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Abstract: Environmental concerns and soaring energy prices have brought huge pressure of energy
saving and emission reduction to tissue paper mills. Electricity is one of the main energy sources
of tissue paper mills. The production characteristics of tissue paper mills make it easy to decrease
energy cost by using time-of-use (TOU) electricity tariffs. This study investigates the bi-objective
energy-efficiency scheduling of tissue paper mills under time-of-use electricity tariffs, the objectives
of which are makespan and energy cost. First, considering the processing energy cost, setup energy
cost, and transportation energy cost, an energy cost model of a tissue paper mill under TOU electricity
tariffs is established. Second, the energy-efficiency scheduling model under TOU electricity tariffs
is built based on the energy cost model. Finally, on the basis of decomposition and teaching–
learning optimization, this study proposes a novel multi-objective evolutionary algorithm and
further combined with the variable neighborhood search to solve the problem. The case study results
demonstrate that our study of tissue paper mill energy saving is feasible, and the proposed method
has better performance than the existing methods.

Keywords: tissue paper mill; energy saving; time-of-use electricity tariffs; multi-objective
optimization

1. Introduction

The paper industry is an energy-intensive industry. In 2019, its energy consumption
reached 1483.2 trillion British thermal units (Btu), of which electricity consumption was
205.3 trillion Btu. [1]. At the same time, the carbon dioxide emissions of the paper industry
reached 48 million tons in 2019, accounting for 4.45% of the total carbon dioxide emissions
of the manufacturing industry [2]. Under the pressure from environmental degradation
and rising energy costs, the papermaking industry is faced with huge energy-saving and
emission reducing pressure. Studying the energy-efficiency scheduling under the time-of-
use (TOU) electricity tariffs is of great significance for papermaking enterprises to improve
energy efficiency. In general, one day can be divided into three periods based on the
electricity demand, namely, the on-peak period, the mid-peak period, and the non-peak
period. Due to the imbalance in the demand for electricity, waste will be generated in
the off-peak or mid-peak periods, while the demand will exceed the supply during the
on-peak period. To deal with this issue, the TOU pricing scheme is used to encourage users
to use electricity in the mid-peak period and off-peak period, thus balancing the demand
of electricity. In the production process, the electricity consumption of each job is different,
indicating that the operation with high electricity consumption is arranged in off-peak
or mid-peak periods and the operation with low electricity consumption is arranged in
an on-peak period, so that the electricity cost can be decreased. The energy-efficiency
scheduling under TOU electricity tariffs is based on above idea, which has attracted more
attention in recent years.
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Mouzon and Yildirim are the pioneers that regard energy consumption as the objec-
tive of production scheduling [3]. Energy-efficiency scheduling mainly improves energy
efficiency in two ways: reducing energy consumption and reducing energy cost by schedul-
ing. The existing research on energy-efficiency scheduling focuses on how to decrease
energy consumption in different stages, such as decreasing the energy consumption in the
processing stage, the setup stage, and the standby stage [4–9]. Recently, energy-efficiency
scheduling decreases energy cost considering both energy consumption and energy price.
Energy-efficiency scheduling under TOU electricity tariffs is an efficient way to reduce
energy cost. Scholars have carried out a lot of research on energy-efficiency scheduling
under TOU electricity tariffs in different generic manufacturing systems. Simple manu-
facturing systems, such as single machine and parallel machine, have been studied by
many researchers [10–13]. However, there are few reports on complex manufacturing
systems, such as flow shop, flexible flow shop, job shop, flexible job shop, etc. [14–16]. The
generic manufacturing systems are different from the real manufacturing systems. In order
to study the energy-efficiency scheduling models in line with the actual manufacturing
system, some scholars have investigated energy-efficiency scheduling in the actual pro-
duction and manufacturing system, such as hardware manufacturing and iron and steel
industry [17–22].

According to different production stages, the energy cost mainly consists of processing
energy cost, setup energy cost, standby energy cost, etc. [23]. Many studies discuss process-
ing energy cost, which accounts for the largest proportion of the total energy cost [24,25].
Setup energy cost cannot be ignored in many industries, especially in the processing indus-
try. In addition, transport energy cost may be negligible in many industries, but it cannot
be ignored in heavy industry. Setup time and transportation time may span multiple time
periods, leading to different electricity prices in the same setup stage or transportation
stage. Consequently, it is difficult to build an efficient energy cost model. Many research
studies on energy-efficiency scheduling under TOU electricity tariffs fails to consider the
setup energy cost and the transportation energy cost.

The feasibility of reducing material wastage and energy consumption in tissue pa-
per mills has been proved through production scheduling [26]. Energy consumption in
tissue paper mills can be decreased by combining process optimization and production
scheduling [27]. However, the previous research fails to consider TOU electricity tariffs.
This study investigates the energy-efficiency scheduling under TOU electricity tariffs for
tissue paper mills. There are three main contributions in this paper: First, a new mathe-
matical model of energy-efficiency scheduling under TOU electricity tariffs is established
for tissue paper mills. Energy cost includes processing energy cost, setup energy cost and
transportation energy cost. Second, a novel Multi-Objective Evolutionary Algorithm based
on Decomposition and Teaching–Learning-Based Optimization (MOEA/DTL) is proposed,
which further improves the performance of the MOEA/DTL by Variable Neighborhood
Search (IMOEA/DTLB). Third, the effectiveness of the proposed IMOEA/DTL is verified
by carrying out a case study. Lastly, the energy-saving potential of the IMOEA/DTL is
evaluated based on a practical scheduling problem in a tissue paper mill.

This paper is structured as follows. In Section 2, the production process and the
energy-efficiency scheduling of tissue paper mills under electricity tariffs are described.
Moreover, an energy cost model under TOU electricity tariffs is built, and the energy-
efficiency scheduling model under TOU electricity tariffs is built. Section 3 introduces
the proposed IMOEA/DTL method. Section 4 verifies the feasibility of the study and the
effectiveness of the proposed algorithm by carrying out a case study. Finally, Section 5
summarizes the study and proposes the future research direction.

2. Problem Description and Modeling

As shown in Figure 1, the production of a tissue paper mill mainly includes two stages,
namely the pulping and papermaking stage and the conversion stage. In the pulping and
papermaking stage, the first production unit is the stock preparation system, which is
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composed of a pulper, a refiner, and a chest. The pulper is the first equipment used in
the pulping and papermaking stage. The paperboard is first mixed with water and then
disintegrated by the pulper to obtain the pulp with a certain concentration. The obtained
pulp is stored in the chest (there are usually multiple chests). However, the quality of the
pulp disintegrated by the pulper cannot meet the requirements of papermaking. Therefore,
it is necessary to further improve the quality of the pulp using the refiner. The pulp
obtained by the refiner will be stored in other chests. The pulper and the refiner operate
intermittently, which mainly depends on the liquid level of the chest. Afterwards, the
pulp is sent to the forming sector through the approach flow system. The forming sector
removes part of the water, and finally, the paper is formed. Next, the paper is further
dehydrated by the press section. The dryness of the paper from the press section falls far
short of the requirements. Paper is dried in the dryer section to make the dryness of the
paper meet the requirements. The last step of the pulping and papermaking stage is the
winding section. The paper is reeled by the reel cylinder, thus forming the parent roll. The
parent roll will be further processed in the conversion stage.
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Figure 1. Production process of tissue paper mills.

