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Abstract: The aim of the present study was to synthesize various samples of activated carbon
(AC) from different agricultural sources as precursors, like orange peels, tea stalks, and kiwi peels,
as well as sucrose. The synthesis of AC was achieved with chemical activation using H3PO4 and
KOH. The produced AC samples were tested as adsorbents for the removal of a pharmaceutical
model compound, pramipexole dihydrochloride (PRM), from synthetic aqueous synthetic solutions.
The produced-from-sucrose AC presented the higher yield of synthesis (~58%). The physicochemical
features of the materials were analyzed by FTIR spectroscopy, N2 physisorption, and SEM imaging.
More specifically, the AC sample derived from sucrose (SG-AC) had the highest specific surface
area (1977 m2/g) with the total pores volume, mesopores volume, and external surface area being
1.382 cm3/g, 0.819 cm3/g, and 751 m2/g, respectively. The effect of the initial pH and PRM concentra-
tion were studied, while the equilibrium results (isotherms) were fitted to Langmuir and Freundlich
models. The maximum adsorption capacities were found to be 213, 190, 155, and 115 mg/g for AC
samples produced from sucrose, kiwi peels, orange peels, and tea stalks, respectively.

Keywords: activated carbons; adsorption; pharmaceuticals; sucrose; kiwi peels; orange peels;
tea waste

1. Introduction

Activated carbons (ACs) is a class of materials with excellent adsorption capability [1–5],
high specific surface area [6–9], and total pore volumes [10–13], where according to its
porous structure it can be separated depending on the diameters of pores in microporous
(0–2 nm), mesoporous (2–50 nm), and macroporous structures (>50 nm), respectively [6].
It is important to highlight the definition of activated carbon; it is a carbon-rich solid that is
derived from biomass or other carbonaceous substances, using pyrolysis. In the process,
a carbon material is also “activated” by processes that greatly increase the surface area of
the material, allowing it to capture (or “adsorb”) a larger quantity of molecules. This high
adsorption capability allows activated carbon to be effective at removing contaminants
from water and air, which is why activated carbon is typically intended for remediation
or purification projects. So, the key factor in the use of activated carbon in remedia-
tion/decontamination technologies is to use the most appropriate primary source so as to
prepare the AC with the highest specific surface, suggesting the highest decontaminative
ability. For this reason, various agricultural peels (biochars) were tested as adsorbents [14]
and also the preparation tips to synthesize the most suitable activated carbon sample [15].
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In the last decades, the pollution of the aquatic environment with micropollutants,
predominately due to the rise of industrialization, has increased the environmental concern.
These emerging contaminants can be categorized based on their origin in natural and
anthropogenic substances, with the major ones of the latter category including pesticides,
pharmaceuticals, industrial chemicals, steroids hormones, products for personal care,
and many other types of emerging compounds. Their diversity and low concentration
complicate the procedures of analysis and detection, with the result being the creation of
challenges for the processes of wastewater treatment [16].

There are a wide number of methods for the treatment of water and wastewater,
including reverse osmosis [17], filtration with membranes [18], ion-ion exchange [19], pho-
tocatalytic detoxification [20], and so on, but it cannot be omitted that these techniques
have many drawbacks. However, adsorption is a very efficient process in a variety of
cases compared to the aforementioned techniques, because a plethora of organic pollu-
tants simultaneously with inorganic ones can be removed from aqueous matrixes [21–24].
Additionally, the absence of sludge formation, the potential reusability of the adsorbents,
the operation simplicity, and the low costs when compared with other processes must
also be noted [25]. Going a step beyond towards sustainable approaches, the synthesis
of activated carbons can be achieved in large scales by utilizing abundantly available
biomass/wastes as feedstocks.

The advantages of chemical activation include activation in a shorter duration with a
single activation step, lower temperature of activation (lower energy and operating costs),
higher yields, and as a result higher atom economy, resulting in high specific surface area
and microporosity. The method of chemical activation also has disadvantages, such as
the high cost for the purchase of activating agents, and the amount of deionized water
that is used in order to remove process-generated impurities. Phosphoric acid (H3PO4)
has been preferred and is suitable for the process of chemical activation, a fact that is
attributed to economic and environmental concerns. In addition, the use of H3PO4 can
lead to the development of both a micropores and mesopores structure in the yielding
ACs [26]. Potassium hydroxide (KOH) activation agent is also widely utilized because
it can produce ACs of a high volume in pores and especially in a microporous structure
of elevated specific surface area, reaching values above 3000 m2/g. The process of acti-
vation with KOH is efficient for the formation from small mesopores to ultra-micropores
into the framework of carbon fibers, carbon nanofibers, carbons derived from carbide,
carbon aerogels, carbon nanotubes, and templated graphene [27].

In this present work, the synthesis of ACs from various biomass sources (sucrose,
kiwi peels, orange peels, and tea stalks) and by using H3PO4 and KOH as activation
agents was investigated in order to obtain efficient removal medias against pramipexole
dihydrochloride from aqueous solution.

