (i.e., non-porous) and account for a given number of particles. The total mass
of the solid for particles and grains is set to be the same. The total volume is also typically
set to be constant. All grains represent the same number of particles and, for monodisperse
systems, are monodisperse. Therefore, the following relations apply:

MTOT = ∑
ng

mg = ∑
np

mp; (22)

VTOT = ∑
ng

Vg = ∑
np

Vp; (23)
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ρg = ρp; (24)

mg = nCGmp. (25)

From the relation between the grain and particle size (dg = f dp, see Table 1), it fol-
lows that

nCG = f 3. (26)

Bearing in mind that the grains are assumed spherical, the constraint of same volume
is equivalent to saying that the solids’ and gas volume fractions in a given region of the
fluidized bed will be automatically maintained, i.e.,

εg = εp, (27)

as the packing degree of spheres is known to be independent of size.

3.2.2. Porous Grains

For fast moving systems, such as risers and turbulent or fast-fluidized systems, the in-
terplay between contact and hydrodynamic forces is shifted towards the latter, or at least
dense regions are more limited in space. In addition, the scale of the systems is generally
big, so coarse grids for the fluid are also necessary to keep the simulation feasible. For these
complex multiphase and highly multiscale dynamical systems, coarse graining of DEM
may require special treatments. A specific strategy was introduced by Lu et al. [16], in the
context of the Energy-Minimization Multi-Scale (EMMS) method for the simulation of
circulating fluidized bed reactors. Coarse grains represent both a given number of actual
particles and the void among them and are introduced to represent an intermediate scale
between that of the particles, on one side, and that of the typical heterogeneous structures
(e.g., clusters), on the other side (Figure 3).
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The grain voidage is assumed to be the same as the voidage surrounding it. So,
for 3D systems,

nCG = f 3(1− εCGP), (28)

where εCGP is the void fraction of the grain. Isolated grains are effectively representative
if the convective transport mechanism of its elementary particles dominates over the
diffusional counterpart.
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The scaling correlation for mass is:

mg = mp f 3 (1− εCGP ). (29)

3.3. Contact Interaction: Linear Spring-Dashpot-Slider Model
3.3.1. Constant Absolute Overlap Models

One of the most detailed treatment and extensive application of the coarse graining
procedure with the linear contact model was given by Sakai and coworkers, who introduced
it to model a pneumatic conveying line [23] and later applied it for several fluidized bed
cases [61–66]. They based their derivation on imposing the conservation of the typical
energy contents of the particle/grain system before and after the collisions.

The grains are assumed to move with the same velocity as the average velocity of
the actual particles they represent (Figure 4). More simplistically, grains represent actual
particles that move all with the same velocity, which is also equal to the grain velocity, i.e.,

vg = vp. (30)
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and Koshizuka [23] for (a) translational and (b) rotational motion. Adapted from Reference [23],
with permission from Elsevier.

All particles are assumed to rotate also with the same angular velocity, which is not
the same as the grain’s, as shown below.

The total translational and rotational kinetic energy of a grain can be expressed in
terms of the sum of the corresponding energies of the represented particles:

1
2

mgv2
g +

1
2

Igω
2
g = ∑

nCG

(
1
2

mpv2
p +

1
2

Ipω
2
p

)
= f 3

(
1
2

mpv2
p +

1
2

Ipω
2
p

)
. (31)

The equivalence of the rotational kinetic energy requires that the grain rotational
velocity is smaller than the value of the actual particles:

ωg =
ωp

f
, (32)

as it can be easily verified by considering that Ig = 2
5 mgR2

g = 2
5 f 3mp f 2R2

p = f 5 Ip and
equating the rotational kinetic energies appearing in Equation (31). Owing to the derivative
and integration of the angular velocity, it follows that the same relation applies also to the
rotation, θ, and angular acceleration, α:

θg =
θp

f
, (33)

αg =
αp

f
. (34)

The fact that collisions of grains occur in well-defined instants requires the assumption
that all represented particles would collide in that same moment. Consequently, the impact
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of two grains leads to the consideration of the impact of all the represented particles.
Following the results of Equation (31), Sakai et al. [23] set the visco-elastic/frictional
interaction forces to manifest the same dependence as the energies, yielding a contact force
f 3 times greater than that between the actual particles.

Thus, the normal component is:

Fcn,g = f 3Fcn,p = f 3(−Knδn,p − ηnvn,p
)
. (35)

The particle relative overlap and velocity are replaced by the same quantities for the
grain, giving:

Fcn,g = f 3(−Knδn,g − ηnvn,g
)
. (36)

Before discussing the tangential force, let us present the considerations on the integra-
tion time-step, set to be for the grains the same as the value for the particles:

∆t < 2π

√
mg

Kng
= 2π

√
f 3mp

f 3Knp
= 2π

√
mp

Kp
. (37)

It is clear from the analogy between the grain stiffness, Kng, and the particle stiffness,
Knp, that the normal force-displacement dependence in Equation (36) is interpreted as a
scaling law for the stiffness and damping coefficient of the grains, as follows:

Kng = f 3Knp and ηng = f 3ηnp. (38)

The interesting consequence of such parameter scaling is that the coefficient of restitu-
tion of the grains is equal to that of the particles, as it can be easily derived from Equation (9).
Therefore, also the dissipated energy during collisions is kept constant.