In the conversion stage, a certain number of parent rolls are simultaneously rolled
into reels using the winder, and the number of the parent rolls depends on the numbers
of paper layers in the finished product. The reel paper is cut into small reels with a
cutter. Finally, the small reels are packaged into the finished product by the packaging
machine. Discrete production mainly occurs in the pulping process and the processing
between the pulping and papermaking stage and the conversion stage. The processing is
continuous in the papermaking or conversion stage. The interval time between two stages
is uncertain. Different from other flow shops, only when enough parent rolls are produced
in the papermaking stage can the conversion stage be started, rather than after finishing
a roll of parent roll in the papermaking stage. The interval time between two stages is
related to the product characteristics and the machine speed. Too long of an interval time
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will increase the pressure on work-in-process inventory. However, a short interval time is
likely to cause frequent downtime of the machine in the conversion stage. Therefore, it is
important to determine the optimal interval time in the production scheduling.

The scheduling of a tissue paper mill, which is two-stage flexible flow shop scheduling,
is composed of the pulping and papermaking stage and the conversion stage. Each job is
processed by a production line in the pulping and papermaking stage and a production line
in the conversion stage. The energy consumption in the processing stage accounts for the
vast majority of energy consumption in tissue paper mills. Product characteristics can deter-
mine the processing energy consumption. Different product characteristics mean different
process parameters, and the energy consumed by machines under different process parame-
ters varies significantly. For example, the products with high grammage will consume more
energy in the papermaking stage, and vice versa. Under TOU electricity tariffs, the energy
cost can be reduced in two ways: (i) arranging the job to the production line with low
processing energy consumption; and (ii) arranging the job with high grammage production
in the off-peak or mid-peak period and the job with low grammage production in the
on-peak period. When there are two different consecutive jobs, production changeover will
occur in tissue paper mills. The parameters of the machine should be adjusted to process
the new later job, which will consume a lot of energy in the setup stage. In general, the
setup energy cost can be reduced by arranging jobs with lower setup energy consumption
processed consecutively. Under TOU electricity tariffs, the setup energy cost can be further
reduced by arranging the jobs with higher setup energy consumption processed in the
off-peak or mid-peak period and the jobs with lower setup energy consumption processed
in the on-peak period. The parent rolls produced in the pulping and papermaking stage
should be transported to the conversion stage for further processing. The transport energy
consumption is related to the distance between the papermaking line and the conversion
line. Similarly, the transportation distance can be shortened to decrease the transport
energy cost. Moreover, the transport energy cost can be further reduced by arranging the
jobs with high transportation energy consumption in the off-peak or mid-peak period and
the jobs with low transportation energy consumption in the on-peak period. Tissue paper
mills can decrease the energy cost by utilizing the TOU electricity pricing scheme in job
scheduling. Table 1 shows the TOU electricity tariffs in Guangdong, China.

Table 1. Time-of-use (TOU) electricity tariffs implemented in Guangdong.

Period Type Time Periods Electricity Price (CNY/kWh)

Off-peak 00:00–08:00 0.3351
Mid-peak 08:00–09:00; 12:00–19:00; 22:00–24:00 0.6393
On-peak 09:00–12:00; 19:00–22:00 1.0348

2.1. Energy Cost Modeling

According to the characteristics of energy consumption in tissue paper mills, this study
mainly considers energy cost from three aspects: processing energy cost, setup energy
cost, and transportation energy cost. Processing energy cost is related to processing energy
consumption and electricity price. Under the TOU electricity pricing scheme, different
electricity prices are set for different periods in a day. This study establishes a processing
energy cost model combined with the TOU electricity pricing scheme and the processing
energy consumption. The processing energy cost model is as below.

EP =
m

∑
j=1

n

∑
i=1

(EP1 + EP2 + EP3 + EP4) ∗Oi,j (1)

EP1 = MIN
(
CEIL

(
Si,j
)
− Si,j, FG

(
CEIL

(
Si,j + Ti,j

)
, CEIL

(
Si,j
)))
×Ui,j × PFLOOR(MOD(Si,j ,K)) (2)
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EP2 =

FLOOR(MOD(Si,j ,K)+(Ti,j−FIX(Ti,j ,K)∗K))

∑
k=CEIL(MOD(Si,j ,K))

(
Pk ×Ui,j

)
(3)

EP3 =
(
Si,j + Ti,j − FLOOR

(
Si,j + Ti,j

))
×Ui,j × PFLOOR(MOD(Si,j+Ti,j ,K)) (4)

EP4 = FIX
(
Ti,j, K

)
×

K

∑
k=1

(
Pk ×Ui,j

)
(5)

where EP is the processing energy cost, and Equation (1) is the calculation formula of the
processing energy cost. The processing energy cost is divided into four parts, namely EP1,
EP2, EP3, and EP4. Equation (2) represents the processing energy cost from the start of the
job to the next period. Equation (3) represents the processing energy cost from the next
period of the start of the job to the previous period of the completion of the job. Equation (4)
represents the processing energy cost from the previous period of the completion of the job
to the completion of the job. If the job spans for several cycles, Equation (5) represents the
processing energy cost of the job in several cycles. m and n are the numbers of production
lines and jobs, respectively. Oi,j denotes whether production line j processes job i. Oi,j is set
to one when production line j processes job i; otherwise, it is set to zero. CEIL is a function
that rounds up to an integer. Ti,j is the processing time of job i in production line j. Si,j
is the start time of job i processed in production line j. Function FG has two parameters.
When the first parameter is equal to the second parameter, FG is set to one; otherwise,
it is set to zero. Ui,j represents the power of job i in production line j, Pk represents the
electricity price in k period. FLOOR is a function that rounds down to an integer, K is the
number of periods, MOD represents modulo operation, and FIX is the quotient operation.