Pramipexole dihydrochloride is a pharmaceutical compound ((6S)–N6-propyl-4,5,6,7-
tetrahydro-1,3-denzothiazole-2,6-diamine) and is an innovative and non-ergoline dopamine
agonist. Primarily, this pharmaceutical compound was used against the idiopathic Parkin-
son’s disease symptoms [28–30], and also during research in Europe and the US, its usage
was approved in adults for the treatment of the syndrome of idiopathic restless legs [31].
Consequently, due to its unique activity, it is widely used at a worldwide scale as a phar-
maceutical compound. Moreover, it can be assumed that the use of this pharmaceutical
compound will continue to develop and increase when the physicians of primary care
become more familiar with its use. Some hospitals and industries that produce this phar-
maceutical compound are discharging this pharmaceutical compound in their effluents,
resulting in the final recipient being the natural resources of water. It is important to
note that until now, no data is given in the literature for the detection of prami in wa-
ter/wastewater. However, as described above, pramipexole has similar groups with other
pharmaceutical compounds, so the study of its removal from aqueous systems can be a
good tool for explanations. So, the treatment of wastewater that contains pramipexole is of
great interest [28].
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The selection of the sources to produce the activation carbons and the reasons behind
were based on the following: (i) one of the most valuable agricultural wastes for the
synthesis of AC is orange peels, which are mainly discarded in large quantities from
juice industries. The pollution of land space with orange peels is becoming problematic
due to the phenolic functional groups [32,33]; (ii) one of the most widely consumed
beverages is tea, and it is consumed on a daily basis all around the world [34]. The tea
wastes are not useful in any area of industrial activity and can be used probably only as
fertilizers; (iii) kiwi peels were selected because they have high cellulose content; and
(iv) sucrose (α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside) is an inexpensive chemical
produced by sugar cane and sugar beet cultivation, having a lot of carbons in its structure.
After the optimization of synthetic protocols, the AC samples were characterized with FTIR
spectroscopy, N2 physisorption tests, and scanning electron microscopy (SEM) images.
The removal efficiency evaluation was conducted based on the maximum theoretical
adsorption capacity, which was calculated by fitting the equilibrium data to Langmuir and
Freundlich models.

2. Materials and Methods
2.1. Materials

The model pollutant used to simulate the pharmaceutical wastewater was pramipexole
dihydrochloride (C10H21Cl2N3OS; MW = 324.44 g/mol, assay 99.2%), which was purchased
by the pharmaceutical company Amino Chemical Ltd. (Marsa, Malta). Figure 1 presents
the chemical structure of pramipexole dihydrochloride. The synthetic pharmaceutical
solutions (1000 mg/L) were synthesized by weighing and diluting the appropriate quantity
of pramipexole in water solution. In addition, for the assessment of those solutions,
spectrophotometric assays were used and it was determined that after their storage at
−20 ◦C, the overall concentration at the prepared solution can stay stable longer than
1 week.
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The carbon precursors for the production of activated carbon were sucrose (com-
mercial product), orange and kiwi peels (residues from Greek restaurants), and tea stalks
(supplied by Department of Forestry and Natural Environment, International Hellenic
University, Thessaloniki, Greece). All the chemical agents used for the synthesis of AC, in-
cluding H3PO4, KOH, and HCI, were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and were of analytical grade.

2.2. Synthesis of AC from Various Carbon Sources
2.2.1. Activated Carbon from Sucrose (SG-AC)

Sucrose (SG) was used for the synthesis of SG-AC. The SG was placed in a pestle
and crunched in order to obtain a fine powder. The activation was carried out with using
phosphoric acid. Briefly, 10 g of fine SG powder were dispersed in 10 mL of deionized
water placed in a vial and kept at 65 ◦C under stirring for 5 min. Then, 17 mL of H3PO4
(85% w/w) were added and the solution was kept at the same temperature under stirring
for 45 min. During the preparation process, the color of the suspension changed from white
initially to yellow and then to blackish. Finally, the mixture was swollen and stabilized
when the temperature of suspension was adjusted at 120 ◦C. The obtained swollen stable
product was placed in porcelain boats and completely dried for 1.5 h at 140 ◦C. The yielded
material after the drying process had a powder form. The process of carbonization and
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activation was achieved in a pyrolysis oven at 650 ◦C for 1 h (heating rate 10 ◦C/min),
under N2 (pure: 99.9%; flow: 30 STP cm3/min). The yielded material was cooled down at
ambient temperature and thereafter was washed with HCl (37%) in order to remove the
excess H3PO4 and then washed with deionized water until reaching the neutral pH (6–7)
of the filtrate. Finally, the material was placed in an oven and dried at 110 ◦C for 12 h to
obtain the final black powder, referred to as SG-AC.

