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Introduction
Mina Naeini
McMaster University

The Systems & Control Division

The Canadian Society for Chemical Engineering (CSChE), one of the constituent societies of the Chemical 
Institute of Canada, is a not-for-profit association made up of chemical engineering professionals, academics, 
students, and employees of government organizations. The Systems & Control (S&C) division of the CSChE is 
a collection of members who are interested in process systems engineering (PSE), which includes the design, 
control, optimization, modelling, simulation, planning, scheduling, and operations of chemical processes. 

The S&C Division is an active group with many activities, which include:

(a) The development and management of the Living Archive for Process Systems Engineering, an 
open-access repository for pre-prints, post-prints, open access articles, research data, simulations, 
computer code, and other research assets relevant to the field of PSE. 

(b) The development of technical standards relevant to the field, such as the development of a new 
standard on eco-technoeconomic analyses via Standards Council of Canada.

(c) Providing financial supporting for regional conferences relevant to the S&C division

(d) Distribution of relevant announcements and information to our members, such as job postings, 
new books, and events

About This Volume

This volume contains selected extended abstracts from the 2022 Canadian Chemical Engineering Conference 
(CCEC 2022). Five sessions at the conference were managed by the S&C Division, which represent the broad 
and changing nature of PSE in Canada:

Artificial Intelligence and Machine Learning in Process Systems Engineering
Data Driven Analytics, Control, and Optimization
Industrial Applications in Process Systems Engineering
Methodologies and Fundamentals in Process Systems Engineering
Process Systems Engineering for Energy and the Environment

Prospective contributors submitted short abstracts for either oral presentations or poster presentations for 
various sessions. Volunteer session co-chairs, who were chosen from the S&C division membership,  
reviewed each abstract for quality and relevance, and used a ranking system to determine acceptance as an 
oral presentation or poster, or, rejection. Those who were accepted were invited to contribute an extended 
abstract to this volume, which contains more information and detail than the original short abstract.

These extended abstracts were not peer reviewed. They generally consist of research-in-progress and early 
stage research results. In most cases, the information presented herein may be included as a part of a peer-
reviewed study in a later publication. For more information about individual works, or to find out about 
updates, you are encouraged to contact the corresponding author of each study. 

Each article has a corresponding LAPSE ID. Visit the LAPSE record to see if the authors have linked their 
contribution to other material, such as presentation slides, downloadable data, or other publications.

ii



Chairs and Co-Chairs

Systems & Control Division Chair

Thomas A. Adams II, Norwegian University of Science and Technology

Session Co-Chairs

Artificial Intelligence and Machine Learning in Process Systems Engineering
Yankai Cao, PhD. University of British Columbia
Bhushan Gopaluni, PhD. University of British Columbia
Nathan Lawrence, MSc. University of British Columbia
Prashant Mhaskar, PhD. McMaster University
Qinqin Zhu, PhD. University of Waterloo
Jingyi Wang, MSc. University of British Columbia
Li Zukui, PhD. University of Alberta
Siang Lim, BASc. Georgia Institute of Technology
Ajay Ray, PhD. University of Western Ontario
Kaixun Hua, PhD. University of British Columbia

Data Driven Analytics, Control, and Optimization
Stevan Dubljevic, PhD. University of Alberta
Kaixun Hua, PhD. University of British Columbia
Yankai Cao, PhD. University of British Columbia
Bhushan Gopaluni, PhD. University of British Columbia
Carl Duchesne, PhD. University of Laval
Xiang Li, PhD. Queens University
Prashant Mhaskar, PhD. McMaster University
Debaprasad Dutta, MASc. Ryerson University
Xunyuan Yin, PhD. University of Alberta

Industrial Applications in Process Systems Engineering

Moncef Chioua, PhD. Polytechnique Montréal

Jing Wang, BSc. University of Alberta

Vladimir Mahalec, PhD. McMaster University 

Li Feng Zhang, PhD. University of Saskatchewan

Nicolas Hudon, PhD. Queens University

Simant Upreti, PhD. Toronto Metropolitan University 

Methodologies and Fundamentals in Process Systems Engineering
Kim McAuley, PhD. Queens University
Kamil Khan, PhD. McMaster University