For the tangential component, in the case of adhering contact surfaces:

Fct,g = f 3Fct,p = f 3(−Ktδt,p − ηtvt,p
)
, (39)

in which the displacement and velocity are to be calculated at the point of contact between
the surfaces. Considering that the grain rotation and angular velocity scale inversely and
the radius scales directly with f , the displacement and velocity at the contact point of the
grain are maintained similar to the ones of the particles. Following the same approach as
for the normal force:

Fct,g = f 3(−Ktδt,g − ηtvt,g
)
. (40)

This can be effectively interpreted as a scaling law for the tangential stiffness and
damping coefficient of the grains, as follows:

Ktg = f 3Ktp, (41)

ηtg = f 3ηtp. (42)

One of the consequences of such choice is that the tangential to normal stiffness ratio
remains constant.

Finally, for sliding contact surfaces, Coulomb’s limit is scaled simply according to:

Fct,g ≤ µ f 3
∣∣∣Fcn,p

∣∣∣= µ
∣∣∣Fcn,g

∣∣∣, (43)

which corresponds to maintaining the same coefficient of friction between the grain and
the particles, i.e.,

µg = µp. (44)
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Recently Cai and Zhao [67] noted that for the conservation of the dissipation during
sliding the friction coefficient should be scaled according to

µg =
µp√

f
. (45)

It is interesting to note that the f 3 scaling of the stiffness leads to the same maximum
overlap between colliding grains as for colliding particles, for impacts at the same ve-
locity. Indeed, the oscillation frequency of a linear mass-spring system depends on the
ratio between the spring constant and the mass (both scaled with f 3), and the maximum
overlap is given by the impact velocity divided by this frequency. The elastic energy
upon compression is also among the conserved quantities for grains with respect to the
particles [62]:

Eel
g =

1
2

Kngδ2
n,max =

1
2

f 3Knpδ2
n,max = nCGEel

p . (46)

A similar approach was adopted by Benyahia and Galvin [68], who assumed a smaller
number of special particles (the grains) to be representative of all actual particles. Each grain
has a statistical weight, which is equivalent to nCG in the present notation. An illustrative
scheme was reported in a later publication (Figure 5). In their analysis on the concept of
parcels in the MP-PIC approach (see [22,69]) simulated like DEM grains under shear and
riser flow conditions, the authors also found a sensitive dependence on the scaling of the
stiffness and damping coefficient, proposing a proportionality with the mass (i.e., f 3 factor)
for their scaling. Similarly, a fixed tangential to normal stiffness ratio is used.

Motivated by the differences in the velocity distribution and granular temperature,
they addressed the reduced amount of dissipation by introducing a modification to the
restitution coefficient of the grains compared to the value for the actual particles. The as-
sumption was that during a grain-grain collision, each particle represented by one grain
was thought to collide with all the particles in the other grain. and later further discussed
in Lu et al. [70].

The proposed coefficient of restitution for the grains is related to that of the particles by

ln
(
eg
)

ln
(
ep
) =
√

nCG

√
1− ln2(ep)

ln2(ep)+π2√
1− nCG ln2(ep)

ln2(ep)+π2

. (47)

The denominator is defined up to a maximum coarse graining degree nCG for each

ep. For the frequent case in which nCGη2
n

2Knmp
� 1, the grain restitution coefficient can be

conveniently calculated by

eg = e
√

nCG
p , (48)

which incidentally removes the limitation on the maximum nCG and exhibits an intuitive
tendency eg → 0 as nCG → ∞, for any value of the original coefficient of restitution ep.
Benyahia and Galvin reported a significant improvement of the results for both the shear
flow and riser flow in maintaining consistency upon scaling with nCG [69]. The following
different scaling of the restitution coefficient, based on the kinetic theory of granular flows,
was used in a later work [71],

eg =

√
1 +

(
e2

p − 1
)

f . (49)

Equation (49) produces a slightly slower decrease of eg than Equation (48) at low
coarse graining factors f . However, it also sets a maximum degree of coarse graining
f < 1

1−e2
p

to yield a real value of eg.
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Hilton and Cleary [26,27] adopted a similar approach and coarse graining scaling
laws, additionally estimating the computational load to scale with order O

(
f−3).
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3.3.2. Constant Relative Overlap Models

Starting from a slightly different point, Radl et al. [25] also examined the coarse grain-
ing of particles in parcels treated DEM-like for granular jet applications. Their approach
differs from the one presented above for two important aspects: the conserved properties
and a distinction between the dense and dilute regions, the latter of which requiring a
velocity relaxation. The point of departure is the non-dimensional form of the equations of
motion of a particle (or grain), for which all quantities are to be conserved when moving
from particles to grains.

The main difference concerns the contact parameters, which are shown to scale ac-
cording to:

Kng

Rg
=

Knp

Rp
; (50)

ηng

R2
g
=

ηnp

R2
p

. (51)

Such dependence can be explained by the fact that the maximum absolute overlap of the
grains is also scaled compared to the original particles. In particular, the relative maximum
overlap is kept constant, for example in terms of similar percentage of the radius, i.e.,

δng,max

Rg
=

δnp,max

Rp
. (52)

It shall be noted that the elastic energy stored during collisions is preserved also with
this scaling. A smaller stiffness compared to the previous scaling affects other dynamic
properties of the collision, such as the duration. It turns out that the collision time scales
linearly with the coarse graining degree:

τg = 2π

√
mg

Kng
= f 2π

√
mp

Knp
= f τp. (53)

However, the duration of collisions is generally smaller by orders of magnitude than
any other characteristic time, at least for fluidized bed applications. On the other hand,
the integration time step can be increased, with further additional computational savings.
This same coarse graining approach was used by Nasato et al. [72].