2.2.2. Activated Carbon from Orange Peels (ORP-AC), Tea Stalks (TEA-AC), and Kiwi
Peels (KWP-AC)

The orange peels (ORP) were washed with deionized water to remove the inorganic
impurities. Then, they were dried at 110 ◦C (24 h) in an oven to eliminate the moisture. Next,
the obtained biomass was ground using a mortar and sieved to obtain particles with a size
of 0.45–0.15 mm. The ORP biomass was chemically activated by using KOH. In particular,
10 g of dry ORP were mixed for 24 h with an aqueous basic solution (3 M KOH) under
stirring at ambient temperature. Afterwards, the obtained chemically treated biomass was
dried in an oven at 110 ◦C (24 h). The process of carbonization/activation was achieved by
thermally treatment of the obtained solid residues at 650 ◦C (heating rate 10 ◦C/min) for
1.5 h, under N2 (99.999% pure) flow of 30 STP cm3/min. After cooling down at ambient
condition, the received orange peels derived activated carbon was washed with HCl (37%)
solution and water until neutral pH (6–7) of the filtrate in order to remove the excess KOH
and impurities. Finally, the yielded black material was dried at 110 ◦C (24 h), with the final
dry sample referred to as ORP-AC.

Activated carbon from tea stalks was prepared following the same synthetic protocol
but using 10 g of tea stalks (TEA) as a precursor instead of orange peels, while the final
obtained material is referred to as TEA-AC. For the kiwi peels-derived material, 10 g of dry
KWP were treated as for ORP or TEA in order to obtain the dried and ground/powder
biomass, which was dispersed in 125 mL of H3PO4 (85% w/w) for 24 h under vigorous
stirring at ambient conditions, instead of a basic solution, with the rest of the steps being
identical to those for ORP-AC. The kiwi peels-derived activated carbon is referred to as
KWP-AC. A schematic illustration for the main steps of the synthetic protocols can be seen
in Figure 2.

2.3. Adsorption Evaluation
2.3.1. pH Effect

The adsorption evaluation was achieved by studying the effect of the initial pH and
by the analysis of the obtained isotherms. All the batch experiments were performed in
triplicates. For the pH-effect experiment, a fixed amount of AC sample (0.02 g) was added
to 20 mL of pramipexole dihydrochloride (PRM) solution (C0 = 200 mg/L) in a conical flask.
The pH adjustment (at pH = 3, 5, 7, 9, 11) of the solution was achieved with micro-additions
of HCl (0.01 M) or NaOH (0.01 M) aqueous solutions. Then, the flasks of different solution
pH were placed in a shaking bath (25 ◦C) with a fixed agitation speed (160 rpm) and
allowed to shake for 24 h. Finally, the analysis of the residual PRM concentration was
carried out.

2.3.2. Equilibrium/Isotherms

For the isothermal experiments, a fixed amount of AC sample (0.02 g) was added to
20 mL of PRM solution (C0 = 5–250 mg/L) in a conical flask. The initial pH adjustment of
the solution at pH = 3 (since it was found to be the optimum value from Section 2.3.1) was
achieved with micro-additions of HCl solution (0.01 M) or NaOH (0.01 M). Then, the flasks
of different initial PRM concentrations were placed in a shaking bath (25 ◦C) with a fixed
agitation speed (160 rpm) and allowed to shake for 24 h. Finally, the analysis of the residual
PRM concentration was carried out.
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Figure 2. Synthesis procedure of activated carbon (AC) samples.

The first stage in a lab-scale adsorption experimental design is the pH-effect exper-
iments. This is very important in order to understand the adsorption interactions at the
optimum pH conditions. This is crucial for the study of the whole adsorption phenomena.
It must be noted that, in some cases, the optimum pH conditions are not the same as those
of the discharging effluent. In general, the composition of pharmaceutical wastewater is
complex, which has a high concentration of organic matter, microbial toxicity, high salt,
and it is hard to biodegrade. In addition, most pharmaceutical factories use the batch
process, and there are different raw materials and production processes, which causes huge
varieties in different wastewater with pH values from 1 to 8 [35,36]. However, the latter
(different optimum pH value in the lab scale compared to the pH of real wastewater) can
be overcome with the (i) adjustment of the pH value of the real effluent or (ii) with further
attempts to synthesize adsorbent materials, which successfully act both at the optimum
pH conditions in batch mode (lab scale) and in real conditions (with probably a slight
decrease). Especially regarding the pH adjustment of the real effluent, the adjustment of
pH in real wastewaters is not usually a good method, especially in domestic wastewater
treatment plants (WWTPs). However, there is no clear indication about the pH conditions
of wastewaters from pharmaceutical industries. There are reports in the literature with pH
values in acidic conditions and also some other studies with alkaline pH values [35,36].
The latter depends on the number and nature (charge) of the pharmaceutical compounds
existing in the effluent.
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2.3.3. Analysis and Fitting

The concentration of residual PRM was determined with the use of the spectrophoto-
metric method by adjusting its UV absorbance at λmax = 263 nm with the use of a UV-Vis
spectrophotometer (U-2000, Hitachi, Japan). The absorbance wavelength change that was
obtained from the generated results was determined as unimportant (~2%). The cali-
bration curves were created from absorbance versus PRM concentration using the linear
Beer–Lambert relationship. To correlate the absorbance measured from UV-Vis spectropho-
tometer with the PRM concentration, the following chart was prepared (calibration curve)
(Figure 3).
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In addition, with the use of the mass balance equation, as presented below (Equation (1)),
the quantity of pramipexole that is taken up at the equilibrium phase was calculated Qe
(mg/g) (where C0 and Ce (mg/L) are the initial and equilibrium concentrations of PRM,
respectively; V (L) is the volume of aqueous solution; and m (g) is the mass of the AC
sample used):