Process Systems Engineering for Energy and the Environment
Luis Ricardez-Sandoval, PhD. University of Waterloo
Sohrab Zendehboudi, PhD. Memorial University
Thomas A. Adams II, PhD. Norwegian University of Science and Technology
Jinfeng Liu, PhD. University of Alberta
Ajay Ray, PhD. University of Western Ontario
Jiayang Ren, MSc. University of British Columbia

We greatly thank our session chairs and presenters for their time and effort in contributing to this conference!

iii



 

   

 CSChE Sys Control Trans 2:1-6 (2022) 1 
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GHG Emissions Reduction – Optimal Design and Operation of the 
Integrated Distributed Energy Systems Cross Different Energy 
Sectors 

Ruonan Lia and Vladimir Mahaleca* 

a McMaster University, Department of Chemical Engineering, Hamilton, Ontario, Canada 

* Corresponding Author: mahalec@mcmaster.ca.  

ABSTRACT 

This research seeks the opportunity to further reduce the minimum GHG emissions achieved by individu-
ally operating energy systems in the civic, industrial, and transportation sectors through their integration. 
Each entity – buildings or industrial plants, is equipped with a set of combined cooling, heating, and power 
(CCHP) system. At the same time, there is heat and electricity transfer among entities. The integration 
intends to solve the mismatch between the energy demand and energy provided by the CCHP system, 
which further increases the operation of the CCHP system and reduces GHG emissions of the entire system. 
This research introduces an optimization approach for identifying the optimal design and operation of the 

integrated system, which provides the maximum GHG emission reduction benefits (represented as GHG 
emissions reduction percentage (GHGD%)). Compared to existing studies on the integrated system, this 
research (1) differentiates the temperature of industrial heating demands to ensure feasible heat transfer; 
(2) optimizes production rates of plants to minimize GHG emissions of the entire system; (3) identifies the 
optimal relationship between sizes of entities to maximize GHG emissions reduction percentage of the 
integrated operation. This research implements an integrated system combining entities with different en-
ergy demand patterns to balance the supply and demand of heating and electricity. The civic buildings – a 
residential building and a supermarket that requires more electricity than heating are combined with in-
dustrial plants – a confectionery plant, a brewery, and a bakery plant. The confectionery plant and the 
brewery require more heating than electricity. The bakery plant is investigated under two situations – 
higher heating than electricity demand and higher electricity demand than heating demand to explore the 
impacts of changing the energy demand pattern of an entity on GHG emissions reduction benefits of the 
integrated system. The research also considers the implementation of electric vehicles in the residential 
building. Results from the case studies indicate that there exist optimal relative entity sizes that lead to a 
maximum GHGD% of 17.6%. By optimizing the sizes of entities, the highest GHGD% can be maintained at 
15.7% - 17.6%, even when the optimal relative entity sizes cannot be followed or there are changes in the 
energy demand patterns of entities. 

Keywords: GHG emissions reduction, Cross-sector integration, Optimal design and operation. 

Date Record: Original manuscript received September 25, 2022. Published October 6, 2022. 

INTRODUCTION 

Current research shows that integrating energy systems 
across different sectors can reduce greenhouse gas (GHG) 
emissions and improve the efficiency of the entire system [1]. 
As a typical distributed energy system, the combined cooling, 
heating, and power (CCHP) system is an efficient solution for 
integrating different forms of energy. 

The CCHP system generates cooling, heating, and elec-
tricity locally by burning fuel in its power generation unit 
(PGU). With multiple types of energy being generated, the op-
eration of an individual CCHP system is generally limited by 
the lower energy demand to avoid generating excess energy 

that cannot be used. Thus, outputs of the CCHP system can be 
limited, even the systems having high efficiencies. Supplemen-
tary equipment is implemented beyond the CCHP system to 
meet the demands of consumers entirely, which generally in-
cludes boilers, solar thermal collectors, photovoltaics [2], and 
electric chillers [3]. 

A potential solution for the unbalanced energy demand 
and supply problem is combining CCHP systems of multiple 
consumers (entities) to form an integrated energy system. 
Each entity in the integrated system has its own distributed 
energy system to generate heating, cooling, and electricity lo-
cally. Additionally, it performs both as a consumer and 

mailto:mahalec@mcmaster.ca
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supplier that transfers energy to and receives energy from 
other entities in the integrated system [4].  