Similar to Benhyaia and Galvin [68], Radl et al. [25] recognized the need for additional
dissipation to take into account intra-grain collisions between the particles, particularly
in dilute regions. For this term, the authors derived a modified version of the velocity
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relaxation model of O’Rourke and Snider [73]. Since the formulation requires the defini-
tion of several parameters, a complete discussion is omitted, and the original source is
recommended to the interested reader.

3.3.3. Contact between Porous Grains

For porous grains to be used in EMMS-DPM [16], contact model during collisions
is to be adapted. The soft grains are thought to be able to compress until the elementary
particles reach close packing, i.e., εm f . The grain has an external diameter dg and an internal
“hard-core” diameter, defined by

dhc = (1− εCGP)
1
3 dg, (54)

in which the voidage is
εCGP = max

(
εm f , εCGP,min

)
, (55)

where εCGP,min depends on EMMS properties such as the minimum cluster diameter and
the maximum cluster voidage.

The linear spring-dashpot model is used to model contact between grains in the
normal direction, which is detected whenever the hard cores of the grains come into
contact (Figure 6). Inter-grain collisions are treated using a slightly simplified version of
the linear spring-dashpot model. The normal spring stiffness is set at the minimum value
that ensures stability. Normal damping is applied through the coefficient of restitution,
which is determined based on the same dissipation of total energy as the real particles and
intra-grain collisions, i.e.,

eg =

√
1 +

(
e2

p − 1
)

f (1− εCGP)
1
3 . (56)
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The tangential contact is modelled using a purely dissipative force capped to Coulomb’s
limit for sliding, with a ratio of tangential to normal damping coefficient fixed at

√
0.8.

The time step is set as a fraction of the collision duration of based on the mass of the
grain, i.e., ∆t = 2π

√
mg
Kng

, benefitting from the computational advantage of this choice.
More details are available in the original manuscript.
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3.3.4. Summary of Coarse Graining Approaches for the Linear Model

A summary of the coarse graining scaling factors for the linear spring-dashpot-slider
model is reported in Table 2. Note that scaling imposing the same coefficient of restitution
(i.e., eg = ep) is equivalent to using the scaled damping coefficient.

Table 2. Summary of the scaling factors for the linear spring-dashpot-slider model.

Equal Dissipation Approaches, i.e., eg = ep

Stiffness (N)
Kng/Knp

Damping (N)
ηng/ηnp

Stiffness (T)
Ktg/Ktp

Damping (T)
ηtg/ηtp

Friction
µg/µp

Constant absolute overlap models
(see, among others, [23,26,68]) f 3 f 3 f 3 f 3 1

Constant relative overlap models
(see, among others, [25,72]) f f 2 f f 2 1

Additional (intra-grain) dissipation approaches, i.e., eg < ep
altered dissipation notes

Simplified dissipation scaling
(Benyahia and Galvin (2010) [68]) eg = e

√
nCG

p
valid if nCGη2

n
2Knmp

� 1, otherwise see
Equation (47)

KTGF based scaling
(Lu et al. (2018) [71]) eg =

√
1 +

(
e2

p − 1
)

f
from the KTGF; limited by
f < 1

1−e2
p

EMMS-DPM
(Lu et al. (2014) [16]) eg =

√
1 +

(
e2

p − 1
)

f (1− εCGP)
1
3

from CG in EMMS; valid for
grains with “porosity”

(N): normal; (T): tangential.

3.4. Contact Interaction: Hertz-Based Modelling

Non-linear Hertz-based models are common in DEM simulations of quasi-static
systems, when interactions at particle–particle and particle–wall contacts are crucial to rep-
resent bulk stress–strain relationships. Nonetheless, contacts and dissipation in fluidized
beds can become important, for example when cohesive interactions are also involved.
As it will be shown, scaling of Hertz-based model is not particularly complicated.

An accurate treatment of coarse graining for Hertz-based contacts was reported
by Bierwisch et al. [24] in the framework of a simulation and experimental study of a
cavity filling process. It is based on the same postulates regarding the conservation of the
density of various energy contributions. A similar gravitational energy density requires
the granular phase to have the same total solids mass and volume and each grain has the
same density of the particles; this condition also leads to a similar volume fractions for
spherical particles.

Imposing the same kinetic energy density requires all the representative particles to
move with the same velocity as the grains. The condition to maintain the dissipated energy
during collisions constant requires the collision of one grain to dissipate as much as nCG
collisions of the represented particles, i.e.,

Edg =
1
2

mg

(
v2

0g − v2
f g

)
=

1
2

nCGmp

(
v2

0g − v2
f g

)
. (57)

If the initial collision velocity is the same, i.e., v0g = v0p, and the coefficient of
restitution is correspondingly the same, i.e., eg = ep, so that the final velocity is also equal,
then the last term of Equation (57) is equal to nCGEdp.