Qe =
(C0 −Ce)V

m
(1)

The experimental equilibrium data were fitted to the Langmuir (Equation (2)) [37] and
Freundlich (Equation (3)) [38] isotherm equations expressed by the following equations:

Qe =
QmKLCe

1+KLCe
(2)

Qe= KFCe
1/n (3)

where Qm (mg/g) is the maximum amount of adsorption; KL (L/mg) is the Langmuir
adsorption equilibrium constant; KF (mg1−1/n L1/n/g) is the Freundlich constant rep-
resenting the adsorption capacity; and n (dimensionless) is the constant depicting the
adsorption intensity.

2.3.4. Error Analysis

Determination of the best isotherm model is only possible through analysis of the
correlation coefficient (R2). Although efficient, this indicator is limited to solving isotherm
models that present linear forms. Therefore, in this work, three different error functions
were employed in order to discover the isotherm model most suitable for representing the
experimental data. The sum of squared errors (SSEs) (Equation (4)) is the most commonly



Processes 2021, 9, 253 7 of 19

utilized error function. However, it has the disadvantage of providing isotherm parameters
that present better adjustment to the final portion of the isotherm. This is due to the
magnitude of the errors, which causes an increase in squared errors as the adsorbate
concentration increases. The sum of absolute errors (SAE) (Equation (5)) also provides better
adjustments for higher concentrations. This occurs because an increase of the concentration
range causes an increase in error. The average relative error (ARE) (Equation (6)) function
attempts to minimize the fractional error distribution across the entire concentration range:

SSE =
n

∑
i=1

(
Qe,calc −Qe,exp

)2

i

(4)

SAE =
n

∑
i=1

∣∣∣Qe,calc −Qe,exp

∣∣∣
i

(5)

ARE =
100
n

n

∑
i=1

∣∣∣∣∣Qe,calc −Qe,exp

Qe,exp

∣∣∣∣∣
i

(6)

2.4. Characterization Techniques

The morphology of the synthesized AC samples was studied by scanning electron
microscopy (SEM) images by a Jeol JSM-6390 LV, Japan. The accelerating voltage was
15.00 kV, and the scanning was performed in situ on a dry sample powder. For the FTIR
spectra (after adsorption of the anti-inflammatory compounds), an FTIR-spectrometer
(Perkin Elmer FT-IR/NIR spectrometer Frontier, New York, NY, USA) was used. The spec-
tra were recorded from 3500 to 500 cm−1 (2 cm−1 as the resolution and a total of 32 scans)
and presented with baseline correction (transmittance mode). The specific surface area
of ACs was estimated at 77 K from the nitrogen adsorption/desorption isotherms by
employing a Quantachrome analyzer (Nova 4200e, New York, NY, USA). The model of
Brumauer–Emmett–Teller (BET) was used in order to calculate the BET specific surface
areas. The calculation of the external surface area, micropore surface area, and micropore
volume was achieved with the t-plot method.

3. Results and Discussion
3.1. Characterizations
3.1.1. FTIR Spectroscopy

Figure 4a collects the FTIR spectra of all herein synthesized AC samples. SG-AC
appears as a weak band at about 2285 cm−1, which is assigned to the P–H bond, and in-
dicates the presence of phosphine and phosphonate structures [39]. The broad peaks at
about 2077 and 1987 cm−1 are assigned to N–H· · ·O stretching and bending intramolecular
hydrogen bonding. The broad band centered at 1902 cm−1 is attributed to the stretching
and bending vibrations of N–H· · ·O and may suggest the appearance of intramolecular
hydrogen bonding [40]. The broad band at 1554 cm−1 corresponds to the C=O stretching
vibration [41] in the carboxyl groups [42] or lactose groups [43] or to the skeletal C=C
vibration of aromatic rings [44]. Moreover, the broad band at 1150 cm−1 is attributed to
–OH stretching and bending vibrations in C–OH, respectively [28]. Moreover, the weak
band at 877 cm−1 corresponds to the out-of-plane bending mode of the group of C–H or
O-H [41] and the very weak band at 613 cm−1 is ascribed possibly to O–H vibrations in the
OH groups [40] of aromatic structures [26].
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In the case of ORP-AC, the FTIR spectrum presents a weak band at about 2286 cm−1,
which is assigned to the P–H bond and indicates the presence of phosphine and phos-
phonate structures [39]. The broad peaks at about 2083 and 1992 cm−1 are assigned to
N–H· · ·O stretching and bending intramolecular hydrogen bonding. In addition, the broad
band at 1892 cm−1 can be attributed to the stretching and bending vibrations of N–H· · ·O
and may suggest the appearance of intramolecular hydrogen bonding [40]. The broad
band at 1551 cm−1 may be assigned to the skeletal C=C vibration of aromatic rings [40,44].
The broad band at about 1007 cm−1 is associated with the C–O stretching of benzyl hy-
droxyl [45]. Moreover, the weak band at 876 cm−1 corresponds to the out-of-plane bending
mode of the group of C–H or O–H [41] and the very weak band at 614 cm−1 is ascribed
possibly to v O–H in the OH groups [40] of aromatic structures [26].