The setup time is up to several hours, especially in the pulping and papermaking
stage, which cannot be ignored in tissue paper mills. Under the TOU electricity pricing
scheme, the machine setup energy cost may be different when the setup occurs at different
periods due to different energy prices in different periods. The off-peak or mid-peak period
has lower setup energy cost compared with the on-peak period. Moreover, the setup may
span multiple periods. The setup energy cost model is formulated as follows:

ES =
m

∑
j=1

Nj

∑
i=1

ES1 + ES2 + ES3 + ES4 (6)

ES1 = MIN
(
CEIL

(
Fi−1,j

)
− Fi−1,j, FG

(
CEIL

(
Fi−1,j + TSi,i−1,j

)
, CEIL

(
Fi−1,j

)))
×USi,i−1,j × PFLOOR(MOD(Fi−1,j ,K))

(7)

ES2 =

FLOOR(MOD(Fi−1,j ,K)+(TSi,i−1,j−FIX(TSi,i−1,j ,K)×K))

∑
k=CEIL(MOD(Fi−1,j ,K))

(
Pk ×USi,i−1,j

)
(8)

ES3 =
(

Fi−1,j + TSi,i−1,j − FLOOR
(

Fi−1,j + TSi,i−1,j
))
×USi,i−1,j

×PFLOOR(MOD(Fi−1,j+TSi,i−1,j ,K))
(9)

ES4 = FIX
(
TSi,i−1,j, K

)
×

K

∑
k=1

(
Pk ×USi,i−1,j

)
(10)

where ES represents the setup energy cost, and Equation (6) is the calculation formula of
the setup energy cost. The setup energy cost is divided into four parts, namely ES1, ES2,
ES3, and ES4. Equation (7) represents the setup energy cost from the start of the setup
to the next period. Equation (8) represents the setup energy cost from the next period
of the start of the setup to the previous period of the completion of the setup. Equation
(9) represents the setup energy cost from the previous period of the completion of the
setup to the completion of the setup. If the setup spans for several cycles, Equation (10)
represents the setup energy cost of the job in several cycles. Nj represents the number of
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jobs processed in production line j, Fi−1,j is the completion time of job i− 1 in production
line j, TSi,i−1,j is the setup time in the conversion from job i− 1 to job i in production line j.
USi,i−1,j is the power when job i− 1 is converted to job i in production line j.

In tissue paper mills, the parent roll produced in the papermaking line should be
transported to the conversion line for further processing. However, the distance between
papermaking lines and conversion lines is different. The longer the distance, the higher the
energy cost of transporting the parent roll from the papermaking line to the conversion line.
The transportation time in tissue paper mills is up to tens of minutes. In the production
scheduling process, it is necessary to consider the processing route with short distance
to reduce the transportation energy cost. Under the TOU electricity pricing scheme, the
transportation energy cost varies in different time periods. Similarly, the transportation
time may span multiple time periods. The transportation energy cost model of tissue paper
mills is formulated as below:

ET =
n

∑
i=1

m2

∑
l=1

(
(TP1× P1 + TP2× P2 + TP3× P3)×Wi × TC

(
m1

∑
h=1

Oi,h, l

))
(11)

TP1 =
ET1(1) + ET2(1) + ET3(1)

∑3
s=1(ET1(s) + ET2(s) + ET3(s))

(12)

TP2 =
ET1(2) + ET2(2) + ET3(2)

∑3
s=1(ET1(s) + ET2(s) + ET3(s))

(13)

TP3 =
ET1(3) + ET2(3) + ET3(3)

∑3
s=1(ET1(s) + ET2(s) + ET3(s))

(14)

ET1(s) = MIN(CEIL(Si,l)− Si,l , FG(CEIL(Si,l + Ti,l), CEIL(Si,l)))
×Q

(
FLOOR

(
MOD

(
Si,j, K

))
, s
) (15)

ET2(s) =
FLOOR(MOD(Si,l ,K)+(Ti,l−FIX(Ti,l ,K)×K))

∑
k=CEIL(MOD(Si,j ,K))

Q(k, s) (16)

ET3(s) = (Si,l + Ti,l − FLOOR(Si,l + Ti,l))×Q
(

FLOOR
(

MOD
(
Si,j, K

))
, s
)

(17)

ET4(s) = FIX(Ti,l , K)×
K

∑
k=1

Q(k, s) (18)

where ET is the transportation energy cost, Equations (12)–(14) calculate the proportions
of the processing time of job i in the off-peak, mid-peak, and on-peak periods to the total
processing time, respectively. Equation (15) represents the transportation energy cost from
the start of the transportation to the next period. Equation (16) represents the transportation
energy cost from the next period of the start of the transportation to the previous period
of the complete of the transportation. Equation (17) represents the transportation energy
cost from the previous period of the completion of the transportation to the completion of
the transportation. If the transportation spans for several cycles, Equation (18) represents
the transportation energy cost of the job in several cycles. m1 represents the number
of production lines in the pulping and papermaking stage, while m2 is the number of
production lines in the conversion stage. TP1, TP2, and TP3 represent the proportions
of the processing time of job i in the off-peak, mid-peak, and on-peak periods to the total
processing time, respectively. Wi is the scale of job i. C

(
∑m1

h=1 Oi,h, l
)

represents energy
consumed by transporting job i from papermaking line h to conversion line l. The function
Q(k, s) can judge whether the time period k belongs to period type s. The parameter s is the
period type, and s values equal to 1, 2, and 3, respectively represent the off-peak, mid-peak,
and on-peak period, respectively.
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2.2. Energy-Efficiency Scheduling Modeling

In the pulping and papermaking stage or the conversion stage, there are multiple
parallel production lines with different speeds. Each job must be first processed in a
production line in the first stage and then processed in a production line in the second
stage. The pulping and papermaking line or the conversion line only processes one job
at a time. In this study, the job cannot be stopped once being processed in the pulping
and papermaking line or the conversion line. In addition, the time interval between two
stages is uncertain. The scheduling problem is the variant of a two-stage flexible flow
shop scheduling problem. According to the production scheduling characteristics of tissue
paper mills and the above established energy cost model, the energy-efficiency scheduling
model is as below. The model in this study contains two optimization objectives, which
are multi-objective optimization problems. Multi-objective optimization problems are
different from single-objective optimization problems. The quality of the solution needs to
be evaluated through the dominance relationship. When all the objectives of solution S1
are better than all the objectives of solution S2, it can be said that S1 dominates S2. If S1
only has some objectives better than S2, then S1 and S2 are non-dominated. If a solution is
not dominated by any other solution, the solution is called a non-dominated solution. The
solution to the multi-objective optimization problem is a set of non-dominated solutions.{

min(MAX(Ci)) ∀i ∈ {1, 2, . . . , n}
min(EP + ES + ET)

(19)

n

∑
i=1

m1

∑
j=1

Oi,j = 1 (20)

n

∑
i=1

m2

∑
j=1

Oi,j = 1 (21)

Ij,l ≥ Fj,l−1 + TSl,l−1,j ∀j ∈ 1, . . . , m; ∀l ∈ 2, . . . , Nj (22)

Bi,2 ≥ Bi,1 + f

(
m1

∑
l=1

Vi,l ×Oi,l ,
m2

∑
h=1

Vi,h ×Oi,h, Wi

)
∀i = 1, . . . , n (23)

f (v1, v2, w) =

{ H
v1 v1 ≥ v2
w
v1 −

w
v2 + H

v1 v1 < v2
(24)

m1 + m2 = m (25)
m

∑
j=1

Nj = n (26)