The coarse grain model for the contact forces is obtained by examining the equations
of motion for the contacting particle. In the present notation, for the normal and tangential
direction and neglecting the cohesive forces, they read

meqan = −2
3

Eeq

√
Reqδnδn − η′n

√
Reqδn vn (58)
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and

meqat = −min

[
µ

∣∣∣∣23 Eeq

√
Reqδnδn − η′n

√
Reqδn vn

∣∣∣∣, Kt

√
δn

Req
|δt|
]

sgn(δt). (59)

Note that the rotational motion was not considered [24]. By dimensional analysis of
the equations and the study of relative dimensionless group, conservation of the energy
densities leads to the following dependencies:

Eeq,g = Eeq,p;
η′ng

Req,g
=

η′np

Req,p
;

Ktg

Req,g
=

Ktp

Req,p
. (60)

A comparison with the linear model reveals that the non-linear model naturally
leads to a constant relative overlap for collisions at the same velocity. It can be observed
that maintaining the same physical parameters, i.e., ρ, E, ν, leads to a consistent coarse
graining approach.

It should be noted that the formulation of the velocity dependent dissipative force
shows some differences with respect to Equation (15). A corresponding dependence of
ηH

n implies a quadratic scaling with the coarse graining factor (see e.g., [44]), i.e., ηH
n ∝

f 2̂, in order to yield the same constant coefficient of restitution, i.e., eg = ep, similar to
previously illustrated linear models.

Overall, the force contributions are shown to scale by a factor of f 2, a fact that allows
also solid stress distribution in dense regions to remain unchanged [24]. Indeed, this was
also confirmed in the analysis of scaling in simulated experiments of uniaxial compression
tests (stress–strain relationship) by Thakur et al. [74]. They reported correct scaling of the
results with a linear up-scaling of the normal stiffness with the coarse graining degree,
which is the case here, as proved by the constant Eeq and the linear dependence on f of
both Req and δn in Equation (10).

In a similar way, Nasato et al. [72] examined the Hertz-based normal contact depen-
dence on particle size and found that it is scale independent. This means that parameters
such as Young’s modulus and Poisson ratio are set equal.

The consequence of the relative overlap kept constant, i.e.,

δng,max

Rg
=

δnp,max

Rp
, (61)

is that the collision duration and integration time-step increase linearly with the coarse
graining degree:

τg = f τp → ∆tg = f ∆tp. (62)

The same model was used in CFD-DEM simulation of dense medium cyclones by
Chu et al. [75].

3.5. Hydrodynamic (Drag and Pressure Gradient) Forces

For the drag force, a large consensus points to the need that grains experience the
same total force as all the represented particles under the same conditions. For compact
coarse grains, this corresponds to assuming the following simple relationship

Fdg = nCGFdp = f 3Vp
βp

1− ε

(
u− vp

)
= Vg

βp

1− ε

(
u− vg

)
, (63)

in which βp is to be calculated using the particle properties, not the grain properties,
and the fact that vp = vg was used. An implicit assumption of Equation (63) is that all
represented particles are close enough to one another to experience the same relative
velocity and voidage.

A similar scaling applies to the pressure gradient force:

Fbg = nCGFbp = f 3Vp∇p = Vg∇p. (64)
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For the case of non-compact, porous grains, the following modifications were proposed
in the context of the EMMS-DPM model:

Fdg =
Vgβph

1− ε
(1− εCGM)

(
u− vg

)
(65)

and
Fbg = Vp

(
1− εgrain

)
∇P. (66)

In Equation (65) the parameter βph is the conventional coefficient in the drag ex-
pression multiplied by a correction factor known as heterogeneity index, βph = βp HD,
defined by

HD = a
(

Rep + b
)c, (67)

in which Rep is the particle Reynolds’ number and the constants a, b and c are complex
functions of the local voidage ε. A representative plot of the heterogeneity index for a
particle of Geldart’s group B is shown in Figure 7.
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At this point it is worth noting that the use of larger particles (the grains) pushes
towards the use of a coarser Eulerian grid for the fluid. In turn, if the cell to grain size
ratio is kept constant, increasing the coarse graining degree quickly brings about the issues
associated with the use of a large cell size compared to the particle size [77]. Therefore,
either the need for grid size scaling or sub-grid corrections was recognized and pointed
out [78–80], as a common requirement also for Eulerian-Eulerian and MP-PIC simulations
on coarse grids (Figure 8a). For example, Radl and Sundaresan [78] examined the vertical
upflow in periodic domains at different Reynolds’ number and solids concentration, later
focusing specifically on fluid and particle coarsening for parcel-based simulations [81].
Figure 8a shows graphically a typical effect of the use of coarse-grained parcels, which
requires fluid grid coarsening. Figure 8b shows the effect of the fluid grid coarsening
(filter-to-particle size ratio = 39) on the normalized drag coefficient as a function of porosity
and the number of particles per parcel. Remarkably, the dependence on voidage of the
correction on the drag coefficient (Figure 8b) appears in reasonable agreement with the
same dependence of the heterogeneity index in the EMMS model (Figure 7), at least for
sufficiently high Reynolds’ numbers, although they arise from apparently different points
of departure. Both plots highlight the strong need for corrections to the conventional drag
models for flow in risers and if significant particle coarse graining is targeted.
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3.6. Cohesive Force Modelling

The scaling of cohesive forces is less well established than contact and hydrodynamic
forces, so the models appearing will be listed as presented by the authors. On the other
hand, scaling for cohesive solids has more severe implications on the accuracy of the
computations [82].