In the case of TEA-AC, the FTIR spectrum presents a broad band at about 2295 cm−1,
which is assigned to the P–H bond and indicates the presence of phosphine and phos-
phonate structures [39]. The broad peaks at about 2084 and 1992 cm−1 are assigned to
N–H· · ·O stretching and bending intramolecular hydrogen bonding. In addition, the broad
band at 1866 cm−1 is attributed to the stretching and bending vibrations of N–H· · ·O and
may suggest the appearance of intramolecular hydrogen bonding [40]. The broad band
at 1552 cm−1 may be assigned to the skeletal C=C vibration of aromatic rings [40,44] or to
the benzene ring stretch [45]. Moreover, the broad band at 1150 cm−1 is attributed to –OH
stretching and bending vibrations in C–OH, respectively [28]. Moreover, the weak band at
877 cm−1 corresponds to the out-of-plane bending mode of the group of C–H or O–H [41]
and the very weak band at 615 cm−1 is ascribed possibly to νO-H in the OH groups [40] of
aromatic structures [26].

In the case of KWP-AC, a weak band at about 2287 cm−1 is assigned to the P–H
bond and indicates the presence of phosphine and phosphonate structures [39]. The broad
peaks at about 2085 and 1988 cm−1 are assigned to N–H· · ·O stretching and bending
intramolecular hydrogen bonding. In addition, the broad band at 1842 cm−1 is attributed
to the stretching and bending vibrations of N–H· · ·O and may suggest the appearance of
intramolecular hydrogen bonding [40]. The broad band at 1552 cm−1 may be assigned to the
skeletal C=C vibration of aromatic rings [40,44]. In addition, the broad band at 1150 cm−1 is
attributed to –OH stretching and bending vibrations in C-OH, respectively [28]. Moreover,
the weak band at 878 cm−1 corresponds to the out-of-plane bending mode of the group of
C–H or O-H [41] and the very weak band at 612 cm−1 is ascribed possibly to νO–H in the
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OH groups [40] of aromatic structures [26]. All the above bands based on different bonding
are summarized in Table 1.

Table 1. FTIR bands based on different bonding.

Wavelength (cm−1)

Bond/Vibration SG-AC ORP-AC TEA-AC KWP-AC

P–H 2285 2286 2295 2287
N–H O 2077, 1987, 1902 2083, 1992, 1892 2084, 1992, 1866 2085, 1988, 1842
C=O or C=C * 1554 1551 * 1552 1552 *
–OH in C-OH 1150 1150 1150
C–O 1007
C–H or O–H (out-of-plane bending) 877 876 877 878
νO–H in OH (aromatic structures) 613 614 615 612

* refers to C=C.

To understand the adsorption interaction among PRM molecules and materials,
FTIR spectra after adsorption were taken. So, after PRM adsorption, the band at about
2285 cm−1 revealed a higher intensity, while a new band at about 2360 cm−1 appeared
(Figure 4b). These findings are attributed to the interaction with PRM molecules. In addi-
tion, the band at 1552 cm−1 became more intense and a new band at 1600 cm−1 appeared.
On the other hand, the bands at 2077, 1987, and 1902 were eliminated, depicting that these
groups reacted with the PRM molecule. The bands at 878 (out-of-plane bending) and
612 cm−1 (νO–H) shifted to 865 and 672 cm−1, respectively.

3.1.2. N2 Physisorption Tests Analysis

Nitrogen adsorption/desorption isotherms at −196 ◦C for the prepared AC samples
are presented in Figure 5a.
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According to the classification of IUPAC, the adsorption isotherms for ORP-AC, TEA-
AC, and KWP-AC revealed combined Type I isotherm characteristics at very low relative
pressure p/p0 and Type II characteristics at high relative pressure p/p0, indicating the
presence of micropores and mesopores at <2 and 2–50 nm, respectively. These results were
also confirmed due to the presence of H3 and H4 desorption hysteresis loops, which associ-
ated with slit-shaped pores [32]. In contrast, SG-AC presented a Type IV isotherm [46–48]
and presents a desorption hysteresis loop of Type H2(b), because its desorption branch is
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not too steep as in the case of H1 and H2(a) hysteresis loops. Such hysteresis loop results
are mainly presented after hydrothermal treatment of certain mesoporous ordered silicas
and mesocellular silica foams [49]. According to the classification of IUPAC, the Type IV
isotherm is exhibited when a mixture of microporous and mesoporous material occurs.
This indicates capillary condensation in the mesopores structure [50]. All the details about
the textural parameters of the yielded AC samples are given in Table 2.

Table 2. Details of the textural parameters of the yielded AC samples.