Formula (19) is the optimization objectives, and there are two optimization objectives,
which are makespan and energy cost. Ci is the completing time of the job i in conversion
line. Constraint (20) guarantees every job can and must be processed once in the pulping
and papermaking line. Constraint (21) guarantees that every job can and must be processed
once in the conversion line. Constraint (22) guarantees that every papermaking line or
converting line can only process one job at the same time, indicating that only when
the previous job and the setup are complete can the next job be started, where Ij,l is the
beginning time of the l-th job in production line j. Constraint (23) guarantees there is a time
interval between two stages. Bi,1 is the beginning time of job i in the papermaking line, and
Bi,2 is the beginning time of job i in the conversion line. There is a time interval between Bi,1

and Bi,2, where f
(

∑m1
l=1 Vl ×Oi,l , ∑m2

h=1 Vh ×Oi,h, Wi

)
represents the time interval, which is

related to the speed of the papermaking line l when processing job i (Vi,l), the speed of the
conversion line h when processing job i (Vi,h), and the scale of job (Wi). Formula (24) is the
calculation method of the time interval between Bi,1 and Bi,2, where H represents the value
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of the length of the parent roll multiplying the number of paper layers in finished products.
Formulas (25) and (26) are equality constraints.

3. The Proposed Optimization Algorithm

In this section, the MOEA/DTL is proposed based on two outstanding methods,
namely teaching-learning-based optimization (TLBO) and MOEA/D. In order to further
improve the quality of the solutions, a variable neighborhood search (VNS) algorithm
is designed to be combined with the MOEA/DTL to improve the performance of the
algorithm (IMOEA/DTL).

3.1. MOEA/DTL

MOEA/D uses multiple weight vectors to decompose the multi-objective optimiza-
tion problem into multiple single-objective sub-optimization problems. When the weight
vectors are distributed uniformly, the MOEA/D assumes Pareto optimal solutions with
uniform distribution generated by combining the solutions of sub-optimization prob-
lems. Every individual is corresponding to a sub-optimization problem in MOEA/D. In
each iteration of MOEA/D, each individual exchanges information with neighbors and
coevolves [28]. The flow chart of the standard MOEA/D is shown in Figure 2.
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The input parameters are consistent with the input parameters of the proposed algo-
rithm; refer to the input parameters of the proposed algorithm below. The initialization is
the same as the proposed algorithm; refer to the proposed algorithm below. gte(xi

∣∣λi, z
)

is
the decomposition approach. There are many decomposition approaches; among them, the
boundary intersection approach, Tchebycheff approach, and weighted sum approach are
three popular decomposition approaches.

The basic idea of TLBO is to simulate the learning process of the class, which is
completed in two phases: the teaching phase and the learning phase. Each individual
learns from the teacher (the best individual is selected as the teacher) in the teaching phase.
Individuals learn from each other (an individual is randomly selected) in the learning
phase. The TLBO is originally designed to solve the continuous optimization problem
because the formulas used to update individuals in the teaching and learning phase are
continuous variable oriented. Some changes should be made when the scheduling problem
is solved by the TLBO. This study modifies the TLBO by replacing the update formula
by the discrete crossover operation. According to the idea of MOEA/D and TLBO, this
study proposes a hybrid method (MOEA/DTL). The Figure 3 shows the flow chart of
MOEA/DTL. The details of the proposed MOEA/DTL are shown in Algorithm 1.
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Algorithm 1 MOEA/DTL

1. Initialize the population scale and the number of subproblems.
2. Initialize the maximum number of iterations (Mt).
3. Initialize a set of N weight vectors with uniform distribution (λ1, λ2, . . . , λN).
4. Initialize the number of neighbors for every weight vector (T).
5. Set the external population EP = Φ.
6. for each i = 1 to N do
7. The nearest T weight vectors of the i-th weight vector is calculated according to Euclidean
distances.
8. Set B(i) =

{
λi

1, λi
2, . . . , λi

T

}
, where B(i) is the neighbors of λi with T weight vectors.

9. end for
10. Generate x1, x2, . . . , xN by a specific method.

11. FVi = F
(

xi
)

is set by the decomposition approach.

12. Set z = (z1, z2, . . . , zn)
T , where zj = min1≤i≤N

(
f j

(
xi
))

, f j

(
xi
)

is the j-th objective of solution

xi.
13. while true do
14. for i = 1 to N do
15. Teaching phase:
16. if xi is not the best individual among its T neighbors
17. An individual from its T neighbors is randomly set as teacher Th with a
probability Ps, or an individual is randomly selected from EP as teacher Th with a
probability 1-Ps.
18. else
19. An individual is randomly selected from EP as Th.
20. end if
21. A new individual y is generated by a crossover operation from xi and Th.
22. Mutation operation is applied to y with probability Pm to generate a new individual y′.
23. for each j ∈ [1, . . . , m] do
24. Set zj = min

(
zj, f j(y′)

)
. If gte

(
y′
∣∣∣λi, z

)
≤ gte

(
xi
∣∣∣λi, z

)
, set xi = y′ and FVi = F(y′).

25. end for
26. Learning phase:
27. for each j ∈ B(i) do
28. if xj is not the best individual in the T neighbors of xi

29. A new individual y′′ is first generated by crossover operation from xi and xj.
30. A new individual y′′′ is generated by applying the mutation operation to y′′ with
probability Pm.
31. else
32. Continue to the next iteration.
33. end if
34. for each j ∈ [1, . . . , m] do
35. set zj = min

(
zj, f j(y′)

)
.

36. if gte
(

y′′′
∣∣∣λi, z

)
≤ gte

(
xi
∣∣∣λi, z

)
37. Set xi = y′′′ and FVi = F(y′′′ ).
38. end if
39. end for
40. end for
41. end for
42. Update EP: a new non-dominated set is selected from EP and the new population as the
new EP, and get rid of the duplicate solution. If the size of EP is smaller than the setting
value, some randomly generated individuals (EP′) are added to EP until the size of
EP is equal to the setting value.
43. for each i = 1 to size(EP) do
44. An individual xi is randomly selected from EP− EP′, and an individual xj is ran-
bdomly selected from EP− EP′ with a probability Pc, or an individual xj is selected
from EP′ with a probability 1− Pc.
45. A new y is generated by crossover operation from xi and xj.
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Algorithm 1 Cont.

46. Mutation operation is applied to y with probability Pm to generate a new y′.
47. end for
48. Update EP: select a new non-dominated set from EP and the new population as the new
EP
49. if the stopping criterion is not satisfied
50. Continue.
51. else
52. Stop and output EP.
53. end if
54. end while

The weight vectors can determine the quality of solution obtained by MOEA/DTL.
With the uniformly distributed weight vectors, the solution obtained by MOEA/DTL is
more evenly distributed and closer to the Pareto optimal solution. Thus, the method of gen-
erating some weight vectors with even distribution is of great importance to MOEA/DTL.
In this study, a number of weight vectors are generated as follows:

Step (1) Set γ =
(
γ1, γ2, . . . , γN+1), where γi =

(
γi

1, γi
2
)

For each i = 0 to N, do:

γi
1 = i

N , γi
2 = 1− i

N .