In their analysis of the coarse graining using Hertz contacts, Bierwisch et al. [24]
presented also the scaling rule for the Johnson, Kendall, Roberts (JKR) theory of cohesion,
considered without hysteresis. The material parameter is the work of adhesion per unit
contact area w, which is clearly proved to depend on the coarse graining degree

wg

Req,g
=

wp

Req,p
, (68)

leading to a cohesive force scaling with f 2.
A different scaling for the JKR cohesive model was recently introduced by Chen and

Elliott [83], who found correct scaling of the cohesive force and surface energy with f 3

and f 2, respectively. However, the work of adhesion was also scaled to keep the same
dissipative restitution (i.e., rebound vs. impact velocity) according to f 3, which led to
the corresponding scaling of the Young’s modulus Eg = f 2.5Ep and the overlap during
collisions is obtained to be the same, i.e., δng = δnp.

In Sakai et al. (2012) [63], the coarse grain scaling on DEM is presented including van
der Waals interactions. Similar to the other phenomena, the interparticle cohesion on one
grain is applied assuming that all represented particles interact simultaneously with all the
particles represented by the close grain. Scaling of the force is initially set to depend on f 3,
in analogy with the other force contributions. Considering that the inter-particle distance,
hp, may be smaller than the inter-grain distance, hg, the following correction is proposed

hg =
hp

f
. (69)

Thus, the overall cohesive force scales with f 2

Fkg = f 3 HAdg

6h2
g

= f 2 HAdp

6h2
p

. (70)

where the Hamaker constant is assumed to be the same for grains as for the particles.
The cohesive force does not change the contact force, and the DEM time step is set to be the
same as the cohesionless case.

In Mokhtar (2012) [59], the Similar Particle Assembly model [20] is integrated with
the cohesive liquid bridge force, which is not scaled. Grains have diameter f times that of
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the particle, with equal density and assuming same velocities. The contact model is LSD.
The forces are scaled with the third power of f 3, but all other properties are kept equal to
the original particle case, including the DEM time step.

More recently, Chan and Washino [84] proposed a coarse graining strategy for liquid
bridge cohesive interactions between grains for applications in agitated mixers. They based
the derivation on the assumption that interfacial interactions such as the liquid bridge
cohesion shall scale with f 2. Therefore, in analogy with the f 2 dependence of the (Hertz-
based) contact force, also the liquid bridge force (capillary plus normal and tangential
viscous contributions) is calculated by

Fkg = f 2Fkp. (71)

The following additional parameter scaling were shown to be successful.
Liquid bridge volume:

Vlg = f 3Vlp; (72)

Separation distance:
Sg = Sp; (73)

Rupture distance:
S′g = S′p. (74)

The most recent investigation by Tausendschön et al. [85] concerns a detailed analysis
of liquid bridge and van der Waals cohesive force scaling in coarse grained CFD-DEM
simulations of periodic fluidized systems. In the context of contact scaling based on main-
taining constant the relative overlap (see Table 2), starting from three different theoretical
bases led essentially to confirm correct scaling if the surface tension and liquid viscosity
scale linearly with f and the Hamaker constant scales with f 3. In addition, they pointed
their attention to the significant role that the field smoothing filter plays in hydrodynamics
for grain sizes growing similar to or larger than cell sizes.

4. Computational Savings

As anticipated in the introduction, the main advantages of the coarse graining ap-
proach and its most attractive features are the conceptual simplicity, which translates into
simple steps to deploy it into a code, and the computational saving compared to classical
DEM. For nearly all the approaches presented so far, the changes to the code required
to implement coarse graining are very limited. The core of the coarse graining lays in
adapting the parameters so that the (same) DEM equations of motion and CFD part provide
the results in terms of grains instead of the particles. Therefore, another attractive property
of the method is the ease of implementation.

The theoretical scaling of the computational time required to simulate a given time
can be estimated assuming an inverse proportionality of the total time on the integration
time step (realistic) and on the number of particles (pessimistic). As discussed in Section
3, the key step determining the time step is the contact model: with the constant absolute
overlap linear model, the time step with grains is the same as the one with particles;
with the constant relative overlap linear model and the Hertz model, the time step increases
proportionally with f . The number of particles scales with f 3. The coarse graining factor
represent the ratio between the grain size and the particle size. Therefore, constant absolute
overlap and constant relative overlap schemes scale with the 3rd and 4th power of the
coarse graining factor, respectively. A plot of these theoretical speed-up trends is shown
in Figure 9. In the best case (constant relative overlap), grains twice as big as the particles
they represent (nCG = 8) already allow an estimated speed-up = 16. With grains just three
times bigger (nCG = 27), the speed-up is greater than 80. Eighty times faster!
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It is worth mentioning that the above estimate is not optimistic, as a decrease in
the number of particles is very likely to produce a higher than linear decrease in CPU
time. However, in CFD-DEM simulations part of the time is also spent in the CFD part,
with overall savings that can be less striking.

To show examples of performance achievable with coarse graining CFD-DEM, selected
applications from the literature are listed in Table 3.