AC
Sample

Surface
Area

(m2/g)

Micropore
Surface

Area
(m2/g)

External
Surface

Area
(m2/g)

Total Pore
Volume
(cm3/g)

Micropore
Volume
(cm3/g)

Mesopore
Volume
(cm3/g)

SG-AC 1977 1226 751 1.382 0.563 0.819
ORP-AC 1298 340 928 1.421 0.152 1.270
TEA-AC 1284 922 361 0.784 0.439 0.345
KWP-AC 1446 976 471 0.815 0.454 0.361

As it can be seen from Table 2, the highest total pore volume (1.421 cm3/g) and meso-
pores volume (1.270 cm3/g) was found for ORP-AC, while the highest surface area was
found for SG-AC (1977 m2/g). In addition, the highest external surface area (928 m2/g) and
micropore surface area (1226 m2/g) were achieved for ORP-AC and SG-AC, respectively.
The lowest micropore volume was found for ORP-AC (0.152 cm3/g), while the highest
micropore volume was achieved with SG-AC (0.563 cm3/g).

Special attention must be given to pore size distributions. The pores of ORP-AC,
TEA-AC, and KWP-AC are located between the 18 and 37 Å width range (Figure 5b).
In addition, TEA-AC and ORP-AC have the higher incremental pore volume of 0.091 and
0.084 cm3/Å/g, respectively (between 10 and 18 Å).

Regarding KWP-AC, the incremental pore volume is 0.045 cm3/Å/g in the range
10–18 Å. The highest incremental pore volume (0.0074 cm3/Å/g) was presented for SG-AC
at about 40–100 Å, while for all other cases, it is almost zero. SG-AC presents an increase
of incremental pore volume at 80–170 Å of approximately 0.0096 cm3/A/g (mesoporous
structure), while in the other cases, it is near zero. This result may be attributed to the
high surface area (1976.817 m2/g) of SG-AC, high total pore volume (1.3820 cm3/g) and
mesopore volume (0.8190 cm3/g), and also due to the combination of the micropores
(~40.7%) and mesopores structure (~59.3%).

It must be noted that some changes are attributed to the different synthesis route
that was followed. Hence, the development of the micropore volume is similar according
to the solid salt volume, which is incorporated into the particle, and has as a result a
uniform structure of microporosity [51]. In the case of chemical activation with H3PO4,
volatile phosphorus compounds can be formed due to the following reactions [44]:

4H3PO4 + 10C→P4 + 10CO + 6H2O
4H3PO4→P4O10 + 6H2O
P4O10 + 10C→P4 + 10CO

(7)

In the case of chemical activation with KOH, the pores formation is attributed to the
metallic potassium intercalation process. The activation process is as follows [52]:

6KOH + 2C→ 2K + 3 H2 + 2K2CO3
K2CO3 → K2O + CO2

K2CO3 + 2C→ 2K + 3CO
CO2 + C→ 2CO

C + K2O→ 2K + CO

(8)
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3.1.3. SEM Images

Figure 6 presents the SEM images of the prepared AC samples. It can be clearly
observed that the AC derived from sucrose (Figure 6a) has particles of a very small size
(5–40 µm), which may be attributed to the fact that during the process of impregnation
with H3PO4, a small amount of monosaccharides did not achieve aggregation with the
other monosaccharides for the achievement of a solid surface. It can also be observed from
Figure 6b–d that ORP-AC, TEA-AC, and KWP-AC have a rough surface while many cages
and cavities can be observed that can be linked to the entrance of the porous network.
This fact is attributed to the intercalation of metallic potassium in the cellulosic (33.98%)
and pectin (20.9%) structure of the orange peels biomass [53], cellulose, and lignocellulose
structure [54]. The cavities produced from the space, which was previously occupied by
KOH due to the impregnation process, thereafter were evaporated (volatiles) due to the
process of carbonization. Then, the inert atmosphere (N2 flow) and the carbonization
process at high temperature, which was initially followed by the impregnation of raw
sample (ORP, TEA) with the KOH activation agent, presented favorable microstructure
degradation. So, it can be concluded that such microstructure degradation is related when
important losses of mass occur.
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3.1.4. Yield of AC Samples

The yield of SG-AC was found to be as high as 58%. So, to understand this, a special
note must be made for the whole activation process. The phosphorus of H3PO4 is interca-
lated in the molecular structure of broken down carbon rings of fructose (ketose-C6H12O6)
and glucose (aldose-C6H12O6) with a mild exothermic reaction at approximately 120 ◦C.
The phosphorus moieties are intercalated efficiently within and between the molecular
structure of the carbon rings of fructose (ketose-C6H12O6) and glucose (aldose-C6H12O6)
due to the high solubility of monosaccharides in water solutions and the existence of tem-
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perature. More specifically, after the addition of phosphorus in the water solution, this mild
exothermic reaction at 120 ◦C breaks down the carbon rings of fructose (ketose-C6H12O6)
and glucose (aldose-C6H12O6), due to dehydration of the hybridized orbitals between
carbon atoms (sigma bonds). The dehydration of sucrose with H3PO4 gives a high yield of
AC (58%), because after the dehydration process, the –OH and –HO bonds of sucrose are
replaced by the –OH and –HO bonds of phosphoric acid, and consequently are intercalated
and the phosphorus compounds in the molecular structure of atom of carbon create a
regeneration of “new sucrose”, because the sucrose and phosphoric acid have the same
crystal structure (monoclinic).