Step (2) Generate weight vectors λ =
(
λ1, λ2, . . . , λN) by randomly selecting N vectors

from γ.

The parameter Ps is one of the important factors affecting the convergence speed of the
algorithm. If Ps is too small, it means that most of the teachers are from the global optimal
individual, and it is easy to fall into the local optimal value. If Ps is too large, it means
that most of the teachers come from the best individuals in the neighborhood, and the
convergence speed will be slower. The value of Ps between 0.7 and 0.9 is reasonable. The
decomposition approach is also important for MOEA/DTL. The makespan and the energy
cost are converted into an objective using the weighted sum approach. The makespan
and the energy cost are the two different scalar objectives. Therefore, the decomposition
method must have the function of normalization. The decomposition approach is as below:

gi =
m

∑
j=1

λi
j ×
(

f j
(
xi)− f min

j

)
f max
j − f min

j
(27)

where gi is the scalar optimization objective of solution xi, f max
j is the maximum of the j-th

objective, and f min
j is the minimum of the j-th objective.

3.2. Variable Neighborhood Search

With the advantages of high efficiency and simple implementation, the Variable
Neighborhood Search (VNS) algorithm has been successfully applied in many engineering
fields [29,30]. The VNS algorithm uses the neighborhood structure of different actions to
search alternately, thus achieving a good balance between concentration and evacuation.
Firstly, the VNS is carried out in a small neighborhood. If the quality of the solution cannot
be improved, VNS will be carried out in a larger neighborhood. When a better solution is
found, the VNS is conducted in a smaller neighborhood again. The cycle is repeated until
the end of the algorithm. The VNS algorithm is simple in principle, easy to implement,
and has good optimization performance. The procedure of the VNS algorithm used in this
paper is shown in Algorithm 2:
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Algorithm 2 VNS

1. Construct the set of neighborhood structures Si, i = 1, 2, 3.
2. Set the maximum iterations M for searching in the first, second, and third neighborhood
structures M1, M2, M3.
3. Set the initial solution.
4. for each i ∈ [1, 2, . . . , M] do
5. for each j ∈ [1, 2, . . . , M1] do
6. Based on the current solution, the first neighborhood structure S1 is used to search for
better solutions than the current solution, and it means that the solutions found can
dominate the current solution.
7. end for
8. for each j ∈ [1, 2, . . . , M2] do
9. Based on the current solution, the second neighborhood structure S2 is used to search
for better solutions than the current solution, and it means that the solutions found can
dominate the current solution.
10. end for
11. for each j ∈ [1, 2, . . . , M3] do
12. Based on the current solution, the third neighborhood structures S3 is used to search
for better solutions than the current solution, and it means that the solutions found can
dominate the current solution.
13. end for
14. If the stopping criteria are not satisfied, continue; otherwise, stop and output the
best solution.
15. end for

The core of the VNS algorithm lies in the design of neighborhood structure set. In the
production scheduling, the neighborhood structure of VNS can be obtained by exchang-
ing the order of two jobs or inserting one job before another. This study designs three
neighborhood structures, which are S1, S2, and S3. The neighborhood solutions of S1 are
generated as follows: select two jobs randomly and exchange their positions to generate a
new neighborhood solution. The neighborhood solutions of S2 are generated as follows:
select three jobs randomly and then disrupt their order to generate five new neighborhood
solutions. The neighborhood solutions of S3 are generated as follows: select four jobs
randomly and then disrupt their order to generate 23 new neighborhood solutions. The
parameters M, M1, M2, and M3 affect the search range. A large value means a large search
range, but at the same time, it reduces the operating efficiency of the algorithm. On the
contrary, the operating efficiency of the algorithm will improve, but it means that the
search range becomes smaller. In order to balance the two, it is reasonable to set their value
within 10.

3.3. IMOEA/DTL

Despite the outstanding global search capability of MOEA/DTL, it is likely to miss
the locally better solution because MOEA/DTL does not search the neighborhood of
the solution in detail in each iteration process. The MOEA/DTL is combined with VNS
(IMOEA/DTL) to enhance its local search ability and performance. In IMOEA/DTL,
the solution obtained in each iteration of MOEA/DTL is searched locally using the VNS
algorithm to find a better solution. This study carries out VNS after the first update of EP,
and VNS is carried out as Algorithm 3.

Algorithm 3 Combination method of VNS and MOEA/DTL

1. for each i ∈ [1, 2, . . . , N] do
2. nex_xi = VNS

(
xi
)

3. end for
4. Output the new population.
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4. Case Study

In order to demonstrate the feasibility of the energy-efficiency scheduling model
under TOU electricity tariffs for tissue paper mills and the superiority of the proposed
IMOEA/DTL, three popular multi-objective optimization algorithms, namely, MOEA/D-
MR [31], Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Strength Pareto
Evolutionary Algorithm 2 (SPEA2), are compared with the IMOEA/DTL in eight schedul-
ing problems. The energy-saving potential of the IMOEA/DTL is evaluated by comparing
IMOEA/DTL with workers in practice. The whole experiments are implemented in MAT-
LAB 2015b.

4.1. Experiment Data

The data are collected from a tissue paper mill in Guangdong, China. The data are
collected from the Jiangmen branch of Vinda Paper (China) Co., Ltd., Jiangmen City, Guang-
dong Province, China. The data collection time is from 2017 to 2018. The scheduling data
and product process data are mainly collected from the production scheduling department.
These data come from the enterprise resource planning system. Machine data and energy
consumption data are automatically collected by the manufacturing execution system.
There are six production lines in the pulping and papermaking stage and seven production
lines in the conversion stage. A total of 16 scheduling instances are generated randomly,
the numbers and names of jobs in each scheduling problem are listed in Table 2. In each
scheduling problem, the size of each job is generated randomly and obeys uniform distri-
bution in the range of [10,000, 600,000]. In the tissue paper mill, the speed of the production
line varies with the type of products, but each production line has a maximum speed. The
maximum speeds in the pulping and papermaking stage and the conversion stage are
shown as Table 3. Similarly, the power of each production line also varies with the product
type. The maximum power of the pulping and papermaking stage and the conversion
stage is shown Table 4. The setup energy consumption is dependent on the setup time
and the setup power. In this study, the setup time of the pulping and papermaking stage
and the conversion stage is randomly generated based on the real situation. The setup
time of the pulping and papermaking stage shows uniform distribution in the range of
[10, 100], while the setup time of the conversion stage shows uniform distribution in the
range of [10, 60]. Table 5 lists the setup power of the pulping and papermaking stage and
the conversion stage. The transportation energy consumption is related to the distance
between production lines. The transportation energy consumption per unit product is
shown in Table 6.