This work explores the GHG emission reduction possibil-
ity of the integrated system that combines the residential, 
commercial, industrial, and transportation sectors compared 
to the individual operating energy systems (the non-inte-
grated system). It addresses the following questions that have 
not been discussed before: 1. Integrating distributed energy 
systems of residential, commercial, industrial, and transporta-
tion sectors with different energy demand patterns. Tempera-
tures of industrial production processes are differentiated to 
ensure feasible heat processes. 2. Production rates of the in-
dustrial plants are optimized for minimizing GHG emissions 
of the entire system. 3. Identify the optimal relative entity sizes 
that maximize GHG emissions reduction benefits of the inte-
grated operation. 4. Explore the impacts of changing the rela-
tive entity size and energy demand pattern of entities on GHG 
emissions reduction of the integrated system. 

OPTIMIZATION PROBLEM FORMULATION 

In this work, the GHG emissions reduction benefits of 
the integrated operation are measured by the GHG emissions 
reduction percentage (GHGD%). As shown in Eq. (1), it is cal-
culated based on the minimum GHG emissions of the inte-
grated system and the non-integrated system. Therefore, opti-

mization problems have been developed to find the corre-
sponding optimal design and operation of the two systems. 
The optimal design includes both capacity of each energy sys-
tem equipment and the size of each entity. The optimal oper-
ation contains the amount of energy used and generated by 
each piece of equipment and the production rates of plants.  

𝐺𝐻𝐺𝐷% =
min𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡−min𝐺𝐻𝐺𝑖𝑛𝑡

min 𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡
  (1) 

Energy system  

Energy system description 
Each entity in both the integrated system and the non-

integrated system has been assumed to have options to install 
the equipment, as shown in Figure 1.  

The power generation unit (PGU) has been assumed as 
an internal combustion engine that generates electricity by 

burning fuel. An entity can also connect to the external grid to 
purchase electricity to fully meet the electricity demand, as 
well as sell electricity back to the grid for credits. The PGU also 
generates heat along with electricity. After being recovered by 
the heat recovery unit, the waste heat is used by the absorption 
chiller for cooling purposes or used by the heating coil for 
heating purposes. An entity is also able to install a boiler and 
an electric chiller for heating and cooling, respectively. For the 
integrated system, an entity can also receive or dispatch elec-
tricity and heat from other entities at a specific time. As for 
entities of the non-integrated system, the heat and electricity 
transfer among entities are not available. 

Electric vehicles (EVs) are formulated as an aggregated 
subsystem of the residential building to simplify the formula-
tion. It has been assumed that the EVs can both be charged 
and discharge electricity when connecting to the energy sys-
tem of the residential building before 8:00 and after 17:00 
daily. All EVs must be fully charged before leaving the building 
each day. 

Decision variables 
The amount of heating (𝑄𝑖,𝑡

𝑃𝐺𝑈 ) and electricity (𝐸𝑖,𝑡
𝑃𝐺𝑈 ) 

generated by the PGU are calculated based on its electric effi-
ciency and fuel consumption, as shown in Eqs. (2) and (3). 

𝐸𝑖,𝑡
𝑃𝐺𝑈 = 𝜂

𝑖
𝑃𝐺𝑈𝑛𝑖,𝑡

𝑃𝐺𝑈     (2) 

𝑄𝑖,𝑡
𝑃𝐺𝑈 = (1− 𝜂

𝑖
𝑃𝐺𝑈)𝜂

𝑖
𝑟𝑒𝑐𝑛𝑖,𝑡

𝑃𝐺𝑈    (3) 

𝜂𝑖
𝑃𝐺𝑈 and 𝜂𝑖

𝑟𝑒𝑐 stands for electric efficiency of the PGU and ef-
ficiency of the heat recovery unit, where both of them have 
been assumed as constants to simplify the calculation. The 

equipment efficiencies can be different for each entity i; how-
ever, in this work, efficiencies of the same equipment in all en-

tities have been assumed as the same. 𝑛𝑖,𝑡
𝑃𝐺𝑈  is the amount of  

fuel (natural gas in this work) used by the PGU at a specific 
time t, which is a decision variable. Similar to the PGU, the 

boiler also generates heat by burning natural gas. The amount 

of natural gas used (𝑛𝑖,𝑡
𝑏𝑜)  is also a decision variable.  