After the oven-dry process, the yielded amount of carbon from 10 g of initial precursor
(sucrose) was 32 g. It is important to note that 10 g of sugar gave 32 g after the impregnation
with H3PO4 and drying in an oven at 140 ◦C for 1 h. This is attributed to the nature of
sucrose, because it is “disaccharide”, and the phosphorus compound breaks down the
aromatic rings between the carbon atoms, causing the increase (320%) of the initial weight.
In addition, another advantage due to the intercalation of phosphorus compounds in the
molecular structure of excess break down of carbon rings, due to dehydration of hybridized
orbitals, is that it does not generate high amounts of volatile gases during the process of
pyrolysis and consequently a high amount of AC is produced. After the process of pyrolysis
at 650 ◦C in an N2 atmosphere, the weight of AC was 18.1 g. This result may be attributed
to, in cooperation with the previous (32 g), the breakdown of carbon rings of fructose
(ketose-C6H12O6) and glucose (aldose-C6H12O6), due to dehydration of the hybridized
orbitals between carbon atoms. However, after the process of washing (decantation) in
order to obtain an almost neutral pH (6–7), the obtained material had a final weight of
approximately 5.8 g. As it can be observed in Figure 7, the other AC samples had very
low yields of AC due to the increased value of volatile gases from the surface of carbon
during pyrolysis.
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3.2. Adsorption Evaluation
3.2.1. Effect of pH

Figure 8 shows the removal efficiencies of activated carbons over a pH range of 3–11.
It can be concluded that the optimum PRM removal is achieved at pH 3 for all AC samples.

It is important to note that PRM was experimentally found to be stable and not
hydrolyzed at this pH (3). The latter was found carrying out a hydrolysis experiment
(10.00 mg/L of PRM in deionized water adjusted at pH = 3 with shaking at 25 ◦C for 24 h—
given that this was the maximum contact time in adsorption); the concentration found was
9.86 mg/L, which means 1.4% as a hydrolysis percentage. Additionally, the scanning of
the PRM in UV-Vis did not reveal any change in λmax (263 nm) (Figure 9).
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Another reason for the observed effect of pH on the adsorption may be the suppression
of the complexation. In solutions with a low pH value, some functional groups are
protonated (or difficult to dissociate) and the complexation between PRM and the functional
groups on the surfaces of the activated carbons increases. Additionally, based on the above
FTIR results, it can be concluded that strong pi-pi electron coupling and/or stacking
(mainly dispersion forces) between PRM molecules and aromatic rings of the carbon may
be the adsorption mechanism. The benzene rings of the drugs as well as their aromatic
heterocyclic rings are expected to interact with the polarized aromatic rings on carbons
via the mechanism of pi-pi electron coupling [28,55]. Additionally, the Lewis acid–base
interaction, where the amino groups of PRM molecules are the Lewis bases and the O-
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containing groups of carbons serve as Lewis acids, may be another important mechanism
of adsorption of PRM. The presence of lone pairs of electrons on nitrogen atoms produces
dipolar moments for PRM. Negative charges are close to these nitrogen atoms and the
presence of the polar oxygen groups on the carbon surface with a lone pair of electrons
on their oxygen atoms may be the reason for surface specific interactions between the
oxygen surface groups of carbon samples and PRM molecules [28]. The latter was in
accordance with another study [28], in which the adsorbent material was activated carbon
produced from potato peels and the pollutants adsorbed were pharmaceutical compounds
(pramipexole and dorzolamide).

3.2.2. Equilibrium/Isotherms

Figure 10 depicts the curves of the isotherms for the pramipexole adsorption from
aqueous solutions. Additionally, the isothermal parameters that resulted from the experi-
mental data fitting of Langmuir and Freundlich models are reported in Table 3.
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Table 3. Equilibrium parameters for the adsorption of PRM onto AC samples.

Langmuir Equation Freundlich Equation

Qm KL R2 KF n R2

Material mg/g L/mg mg1−1/n L1/n g−1

SG-AC 213 0.678 0.984 87.66 4.047 0.793
ORP-AC 155 0.094 0.929 47.73 4.800 0.856
TEA-AC 115 0.744 0.986 30.58 2.917 0.783
KWP-AC 190 0.517 0.968 72.02 3.988 0.788

The obtained correlation coefficients (R2) from the Langmuir model ranged from
0.929 to 0.986, while those of the Freundlich model ranged from 0.783 to 0.856. The Lang-
muir model fits the experimental results of all AC samples better.