Table 2. The name and number of jobs of 16 scheduling problems.

Problems Job Number

Job1 50
Job2 60
Job3 70
Job4 80
Job5 90
Job6 100
Job7 110
Job8 120
Job9 130

Job10 140
Job11 150
Job12 160
Job13 170
Job14 180
Job15 190
Job16 200
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Table 3. The maximum speed of the production line in the pulping and papermaking stage and the
converting stage.

Pulping and
Papermaking Stage Speed (m/min) Converting Stage Speed (bag/min)

PL1 990 BL1 260
PL2 950 BL2 320
PL3 1010 BL3 330
PL4 970 BL4 325
PL5 1050 BL5 335
PL6 1110 BL6 360

BL7 400

Table 4. The maximum power of the production line in the pulping and papermaking stage and the
converting stage.

Pulping and
Papermaking Stage Power (kW) Converting Stage Power (kW)

PL1 1210 BL1 130
PL2 1280 BL2 145
PL3 1380 BL3 148
PL4 1470 BL4 120
PL5 1330 BL5 138
PL6 1490 BL6 135

BL7 137

Table 5. The setup power of the production line in the pulping and papermaking stage and the
converting stage.

Pulping and
Papermaking Stage Power (kW) Converting Stage Power (kW)

PL1 813 BL1 82
PL2 821 BL2 97
PL3 878 BL3 104
PL4 902 BL4 70
PL5 870 BL5 87
PL6 922 BL6 91

BL7 88

Table 6. The transportation energy consumptions per unit product (kW).

BL1 BL2 BL3 BL4 BL5 BL6 BL7

PL1 4 6 16 17 18 20 24
PL2 5 3 15 16 19 23 25
PL3 16 18 3 4 6 19 21
PL4 17 15 5 2 3 15 16
PL5 26 27 22 20 17 4 3
PL6 27 26 23 21 18 3 5

4.2. Performance Metrics

The performance of the IMOEA/DTL, MOEA/D-MR, NSGA-II, and SPEA2 is evalu-
ated using two metrics, which are Hypervolume indicator (HV-metric) and Set Coverage
(C-metric). C-metric reflects the dominance between two non-dominated solution sets. A
and B represent two non-dominated solutions, C(A, B) can be defined as the proportion of
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solutions in B that are dominated by at least one solution in A. The formulation of C(A, B)
is shown as follows.

C(A, B) =
|{b ∈ B|a ∈ A : a � b}|

|B| (28)

The C(A, B) equal to one means that all solutions in B are dominated by some solutions
in A. Meanwhile, C(A, B) equal to zero means there is no solution in B dominated by the
solutions in A. When C(A, B) is greater than C(B, A), then the quality of the solution A is
better than that of B.

The HV-metric of a non-dominated set can be represented by the size of portion of
objective space that is dominated by those solutions collectively and bounded above by a
reference point. The HV-metric can not only assess the proximity of the non-dominated
set but also can assess the diversity of the non-dominated set. The HV-metric needs to be
given a reference point, where we use the maximum value of the solutions obtained by
all algorithms. When the HV-metric has a larger value, the approximate non-dominated
solution set is better.

Moreover, considering the randomness of the evolutionary algorithm, this study
carries out the Wilcoxon signed-rank test to detect whether the results obtained by different
algorithms are different significantly. The significance level is 0.05. A p-value of the
Wilcoxon signed-rank test less than 0.05 indicates significant differences between the
two algorithms.

4.3. Parameters Setting

Table 7 summarizes the parameters of IMOEA/DTL, MOEA/D-MR, SPEA2, and
NSGA-II. The population size and the maximum iterations are set as the same value to
compare the performance of IMOEA/DTL, MOEA/D-MR, SPEA2, and NSGA-II. The
parameters of NSGA-II, SPEA2, and MOEA/D-MR are set based on some literature and the
trial and error method [31–35]. Moreover, considering the randomness of the evolutionary
algorithm, three algorithms are run ten times for each scheduling problem, and the result
is the average of ten times.

Table 7. Parameters setting of MOEA/D-MR, Strength Pareto Evolutionary Algorithm 2 (SPEA2),
Non-dominated Sorting Genetic Algorithm II (NSGA-II), and MOEA/DTL by Variable Neighborhood
Search (IMOEA/DTL).

MOEA/D-MR SPEA2 NSGA-II IMOEA/DTL

N: 100
Mt: 100

F: 0.5
CR: 0.2
H: 99

Tm: 10
Tr: 10

N: 100
Size of archive: 100

Mt: 100
Pc: 0.8
Pm: 0.2

N: 100
Mt: 100
Pc: 0.8
Pm: 0.2

N: 100
Mt: 100

Size of EP: 100
T: 10

Ps: 0.7
Pm: 0.3
Pc: 0.7
M: 5

M1: 10
M2: 5
M3: 3

4.4. Results and Discussion

Table 8 describes the mean C-metric of the solutions obtained by IMOEA/DTL,
MOEA/D-MR, SPEA2, and NSGA-II. W, X, Y, and Z represent the solutions obtained
by MOEA/D-MR, NSGA-II, SPEA2, and IMOEA/DTL, respectively. From Table 8, it can
be seen that C(Z, W) is larger than C(W, Z), C(Z, X) is larger than C(X, Z), and C(Z, Y)
is larger than C(Y, Z) in 16 scheduling problems. The values of C(Z, W), C(Z, X) and
C(Z, Y) are close to one in the eight scheduling problems. Meanwhile, the values of
C(W, Z), C(X, Z), and C(Y, Z) are almost equal to zero. The C-metric indicates that other



Processes 2021, 9, 274 16 of 24

methods dominate the few solutions obtained by IMOEA/DTL. However, some solu-
tions of IMOEA/DTL dominate all solutions obtained by MOEA/D-MR, NSGA-II, and
SPEA2. As shown in Table 8, the solutions obtained by IMOEA/DTL have better perfor-
mance than those obtained by MOEA/D-MR, NSGA-II, and SPEA2 in C-metric. Table 9
shows the p-value in the Wilcoxon signed-rank test of the C-metric between two algo-
rithms. P1 represents the p-value of the Wilcoxon signed-rank test of the C-metric between
IMOEA/DTL and MOEA/D-MR, P2 represents the p-value of the Wilcoxon signed-rank
test of the C-metric between IMOEA/DTL and NSGA-II, and P3 represents the p-value
of the Wilcoxon signed-rank test of the C-metric between IMOEA/DTL and SPEA2. P1,
P2, and P3 are less than 0.05 in 16 scheduling problems, indicating significant differences
between IMOEA/DTL and MOEA/D-MR, IMOEA/DTL and NSGA-II, IMOEA/DTL and
SPEA2. Tables 8 and 9 indicate that IMOEA/DTL is superior to MOEA/D-MR, NSGA-II,
and SPEA2 in terms of C-metric.