The absorption chiller and electric chiller generate cool-
ing by using heat and electricity, respectively. Their outputs 

( 𝐶𝑖,𝑡
𝑎𝑐   and 𝐶𝑖,𝑡

𝑒𝑐  ) are calculated based on the coefficient of 

 
Figure 1. A representation of the energy system in one entity. 
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performance (COP) of the equipment and the decision varia-
bles – the amount of heat (𝑄𝑖 ,𝑡

𝑎𝑐) and electricity (𝐸𝑖,𝑡
𝑒𝑐) used. 

𝐶𝑖,𝑡
𝑎𝑐 = 𝐶𝑂𝑃𝑖

𝑎𝑐
𝑄𝑖,𝑡
𝑎𝑐    (4) 

𝐶𝑖,𝑡
𝑒𝑐 = 𝐶𝑂𝑃𝑖

𝑒𝑐
𝐸𝑖,𝑡
𝑒𝑐     (5) 

Besides the decision variables mentioned above, the 

amount of electricity used to charge the EVs (𝐸𝑖,𝑡
𝐸𝑉−𝑐ℎ ), dis-

charge by the EVs (𝐸𝑖,𝑡
𝐸𝑉−𝑑𝑖𝑠𝑐ℎ), and the amount of electricity 

purchased from the grid (𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑) are also decision variables. 

Each entity in the integrated system can receive and dis-
patch heat and electricity to the other entities. The amount of 

heat (𝑄𝑖,𝑖′ ,𝑡
𝑟𝑒𝑐𝑒𝑖𝑣𝑒) and electricity (𝐸𝑖,𝑖′ ,𝑡

𝑟𝑒𝑐𝑒𝑖𝑣𝑒) that receive by an en-

tity i from entity i’, as well as the amount of heat (𝑄𝑖,𝑖′ ,𝑡
𝑒𝑥𝑐𝑒𝑠𝑠 ) and 

electricity (𝐸𝑖,𝑖′ ,𝑡
𝑒𝑥𝑐𝑒𝑠𝑠 ) that dispatched from entity i to entity i’ are 

decision variables. In this work, it has been assumed that en-
ergy transfer, either heat or electricity transfer, between two 
entities at a time is in a single direction. 

The decision variables mentioned above are operation 
decision variables that can be manipulated during the opera-

tion. The capacity of each piece of equipment (𝐶𝑎𝑝𝑖
𝑒𝑞𝑝

) is the 

design decision variable that independent of time and cannot 
be modified once the system has been built. Taking the PGU 
as an example, the capacity and electricity output follows the 
relationship below: 

𝐸𝑖,𝑡
𝑃𝐺𝑈 ≤ 𝐶𝑎𝑝𝑖

𝑃𝐺𝑈     (6) 

Energy balances  

Energy demands of industrial plants  
Unlike the residential and commercial buildings whose 

energy demands are stable and are assumed as fixed profiles in 
this work, the energy demands of the industrial plants are ad-
justable by changing their production rates. The production 
rates of plants, x, are operation decision variables. 

As for plants that have continuous or semi-continuous 
production processes, the production rate (𝑥𝑖,𝑡) represents the 
amount of product being generated at time t, which is one 
hour in this work. The heating, cooling, and electricity used by 
each process p of a plant at time t is calculated based on the 
production rate and the amount of energy required to make a 

unit of product (𝐸𝑈𝑖,𝑝,𝑡
𝑑 ). An example of calculating the elec-

tricity demand is shown below: 

𝐸𝑖,𝑝,𝑡
𝑑 = 𝑥𝑖,𝑡𝐸𝑈𝑖,𝑝,𝑡

𝑑     (7) 

As for plants that have batch production processes, the pro-

duction rate – 𝑥𝑖 represents the amount of product being gen-
erated in a batch. Then the energy demand at time t can be 
calculated by dividing the total energy consumption in a whole 
batch by the time to accomplish the process in a batch. Eq. (8) 
shows an example of the electricity demand. The binary deci-
sion variable 𝑜𝑖,𝑝,𝑡  is implemented to ensure each process is 

fully accomplished in a batch. 