As it can be observed, the highest pramipexole adsorption capacity (Qmax) at 25 ◦C
was achieved with the use of SG-AC and KWP-AC (Table 3) at pH 3. Therefore, the adsorp-
tion capacity order found was Qmax,SG-AC > Qmax,KWPs-AC > Qmax,ORP-AC > Qmax,TEA-AC,
respectively. The aforementioned order is in accordance with the surface area order
(Table 2), suggesting the key role of the specific surface area for PRM removal. This can
be supported by study of the correlation of the maximum adsorption capacity with the
surface area (Figure 11). As it can be observed, an increment of the specific surface area is
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accompanied by a non-linear increase of the removal efficiency, suggesting that except the
specific surface area, the size and shape of the pores as well as the surface chemistry matter.
It is worth mentioning that no trend was observed between the remaining textural features
and the adsorption capacity. The equilibrium PRM uptake in the case of all synthesized
AC samples was affected by the initial concentration of PRM using a constant dosage of
adsorbent (1 g/L). For low concentrations (10–100 mg/g), the adsorption of PRM using the
AC adsorbents was very intense and reached the phase of equilibrium rapidly. This phe-
nomenon indicates the possibility of forming monolayer coverage of PRM molecules on
the outer interface of the AC samples. Additionally, the size of the pores and their network
favors the diffusion of the PRM molecules towards the adsorption active sites. For higher
concentrations (100–250 mg/g), the highest Qmax of SG-AC may indicate the formation of
multilayer coverage due to a higher amount of oxygen groups; the same is also presented
for all AC samples but with lower Qmax. Table 4 shows the parameters calculated from the
error analysis.
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Table 4. The values of three different error analyses of isotherm models for adsorption of PRM onto
AC samples.

Langmuir Equation Freundlich Equation

SSE SAE ARE SSE SAE ARE
Material (%) (%)

SG-AC 855.91 77.79 6.00 11,271.08 321.99 18.30
ORP-AC 2145.58 136.67 9.66 6249.45 231.14 18.59
TEA-AC 320.24 45.33 2.39 3210.60 160.77 11.77
KWP-AC 1516.85 101.45 6.41 10,359.94 324.92 20.01

A direct comparison among the value of Qmax of various adsorbent materials cannot be
objective due to the different parameters of the followed synthetic protocols (temperature,
activation agent, cost of the precursor, etc.), and also mainly to the cost of synthesis.
However, to obtain a first sense about the range of adsorption of the used AC samples,
some examples are given in Table 5. As it can be observed, SG-AC has an excellent
adsorption capacity when compared with other adsorbent materials, and more importantly
compared to other carbonaceous materials obtained from biomass like potato peels or
tea waste.
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Table 5. Maximum adsorption capacities of different adsorbent materials for the removal of pharmaceuticals from aque-
ous solutions.

Adsorbent Compound Qmax (mg/g) References

Nanoporous carbon derived from MOFs Ciprofloxacin 417 [56]
MWNTs with 4.7% oxygen content Ciprofloxacin 206 [57]
Graphene oxide Ciprofloxacin 379 [58]
Porous graphene hydrogel granules Ciprofloxacin 236 [59]
Graphene oxide Sulfamethoxazole 240 [58]
High-silica zeolite HSZ-385 Sulfathiazole 402 [28]
Tea waste biochars Sulfamethazine 34 [60]
Graphene oxide Tetracyclines 313 [61]
Sulfonate grafted chitosan Pramipexole 337 [62]
N-(2-carboxybenzyl) grafted chitosan Pramipexole 307 [62]
Non-grafted cross-linked chitosan Pramipexole 181 [62]
Activated carbon from potato peels (hydrothermal) Pramipexole 66 [28]
Activated carbon from potato peels (pyrolyzed) Pramipexole 56 [28]
SG-AC Pramipexole 213 This study
KWP-AC Pramipexole 190 This study
ORP-AC Pramipexole 155 This study
TEA-AC Pramipexole 115 This study

4. Conclusions and Perspectives

The synthesis of activated carbon derived from sucrose, as a carbonaceous precur-
sor, gave an excellent yield (~58%) with a mesoporous structure (~59.3%) at a very low
impregnation ratio of the activation agent (H3PO4) per SG (1.7:1). According to nitrogen
physisorption tests, the activated carbon derived from sucrose had the highest surface area
(1977 m2/g) with the total pores volume, mesopores volume, and external surface area
being 1.382 cm3/g, 0.819 cm3/g, and 751 m2/g, respectively. It is worth noting that the
other synthetic protocols require a prolonged duration for the preparation of AC before
pyrolysis and higher energy consumption, when compared with the synthesis of sucrose
activated carbon. The effect of the initial PRM concentration was studied and the equilib-
rium results (isotherms) fitted the Langmuir model better. The adsorption capacities were
found to be 213, 190, 155, and 115 mg/g for AC samples produced from sucrose, kiwi peels,
orange peels, and tea stalks, respectively. The optimum pramipexole dihydrochloride
removal in the case of sucrose activated carbon was found to be 95% for pH 3 at a tempera-
ture of 25 ◦C. A future work may be the pyrolysis yielded after chemical impregnation of
sucrose-activated carbon in a microwave oven, autoclave, or other devices at 350–800 ◦C or
higher, under N2 flow. It may also be worthy to study the combination of other different
activation agents (acids or bases).
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