Table 3. List of selected applications of coarse graining approaches and corresponding perfor-
mance improvements.

Reference Investigated CG Range Typical Performance

[19] f = 1, 3, 6 speed-up = 15 ( f = 3), 50 ( f = 6)
[60] f = 1 to 13.3 log CPUtime = −2.55· log f
[20] f = 200 8 k grains for 64 billion particles
[24] f = 4.7, 9.4, 18.8 at f = 9.4, 66 k grains for 60 M particles

[68]

Shear flow: nCG = 1,2,5,10
( f = 1, 1.25, 1.71, 2.15)
Periodic riser: nCG = 10, 20, 50, 100
(relative f ∗ = 1, 1.25, 1.71, 2.15)

speed-up: 1, 3.6, 26, 102
relative speed-up *: 1, 3.3, 11, 15

[61] f = 1, 2, 3 speed-up: 1, 3, 4.3,
[26] f = 1.5, 2, 3 speed-up: 4.2, 15.7, 68.6

[16]
CFB1 : f = 1, 2, 3, 4
CFB2 : f = 1, 6, 8, 10
CFB3 : f = 10

48 k grains for 1.6 M particles
190 k grains for 4.1 M particles
14 M grains for a real CFB loop

[86] f = 2, 3 speed-up = 8.2, 29

[87] f = 5, 10 at f = 5, speed-up = 625 (estimated); for the
relative f * = 2, speed-up = 6.

f = 5, 10, 15 speed-up * = 1, 35, 131
[80] f = 0.8, 2 speed-up ∝ f 3

[85] f = 2, 4 speed-up = 14, 30
* Relative coarse graining degree and speed-up with respect to the lowest f .

Considering the one decade since introduction and widespread diffusion, it must be
admitted that the question on to what extent the highly attractive savings come at the cost
of accuracy is still not fully answered. To investigate validation at extreme coarse graining,
a recent application in fluidized beds involved grains with nCG = 300, 000, i.e., f ≈ 67 [33],
but the expected speed-up was not reported.
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5. Applications to Bubbling/Spouted Beds
5.1. Bubbling/Spouted/Liquid Fluidized Beds

Initial verification and validation studies have been carried out on small pseudo-
2D geometries and bubbling fluidization conditions [61–63]. More recently, CG-DEM
was simulated in lab-scale bubbling beds with immersed tubes [66]. Simulations have
been reported on the small-scale NETL bubbling bed challenge [88], including also the
benefit of hard-sphere model for the collisions, which further considerably improves
numerical efficiency.

Coal gasification was studied in a bubbling fluidized bed including heat transfer
and heterogeneous chemical reactions, which allowed the influence of the operating pa-
rameters to be effectively characterized [89]. Using a commercial software, the steam
gasification of biomass was studied in a bubbling bed including heat transfer, chemical
reaction and particle shrinkage [34,90]. The fast pyrolysis of biomass was investigated
using a multiscale approach, combining coarse-grain particle scale simulations with reactor
scale modelling [91,92]; similarly, coarse grain DEM-CFD combined with reduced-order
modelling was used to simulate a pilot-scale updraft coal gasification reactor [93]. Bubbling
fluidization of a sand-biomass mixture was compared against experiment for degree of
mixing and pressure drop (average and fluctuations) [94,95]. Different testing methods
for measuring solids distribution have been compared and improved by simulating the
so-called “travelling fluidized bed” [96]. A coarse-graining application to segregation in
vibrated fluidized beds can be found in Reference [97].

Very long simulations have been achieved using EMMS-DPM for the methanol-to-
olefin process [98] (Figure 10), reaching as long as 8 h of simulated time. Similar long
runs were obtained with a similar model for the simulation of a continuous compartment
fluidized bed, with computation of the residence time distribution of the polydisperse
fluidized solids [99].
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from [98], with permission from Elsevier.

Solids motion in spouted beds was investigated with focus on the solids and velocity
distributions, pressure drop and solids mixing [86]. The effect of gas inlet in prismatic
spouted beds was also investigated successfully [100]. As a peculiar application, inter-
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mittent fluidization during solids discharge of lunar regolith simulants was shown to be
successfully simulated [101].

Simulations of a liquid-fluidized reactor, including chemical conversion were reported
in [70].

5.2. Circulating Fluidized Beds and Cyclones

Since the introduction of the coarse grain technique, applications in riser flow and
CFBs have started to appear in noticeable number. Several periodic systems were investi-
gated, mostly with the objective to improve understanding, characterize the influence of
the coarse graining degree and grid size. Examples of such analyses are [68,78,80,81].

Larger scale riser flow simulations were carried out for energy applications, such as
for a chemical looping system [102] and for a fluidized bed carbonator [103,104], in both
cases using a commercial software. A complex combination of tools including coarse grain
CFD-DEM was successfully utilized to simulate the multiphase flow of liquid, magnetite
fine particles, coal particles, with the formation of an internal air core [105]. The combined
use of EMMS-DPM has also been extensively used for riser flow, e.g., [16,106].