𝐸𝑖,𝑝,𝑡
𝑑 = 𝑥𝑖𝐸𝑈𝑖,𝑝

𝑑 𝑜𝑖,𝑝,𝑡 𝑇𝐿𝑖,𝑝⁄    (8) 

∑ 𝑜𝑖,𝑝,𝑡𝑡 = 𝑇𝐿𝑖,𝑝     (9) 

Energy balances of entities 
Energy balance equations are developed to ensure the 

energy demands of an entity can be fully satisfied. Eq. (10) 
shows an example of the heat balance for a residential 

building, where 𝑄𝑖,𝑖′ ,𝑡
𝑒𝑥𝑐𝑒𝑠𝑠  is the amount of heat dispatched by 

the residential building (entity i) to entity i’. 𝑄𝑖,𝑖′ ,𝑡
𝑟𝑒𝑐𝑒𝑖𝑣𝑒   repre-

sents the heat received by the residential building from other 
entities.  

𝑄𝑖,𝑡
𝑑

𝜂𝑖
ℎ𝑐 +𝑄𝑖,𝑡

𝑎𝑐 + ∑ 𝑄𝑖,𝑖′ ,𝑡
𝑒𝑥𝑐𝑒𝑠𝑠

𝑖′ = 𝑄𝑖,𝑡
𝑃𝐺𝑈 +𝑄𝑖,𝑡

𝑏𝑜 + ∑ 𝑄𝑖 ,𝑖′ ,𝑡
𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑖  (10) 

With multiple production steps, industries can require 
heating at different temperature levels. Therefore, instead of a 
single equation for the overall heat balance, like the residential 
building, heat balance equations for each industrial produc-
tion process at a different temperature are developed for in-
dustries. It ensures the heat transfer is feasible, which is from 

high temperature to low temperature. 𝑄𝑖,𝑖′ ,𝑝,𝑡
𝑟𝑒𝑐𝑒𝑖𝑣𝑒  represents the 

amount of heat received by each process from other entities.  

𝑄𝑖,𝑝,𝑡
𝑑

𝜂𝑖,𝑝
ℎ𝑐 +𝑄𝑖,𝑝,𝑡

𝑎𝑐 = 𝑄𝑖,𝑝,𝑡
𝑃𝐺𝑈 +𝑄𝑖,𝑝,𝑡

𝑏𝑜 +∑ 𝑄𝑖,𝑖′ ,𝑝,𝑡
𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑖   (11) 

Besides the individual heat balance equation for each process, 
an overall heat balance equation similar to Eq. (10) is also de-

veloped for the entire plant to include the amount of heat used 
by the absorption chiller and heat dispatched to the other en-
tities. Since the electricity and cooling demands are not differ-
entiated based on temperature levels, electricity and cooling 
balances are developed for the overall entity.  

Objective function 
This work intends to find the optimal design and opera-

tion that maximize GHG emissions reduction benefits of the 
integrated system, measured as the GHGD%. The objective 
function is set as minimizing the GHG emission ratio 
(GHGR%) between the two systems to reduce the computa-
tion time, as shown in Eq. (12), which is equivalent to maxim-
izing the GHGD%.  

𝑚𝑖𝑛𝐺𝐻𝐺𝑅% = min
min 𝐺𝐻𝐺𝑖𝑛𝑡

min𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡
  (12) 

As shown in Eq. (12), minimum GHG emissions for both 
the integrated system and non-integrated system are neces-
sary for calculating the GHGR%. It requires developing and 

solving optimization problems for both the integrated system 
and non-integrated system at the same time, which leads to a 
complex problem formulation. Alternatively, the minimum 
GHG emissions of the non-integrated system can be expressed 
as a linear equation based on the sizes of entities. The linear 
relationship exists because there are optimal operation pat-
terns of equipment for the non-integrated system that does 
not have energy transfer among entities. When the sizes of the 
entities change, the optimal operation patterns remain the 
same, while the capacities of the equipment change corre-

spondingly. The linear equation has been found by solving op-
timization problems for the non-integrated system under dif-
ferent entity sizes, then performing linear regressions. 

CASE STUDY DESCRIPTION 

In this work, energy systems of a residential building 
with electric vehicles, a supermarket, a confectionery plant, a 

brewery, and a bakery plant have been used for case studies, 
as shown in Figure 2. 
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Figure 2. A representation of the integrated system. 