Table 8. C-metric of the solutions obtained by MOEA/D-MR, NSGA-II, SPEA2, and IMOEA/DTL.

Problems C(W,Z) C(Z,W) C(X,Z) C(Z,X) C(Y,Z) C(Z,Y)

Job1 0 1 0 0.98 0 1
Job2 0 1 0 1 0 1
Job3 0 1 0 1 0 1
Job4 0 1 0 1 0 1
Job5 0 1 0 1 0 1
Job6 0 1 0 1 0 1
Job7 0 1 0 1 0 1
Job8 0 1 0 1 0 1
Job9 0 1 0 1 0 1

Job10 0 1 0 1 0 1
Job11 0 1 0 1 0 1
Job12 0 1 0 1 0 1
Job13 0 1 0 1 0 1
Job14 0 1 0 1 0 0.98
Job15 0 1 0 1 0 1
Job16 0 1 0 1 0 1

Table 9. The p-value of the Wilcoxon signed-rank test of the C-metric between two algorithms.

Problems P1 P2 P3

Job1 0.0020 0.0020 0.0020
Job2 0.0020 0.0020 0.0020
Job3 0.0020 0.0020 0.0020
Job4 0.0020 0.0020 0.0020
Job5 0.0020 0.0020 0.0020
Job6 0.0020 0.0020 0.0020
Job7 0.0020 0.0020 0.0020
Job8 0.0020 0.0020 0.0020
Job9 0.0020 0.0020 0.0020

Job10 0.0020 0.0020 0.0020
Job11 0.0020 0.0020 0.0020
Job12 0.0020 0.0020 0.0020
Job13 0.0020 0.0020 0.0020
Job14 0.0020 0.0020 0.0020
Job15 0.0020 0.0020 0.0020
Job16 0.0020 0.0020 0.0020

Table 10 lists the average value of HV-metric of the solutions obtained by IMOEA/DTL,
MOEA/D-MR, SPEA2, and NSGA-II. The solutions obtained by IMOEA/DTL have a
larger average HV-metric than those obtained by MOEA/D-MR, SPEA2, and NSGA-II in
all scheduling problems, indicating that the proximity and diversity of the solutions of
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IMOEA/DTL are best in all solutions. As shown in Table 10, the solutions obtained by
MOEA/D-MR, NSGA-II, and SPEA2 are inferior to that obtained by IMOEA/DTL in terms
of HV-metric. The p-value of the Wilcoxon signed-rank test of the HV-metric between two
algorithms is shown in Table 11. P1 represents the p-value of the Wilcoxon signed-rank
test of the HV-metric between IMOEA/DTL and MOEA/D-MR, P2 represents the p-value
of the Wilcoxon signed-rank test of the HV-metric between IMOEA/DTL and NSGA-II,
and P3 represents the p-value of the Wilcoxon signed-rank test of the HV-metric between
IMOEA/DTL and SPEA2. P1, P2, and P3 are less than 0.05, demonstrating the significant
differences between IMOEA/DTL and MOEA/D-MR, IMOEA/DTL and NSGA-II, and
IMOEA/DTL and SPEA2. Tables 10 and 11 indicate that IMOEA/DTL is superior to
MOEA/D-MR, NSGA-II, and SPEA2 in terms of HV-metric.

Table 10. Average values of hypervolume indicator (HV-metric) of the solutions obtained by
MOEA/D-MR, NSGA-II, SPEA2, and IMOEA/DTL.

Problems MOEA/D-MR NSGA-II SPEA2 IMOEA/DTL

Job1 3.46 × 107 3.32 × 107 3.42 × 107 5.43 × 107

Job2 1.75 × 107 1.65 × 107 1.58 × 107 2.79 × 107

Job3 7.02 × 107 6.38 × 107 6.60 × 107 9.82 × 107

Job4 5.33 × 107 5.04 × 107 5.15 × 107 8.27 × 107

Job5 3.33 × 107 3.06 × 107 3.09 × 107 4.92 × 107

Job6 3.40 × 107 3.53 × 107 3.37 × 107 5.87 × 107

Job7 4.22 × 107 3.74 × 107 4.03 × 107 6.29 × 107

Job8 2.40 × 107 2.01 × 107 2.07 × 107 3.65 × 107

Job9 5.99 × 107 5.44 × 107 5.75 × 107 8.79 × 107

Job10 2.66 × 107 2.62 × 107 2.60 × 107 4.32 × 107

Job11 4.41 × 107 4.49 × 107 4.45 × 107 7.30 × 107

Job12 4.43 × 107 4.07 × 107 4.18 × 107 6.58 × 107

Job13 5.43 × 107 5.43 × 107 5.46 × 107 8.77 × 107

Job14 3.32 × 107 3.27 × 107 3.35 × 107 5.16 × 107

Job15 4.83 × 107 4.54 × 107 4.62 × 107 7.67 × 107

Job16 8.19 × 107 7.78 × 107 8.15 × 107 1.19 × 107

Table 11. The p-value of the Wilcoxon signed-rank test of the HV-metric between two algorithms.

Problems P1 P2 P3

Job1 0.0020 0.0020 0.0020
Job2 0.0020 0.0020 0.0020
Job3 0.0020 0.0020 0.0020
Job4 0.0020 0.0020 0.0020
Job5 0.0020 0.0020 0.0020
Job6 0.0020 0.0020 0.0020
Job7 0.0020 0.0020 0.0020
Job8 0.0020 0.0020 0.0020
Job9 0.0020 0.0020 0.0020

Job10 0.0020 0.0020 0.0020
Job11 0.0020 0.0020 0.0020
Job12 0.0020 0.0020 0.0020
Job13 0.0020 0.0020 0.0020
Job14 0.0020 0.0020 0.0020
Job15 0.0020 0.0020 0.0020
Job16 0.0020 0.0020 0.0020

In order to intuitively show the scheduling schemes obtained by different algorithms,
some Gantt charts of scheduling schemes obtained by different algorithms are provided,
as shown in Figures 4–6. Each scheduling scheme corresponds to a solution in the Pareto
front. We only provide Gantt charts of Job1, Job8, and Job16, and the Gantt charts for
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other scheduling problems are similar to these three. In the Gantt charts below, we can
see how the jobs are organized and processed for the scheduling scheme obtained by each
algorithm, and it can be seen that the scheduling scheme obtained by IMOEA/DTL has a
smaller makespan. Not only that, in all the following scheduling schemes, IMOEA/DTL
has the smallest energy cost.
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Figure 6. The Gantt charts of Job16, (a,b) are Gantt charts of the first and second operation of Job16 respectively;
the makespan and energy cost of NSGA-II, SPEA2, MOEA/D-MR, and IMOEA/DTL are (4.0066× 104, 3.3994× 106),
(4.0020× 104, 3.3900× 106), (4.0029× 104, 3.4038× 106), and (3.9960× 104, 3.3800× 106) respectively.