6. Recent Promising Extensions and Open Problems
6.1. Physical Models

Since its introduction, the concepts of parcels and grains appeared to be limited
to a constant (in time) and uniform (across the system) number of particles per grain.
This restriction had severe implications from the point of view of industrial applicability,
as real particles are all but monodisperse spherical particles. On the other hand, DEM is
notorious for its capability to treat particle individually, so potentially each one different
from the rest. In one of their recent efforts, Lu et al. [71] introduced two strategies to
deal with coarse graining of a particle system with size distribution. The two strategies
differ for the constant quantity of the coarse graining: in strategy SSW (same statistical
weight), the grains contain the same number of particles; in the SSP (same size parcel),
all the grains share the same size (Figure 11). As a consequence, in the former case, there
is a size distribution of the simulated grains; in the latter, there is a number distribution
of represented particles by each grain and all grains are monodisperse. The technique
was successfully applied to the fluidization of Geldart’s group A (FCC) and group B
(glass beads) particles and showed that the agreement with pure DEM and experiments
is reasonable. Lu et al. [71] conclude that the accuracy of the SSW method at low velocity
is higher than that of the SSP method. At higher velocity their accuracy is similar. On
the other hand, the monodisperse nature of the grains with the SSP strategy allows for
improvements in the computational efficiency, avoiding the limitation on the time step
imposed by smaller particles/grains.

Another improvement in coarse-grain simulations concerns accurate procedures for
scaling heat transfer parameters. This has been thoroughly investigated by Lu et al. [107],
who determined scaling parameters for both the particle-fluid-wall transfer mechanism
and the direct contact heat transfer mechanism. The results indicate that: the particle
minimum distance and gas layer length must be kept constant in dimensionless terms,
i.e., they should scale with the coarse graining degree f ; the dimensionless particle-wall
distance scales with f−1; so, overall, the particle-fluid-wall transfer mechanism calculated
using the grain properties must be scaled by

Qp f w =
Qp f w,g

f 2 . (75)

Similarly, for the direct contact mechanism,

Qc =
Qc,g

f
9
4

√
f
(
ep
)

f
(
eg
) . (76)
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in which f (e) is an explicit function of the coefficient of restitution. Note that the result for
the scaling of the direct contact mechanism assumes the linear spring-dashpot model with
the same particle stiffness of the grains as the particles.

Treatment of the erosion of tubes in bubbling fluidized beds was investigated by Zhou
and Zhao [108].
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6.2. Computational Improvements

Recently proposed computational improvements are aimed either at extending the spe-
cific coarse graining technique beyond the previous boundaries or at combining multiple
techniques to further speed up the computations, without compromising the accuracy.

Starting from the reduced particle stiffness model [109], the augmented coarse graining
method for the CFD-DEM simulations of fluidized beds was proposed by Lin et al. [110],
who tested the combined model in bubbling and circulating fluidized beds against experi-
mental averaged solids velocity profiles. The computational benefits of coarse graining
( f = 5) is combined with the advantage of the reduced particle stiffness model (reduced
stiffness factor = 0.01), reaching a speed-up factor of almost 5000. The actual loss in accuracy
requires additional and more extensive quantification.

The multilevel coarse graining technique for DEM introduced by Queteshiner et al. [44,111]
aims at making it possible to adapt the coarse graining level to different regions, so that a
coarser realization is used in regions whose behavior is simpler to represent and a finer
level is used in spatially confined regions of interest. Different levels are coupled by
exchanging volume-average flow properties. One application is the discharge of solids
from a bin, taken as reference test for comparison. It is a method with promising potential
for improved accuracy and likely to be useful also in fluidized bed applications. On the
other hand, the improved accuracy and representation capability comes at the cost of the
computational efficiency, which deteriorates compared to pure coarse graining and further
work is needed to recover as much as possible of this attractive property.

A very significant improvement in speed for computations is obtained by combining
coarse graining and hard-sphere event-driven models for collisions, without compromising
the accuracy of the predictions in fluidized beds, according to Lu et al. [87,88] (Figure 12).
Together with coarse-graining, a corrected hard-sphere model specifically derived by the
authors, formed the CGHS (coarse grain hard-sphere) model, capable of providing an
overall impressive speed-up of 24 using f = 2. The solver was fast enough to require
computational times comparable with those of MP-PIC, known to be less accurate but
much faster. The actual comparison with MP-PIC simulations on the same system (small-
scale fluidized bed) revealed a clear superiority of the discrete CGHS model. Indeed,
the conclusions of the authors are that the CGHS combinations provide an accurate and
inexpensive way to simulate fluidized beds.
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Finally, other dynamic coarse graining strategies were proposed by Wang et al. [112]
with particle-group crushing and polymerization. The method requires additional corrobo-
ration and more extensive validation.
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6.3. Open Problems

To really reach sufficient maturity and industrial relevance like it is now for CFD,
the attractive computational gain achieved with coarse-grain CFD-DEM still requires
substantial effort in terms of further development and validation. Not only are simulations
to be confronted with full CFD-DEM results as in many of the articles cited here but also
directly with experimental data, as the number of modelling “layers” and corresponding
parameters is high. The coarse graining procedure enhances the importance of accurate
parameters and requires closed-form procedures for particle-to-grain property scaling.
Therefore, it would be highly desirable to compare simulated results with sufficiently
simple experiments, whose measured data relate as directly as possible to the microscopic
mechanisms that originate them.