Among the entities, the residential building and super-
market require more electricity than heating. Their energy de-
mands are imported as fixed profiles, adapted based on infor-

mation published by Sullivan [5] and Ghorab [6]. 
The confectionery plant and the brewery have higher 

heating demands than electricity demands, where the ratio be-
tween the heating and electricity demands of the two plants 
are 3.2 and 3.9, respectively. Both industries have been as-
sumed to have continuous production processes. The bakery 
plant has a batch production process, which can implement 
electric baking ovens or gas-powered baking ovens. In this 
work, the gas-powered baking oven has been assumed as an 
indirect-fired oven, which uses heat generated by the PGU. 
When the baking oven is powered by electricity, the bakery 
plant requires more electricity than heating, where the ratio 
between the heating and electricity usage is 0.26. The ratio 
changes to 6.12 when the gas-powered baking oven is used.   

In this work, case studies have been performed in both 
situations where the bakery plant uses electric baking ovens 
and the situation where gas-powered baking ovens are used. It 
intends to investigate the impacts of integrating entities with 
different energy demand patterns on GHG emissions reduc-
tion benefits of the integrated system.  

RESULTS AND DISCUSSION 

Integrated energy system with electric baking 
ovens in the bakery plant  

Upon solving the optimization problem, it has been 
found that when the bakery plant uses electric baking ovens, 
the integrated system can achieve a maximum GHGD% of 
17.5%. It requires the system to integrate 1.07 units of the res-

idential building, 1.07 units of the supermarket, 934 electric 
vehicles (EVs), a brewery with a capacity of 3,934 kg/hr, and a 
bakery plant of 5,000 kg/day. There is no confectionery plant 
in the system. The 1.07 units of the residential building and 
supermarket stand for a residential building and a supermar-
ket whose energy demands are 1.07 times of the ones men-
tioned in the Case Study Description section. The ratio 

between sizes of the entities is the optimal relative entity sizes 
that maximize GHG emission reduction of the integrated sys-
tem. As shown in Figure 3, when deviating from this optimal 
relative entity size, the GHGD% of the integrated system be-
comes less than 17.5%. 

Compared to the non-integrated system, the integrated 
system purchases 68.0% less electricity from the external grid 
and uses 82.5% less natural gas for operating the boiler. The 
reductions lead to the integrated system having lower GHG 
emissions compared to the non-integrated system. Addition-
ally, the operation of the PGUs in the integrated system in-
creased by 57.9% compared to the non-integrated system. The 
result indicates allowing energy transfer among entities can 
increase the operation of the PGUs, which reduces GHG emis-
sions of the entire system. 

In the integrated system, the brewery performs as the 
major electricity supplier, where 95.7% of the electricity trans-
ferred among entities is dispatched by the brewery. The elec-
tricity is sent to the residential building, bakery plant, and su-
permarket because the brewery requires more heating than 
electricity, while the three entities require more electricity 

than heating. Instead of operating the PGU following the lower 
electricity demand and using the boiler, the brewery increases 
the operation of the PGU to generate more heat locally. The 
associated excess electricity is sent to the residential building, 
bakery plant, and supermarket. 

  
Figure 3. GHGD% of the integrated system where the bakery 

plant uses electric baking ovens. 

Integrated energy system with gas-powered 
baking ovens in the bakery plant  

When the bakery plant uses baking ovens powered by 
natural gas, a maximum GHGD% of 17.6% can be achieved by 

the integrated system. The optimal size of the bakery plant is 
still 5,000 kg/day. The sizes of the residential building and su-
permarket slightly decrease to one unit, while the optimal ca-
pacity of the brewery is 2,812 kg/hr. Similarly, as shown in Fig-
ure 4, when deviating from the optimal relative entity size, 
GHGD% achieved by the integrated is less than the maximum 
value. 

Under this system configuration, the integrated system 
purchases 60.8% less electricity from the grid and uses 76.1% 
less natural gas for operating the boilers than the non-inte-
grated system. The operation of the PGU increases by 52.3%. 
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Since the bakery plant has higher heating demand than 
electricity demand, instead of an electricity receiver, the bak-
ery plant becomes an electricity supplier. The amount of elec-
tricity dispatched by the bakery plant accounts for 16.8% of the 
total electricity transferred among entities. The brewery still 
performs as the major electricity supplier of the integrated sys-
tem, which provides 80.6% of the total electricity transferred 
among entities. The electricity from both the bakery plant and 
brewery is transferred to the residential building and super-
market that have higher electricity demands. 