Table 12 shows the average makespan and average energy cost obtained by MOEA/D-
MR, NSGA-II, SPEA2, and IMOEA/DTL. Table 12 indicates that both the average makespan
and average energy cost obtained by IMOEA/DTL are lower than those obtained by
MOEA/D-MR, NSGA-II, and SPEA2. Therefore, IMOEA/DTL can provide the solution
with lower makespan and energy cost than MOEA/D-MR, NSGA-II, and SPEA2. This
study adopts a multi-objective algorithm, and a non-dominated solution set is obtained.
The solutions in the non-dominated solution set have lower energy cost or makespan,
but they are mutually exclusive. Decision makers can select an optimal solution on the
basis of actual situations. For instance, the solution with a low makespan can be selected
in the case of a heavy production task, which can improve the utilization efficiency of
the workshop and ensure that the task can be completed on schedule. On the contrary,
the decision-makers can choose the optimal solution with low energy cost to reduce the
production cost.
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Table 12. The average makespan and average energy cost obtained by MOEA/D-MR, NSGA-II, SPEA2, and IMOEA/DTL.

Problems
Makespan (Minute) Energy Cost (CNY)

MOEA/D-MR NSGA-II SPEA2 IMOEA/DTL MOEA/D-MR NSGA-II SPEA2 IMOEA/DTL

Job1 10,049 10,064 10,053 9939 801,309 803,965 804,358 795,656
Job2 11,817 11,864 11,881 11,800 964,677 966,456 966,000 957,500
Job3 14,104 14,139 14,175 14,033 1,158,100 1,161,747 1,159,518 1,150,038
Job4 16,030 16,089 16,128 16,008 1,302,626 1,304,014 1,303,485 1,291,973
Job5 18,534 18,537 18,567 18,460 1,520,818 1,521,966 1,521,371 1,511,605
Job6 19,603 19,680 19,642 19,531 1,610,892 1,608,901 1,610,826 1,596,377
Job7 21,236 21,348 21,337 21,222 1,777,566 1,779,676 1,778,261 1,768,963
Job8 23,006 23,044 23,063 22,953 1,916,511 1,921,468 1,918,722 1,908,951
Job9 27,008 27,075 27,079 26,922 2,223,799 2,226,399 2,224,613 2,213,336
Job10 26,571 26,585 26,584 26,501 2,193,870 2,193,213 2,193,967 2,183,339
Job11 28,920 28,914 29,001 28,886 2,427,444 2,426,101 2,424,184 2,408,955
Job12 30,127 30,167 30,219 30,117 2,565,900 2,568,756 2,566,343 2,551,189
Job13 32,440 32,451 32,510 32,358 2,699,366 2,700,491 2,697,074 2,684,005
Job14 35,034 35,093 35,078 34,972 2,887,249 2,887,706 2,886,665 2,876,694
Job15 35,787 35,835 35,768 35,712 2,984,084 2,985,389 2,985,440 2,971,161
Job16 40,290 40,241 40,253 40,185 3,380,449 3,385,432 3,383,498 3,368,202

In China, most of the scheduling jobs of the tissue paper mills are completed by
workers based on their experience. The quality of the scheduling depends on the experience
of the workers. In this study, a real scheduling problem is solved by IMOEA/DTL, and the
solution is compared with that obtained by workers. The solution obtained by workers has
the makespan of 17,035 and the energy cost of 1,368,497. Table 13 indicates that the average
makespan obtained by IMOEA/DTL is about 7.5% less than that obtained by the worker.
The average energy cost obtained by IMOEA/DTL is about 1.5% less than that obtained
by the worker. From Table 13, it can be seen that the minimum energy cost is 1,333,494,
and the corresponding makespan is 16,754, which reduces by 2.6% and 1.6%, respectively.
The minimum makespan is 15,367, and the corresponding energy cost is 1,361,331, which
decrease by 9.8% and 0.5%, respectively. The largest energy cost is 1,375,361, which is
0.5% higher than the cost obtained by the worker, but the corresponding makespan is
reduced by 9.5%. The largest makespan is 18,675, which is 8.8% higher than the cost
obtained by the worker, but the corresponding energy cost is reduced by 2.5%. It can be
concluded that IMOEA/DTL can reduce both the energy cost and the makespan. Although
the maximum makespan and the maximum energy cost are larger than those obtained
by the worker, the corresponding energy cost and makespan are smaller. Figure 7 shows
the scatter plot for the solutions obtained by IMOEA/DTL and the worker. The energy
cost obtained by IMOEA/DTL is lower than that obtained by the worker. The solutions of
IMOEA/DTL with lower energy cost than that obtained by the worker account for about
98.56% of the total solutions of IMOEA/DTL. While the solutions of IMOEA/DTL with
lower makespan than that obtained by the worker account for about 97.12% of the total
solutions of IMOEA/DTL. About 95.68% of the total solutions obtained by IMOEA/DTL
have lower energy cost and makespan than those obtained by the worker.

Table 13. The average, maximum, and minimum value of energy cost and makespan obtained
by IMOEA/DTL.

Average
Makespan
(Minute)

Average
Energy cost

(CNY)

Maximum
Makespan
(Minute)

Minimum
Energy Cost

(CNY)

Minimum
Makespan
(Minute)

Maximum
Energy Cost

(CNY)

15,754 1,347,737 18,675 1,333,494 15,367 1,375,361
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In practical applications, the construction of basic data is a particularly critical issue,
especially setup-related data, which requires a lot of statistical data. We suggest that a
part of the key data can be constructed through the manufacturing execution system,
and through the manufacturing execution system, we can know the status of machine,
personnel, and materials in real time, and thus make timely responses to emergencies
in the production process. In addition, we recommend using commercial production
scheduling software and then integrating the model into commercial software. Compared
with developing a scheduling system from scratch, this has a higher success rate.

5. Conclusions

This study explored a novel energy-saving approach by scheduling under TOU elec-
tricity tariffs for tissue paper mills. First of all, an energy cost model was established based
on TOU electricity tariffs. The energy cost consists of transportation energy cost, set-up
energy cost, and processing energy cost. Second, an energy-efficiency scheduling model
was built on the basis of the scheduling model and the energy cost model. Finally, the
model was solved by proposing a novel IMOEA/DTL method. The experiment made a
comparison between the proposed method and two popular multi-objective optimization
methods, MOEA/D-MR, NSGA-II, and SPEA2. The experiment results demonstrate that
the proposed method performs better than NSGA-II and SPEA2 in terms of C-metric and
HV-metric. Moreover, the proposed method has been proven to have an energy-saving
ratio of 2.6% through a real scheduling problem. Considering the similarity between the
production processes in tissue paper mills and other papermaking mills, the results are of
great reference significance for other papermaking mills.

However, this study implemented the algorithms by MATLAB, and the speed of the
algorithms should be further improved. Therefore, the speed of the algorithms will be
improved in future research.
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