To conclude, the following topics, insufficiently covered in previous studies, are pro-
posed as future objectives of interest:

• Coarse graining of non-spherical particles;
• Rotational motion and rolling friction for applications e.g., in cyclones;
• Further testing on multi-component polydisperse particles, with coarse-graining of

polydisperse drag;
• Hydrodynamic interactions in dilute regions (collisional regime) at extreme coarse

graining degrees and with coarse grids;
• Further development of adaptive coarse graining;
• Scaling for mass transfer, chemical reactions and other cohesive interactions, e.g.,

triboelectric charging.

7. Conclusions

Starting from the beginning of the 2000s, a new class of methods to expand the
applicability of CFD-DEM have established in the field for the simulation of fluidized
beds. Thanks to their significant computational advantages, in the last decade, the coarse-
graining approach has grown to become a relatively widespread technique. The present
review summarizes the essential ingredients of the coarse graining method, covering in
detail: contact forces (linear and Hertz-based), hydrodynamic interactions and cohesive
forces for both compact and porous grains. More than one possible approach is found,
depending whether the absolute or relative displacement is kept constant, and discussed.
As a byproduct of this process, new links between the scaling with the linear and Hertz-
based contact model are highlighted. Scaling of the most important hydrodynamic forces,
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drag and pressure gradient, in homogeneous systems is obtained relatively easily and
ensures conservation of the pressure drop for uniform systems (e.g., the dense phase).
Where heterogenous structures are dominating (e.g., clustering in risers), the use of a coarse
grid for the CFD part often requires additional corrections and adjustments on the drag law.
Scaling of interparticle cohesive forces depends on the force model and can be different in
the case of Hamaker’s model, JKR theory or capillary interactions due to liquid bridges.

The advantages in terms of computational savings is quantified, depending on the
coarse graining choice, i.e., constant absolute overlap vs. constant relative overlap models,
showing 3rd or 4th power scaling, respectively. Some applications in the field of bubbling
and circulating fluidized beds are illustrated, to provide a picture of the state-of-the art and
showcase the explored possibilities. New extensions for accuracy improvement (e.g., han-
dling polydisperse solids, scaling of heat transfer and adaptive coarse graining) and further
computational saving (combined coarse graining hard-sphere, CGHS) are discussed.

In terms of model fundamentals, this review shows that the basic equations are ready
for implementation for most applications. Thus, CGDEM simulations of fluidized bed
systems can benefit from unparallel speedup factors. The loss of accuracy is generally
limited, for example, if heterogeneities are not dominating, and there are no key particle-
wall interactions, such as in highly complex geometries. In these cases, the actual loss is
yet to be fully quantified, particularly if the coarse graining degree is high. Therefore, ex-
pected progress is in the area of validation, possibly with directly comparable experiments
(see e.g., [35]) and attempts to quantify the uncertainty associated with coarse graining at
different scales (see e.g., [113]). Moreover, developments to include new, locally adaptive
schemes would be particularly useful. Overall, the increasing impact of the coarse grained
CFD-DEM in recent years is expected to grow further and lead to widespread adoption,
both in fluidized bed research and industrial applications.
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Nomenclature

Symbol Units Description
D m diameter
Davg m Sauter mean diameter
e - coefficient of restitution
Eel J elastic energy
f - coarse grain factor
f (e) - function of the coefficient of restitution in Equation (76)
Fb N generalized buoyancy force
Fc N contact forces
Fd N drag force
Ffp Pa/m fluid-particle interphase momentum transfer per unit volume
Fg N gravity force
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Fh N hydrodynamic force
Fk N cohesive/adhesive force
G Pa particle shear modulus
g m/s2 gravity acceleration
HA J Hamaker constant
HD - heterogeneity index
I kg m2 moment of inertia
h m inter-particle distance
K N/m spring stiffness constant
m kg mass
MTOT kg total solid mass
n - number
Nc - number of contacts
nCG - coarse grain number
Np - Number of particles
p Pa pressure
Qc W contact heat transfer
Qp f w W particle-fluid-wall heat transfer
R m radius
S m separation distance
S′ m rupture distance
Tc N m torque contributions generated by non-collinear collisions
Tfp N m fluid-particle torque
Tr N m polling friction torque
u m/s gas velocity
v m/s particle velocity
V m3 volume
v0 m/s initial collision velocity
v f m/s final collision velocity
Vl m3 liquid bridge volume
VTOT m3 total volume mass
w J/m2 work of adhesion per unit contact area
xk - volume fraction of the particle size class
yi - i-th local polydispersion index
∆t s time step
Greek Symbols
α rad/s2 angular acceleration
β kg/

(
m3 s

)
coefficient in the drag expression

δ m displacements between the contacting particles
ε - void fraction
γi - specification coefficient in polydisperse drag
η kg/s dashpot damping coefficient
η′ kg/(m s) Hertz dissipative coefficient in Bierwisch et al. [24]
ηH kg/s Hertz dissipative coefficient
θ rad angle
κ - tangential to normal spring stiffness ratio
µ - coulomb friction coefficient
µ f Pa s gas viscosity
ν - particle Poisson’s ratio
ρ kg/m3 density
τ Pa stress deviatoric tensor
ω rad/s angular velocity
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Subscripts
CGP grain in EMMS-DPM model
eq equivalent
f fluid
g grain (i.e., parcel)
hc internal “hard-core” diameter
i, j i-th, j-th particle
k cohesive
l liquid bridge
m f minimization fluidization
n normal
p particle
t tangential
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