 
Figure 4. GHGD% of the integrated system where the bakery 

plant uses gas-powered baking ovens. 

Impacts of integrating energy systems with 
different energy demand patterns  

Table 1 shows the highest GHGD% of the integrated sys-
tem achieved under different relative sizes of the residential 
building. According to the results, when the relative size of the 
residential building increases, the highest GHGD% of the in-
tegrated system decreases. It is because there are upper 
bounds on the sizes of industrial plants, which limits increases 
of the plant sizes. Thus, the integrated system deviates from 
its optimal relative entity sizes and optimal operation patterns, 
which leads to the maximum GHGD% cannot be held.  

Results in Table 1 also indicate integrating entities with 
different energy demand patterns leads to slightly higher GHG 
emissions reduction benefits of the integrated system. Under 

each of the relative sizes of the residential building, compared 
to implementing electric baking ovens, using gas-powered 
baking ovens in the bakery plant leads to the system having a 
GHGD% of 1% - 2% higher. As shown in Table 1, when the bak-
ery plant has electric ovens that require more electricity than 
heating, the size of the bakery plant decreases when the size 
of the residential building increases. When baking ovens are 
powered by burning natural gas, where the bakery plant has 
higher heating than electricity demand, the size of the bakery 
plant remains at its maximum value regardless of changes in 
the residential building size. Under both scenarios, the sizes of 
the confectionery plant and brewery, which requires more 
heating than electricity, both increase. It is because the inte-
grated system tends to keep a balance between the heating de-
mand and electricity demand of the entire integrated system 
to avoid purchasing electricity from the grid and operating the 
boilers. Since the residential building requires more electricity 
than heating, with increases in its size, the electricity demand 
of the entire system also becomes greater than the heating de-
mand. Thus, when using electric baking ovens, the size of the 
bakery plant decreases to avoid increasing the electricity de-

mand of the entire system. When implementing gas-powered 
baking ovens, the size of the bakery plant is already at its max-
imum level under the optimal relative entity sizes. Therefore, 
when the size of the residential building increases and the en-
tire system needs to increase its heating demand, the size of 
the bakery plants remains unchanged. 

Overall, the results show that by optimizing the size of 
entities, a 15.7% - 17.6% of GHG emissions reduction can be 
achieved by the integrated operation. Such the GHGD% is rel-
atively stable even when there are changes in energy demand 

patterns of some entities or requirements on the sizes of some 
specific entities that lead to the optimal entity sizes cannot be 
followed.   

CONCLUSION 

This work quantifies the GHG emission reduction bene-
fits that can be achieved by integrating energy systems of dif-
ferent sectors – residential, commercial, industrial, and trans-
portation sectors. Even if the GHG emission of each operating 
energy system has been minimized by using the combined 
cooling, heating, and power (CCHP) system, the GHG emis-
sions can be further reduced by transferring heat and 

Table 1: Highest GHGD% under different relative sizes of the residential building. 

Relative size of resi-
dential building 

Electric oven Gas-powered oven 

Entity sizes GHGD% Entity sizes GHGD% 

1 Confectionery: 0 
Bakery: 5,000 kg/day 
Brewery: 4,000 kg/hr 

17.5% Confectionery: 0 
Bakery: 5,000 kg/day 
Brewery: 2,812 kg/hr 

17.6% 

3 Confectionery: 0 
Bakery: 4,500 kg/day 
Brewery: 8,000 kg/hr 

17.1% Confectionery: 0 
Bakery: 5,000 kg/day 
Brewery: 8,000 kg/hr 

17.2% 

5 Confectionery: 1,500 kg/hr 
Bakery: 4,000 kg/day 
Brewery: 8,000 kg/hr 

16.6% Confectionery: 1,000 kg/hr 
Bakery: 5,000 kg/day 
Brewery: 8,000 kg/hr 

16.7% 

10 Confectionery: 3,000 kg/hr 
Bakery: 1,500 kg/day 
Brewery: 8,000 kg/hr 

15.7% Confectionery: 3,000 kg/hr 
Bakery: 5,000 kg/day 
Brewery: 8,000 kg/hr 

15.9% 
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electricity among individual entities. The optimal design and 
operation of energy systems are determined, including the ca-
pacity and operation of equipment, the optimal production 
rate of plants, and the optimal relative size of entities, consid-
ering temperatures of heating demands.  

Results from case studies on an integrated system with a 
residential building, a supermarket, a confectionery plant, a 
bakery plant, a brewery, and electric vehicles show the inte-
grated operation can lead to a maximum GHG emissions re-
duction percentage (GHGD%) of 17.6% when the bakery plant 
uses gas-power baking ovens. When using electric baking ov-
ens, the maximum achievable GHGD% is slightly lower – 
17.5%.  

The highest GHGD % can be maintained between 15.7% 
and 17.6% by optimizing the sizes of entities. Thus, even when 
there are requirements on sizes of specific entities and the op-
timal relative entity sizes cannot be followed, or there are mit-
igations on industrial production processes that change en-
ergy demand patterns of the entities, the integrated system 
still shows benefits in reducing GHG emissions than the non-
integrated system.  
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ABSTRACT 

Many industrial plants require electricity and high temperature thermal energy which are typically gener-
ated by burning hydrocarbon fuels. This study proposes an energy system that produces electricity and 
thermal energy by burning hydrocarbons without emitting CO2 through integration of catalytic methane 
pyrolysis (CMP), carbon capture and in-situ conversion (CCISC), methanol synthesis as well as combined 
heat and power (CHP) system. The system can eliminate CO2 emissions by industrial plants and residential 
areas and produce methanol and carbon black as chemical by-products, in addition to producing electricity 
and thermal energy. Result shows that the maximum net electricity efficiency can reach 52%.  

Keywords: Combined Heat and Power System, Methane Pyrolysis, Carbon capture and In-Situ Conversion 
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INTRODUCTION 

Climate change is a global issue and has received wide-
spread attention [1]. At present, a basic consensus has been 
formed on the control of greenhouse gas (GHG) emissions. 
Non-energy industry is an enormous part of GHG emissions, 
takes 31% of CO2 emissions, and basic materials production 
has presented for approximately 22% of CO2 emissions [2]. 
Thus, it is important to control greenhouse gas emissions by 
the industry. Carbon capture and utilization is an effective way 
to control Green House Gas (GHG) emissions. In this study, a 
new energy system that burns natural gas with net-zero GHG 
emissions has been designed and analyzed. The proposed 
method integrates methane pyrolysis, carbon capture in-situ 
conversion, combing heat and power (CHP) system, and 
methanol synthesis process.  The system is designed to export 
electricity and steam to the grid which is for the residential 
area. Moreover, methanol and carbon black are by-products of 
the system which is high value and can increase the competi-
tiveness of the system.  

BACKGROUND 

Catalytic Methane Pyrolysis 
Catalytic methane pyrolysis (CMP) is a process that can 

convert methane into hydrogen and solid carbon without CO2 
emissions [3,4]. The reaction of methane pyrolysis is shown in 
Equation (1). 

𝐶𝐻4 → 𝐶(𝑠) + 2𝐻2    ∆𝐻298 = 74.8 𝑘𝐽/𝑚𝑜𝑙  (1) 

 It works at high temperatures in the presence of metal 
or carbon catalyst. Methane pyrolysis is rapidly moving from 
the laboratory stage toward commercialization. BASF plans to 
use their moving bed reactor method to start large scale hy-
drogen production in 2030. 

In the pyrolysis reactor, natural gas flow from bottom to 
top and carbon catalyst flow counter-current, where the heat 
transfer is enhanced.  There are electrodes in the reactor, and 
the carbon is heated by the electric current and transfers heat 
to the natural gas.  

Carbon capture and in-situ conversion 
Carbon capture and in-situ conversion (CCISC) is a la-

boratory level technology. It integrates Calcium-Looping 
(CaL) and Reverse Water Gas Shift (RWGS) in one reactor to 
convert CO2 into CO and produce syngas as the product by 
Fe5Co5Mg10CaO heterojunction-redox catalysts1 [5].  

 

Figure 1. Operating modes and schematic of CaL/RWGS inte-
grated reactor. 
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The system operates in two batch modes, as shown in 
Figure 1. In mode 1, the flue gas first passes through the bed 
where CO2 is adsorbed by the catalyst and releases adsorption 
heat. After adsorption step, the reactor will switch from mode 
1 to mode 2, the hydrogen will be added to the reactor and the 
reactor is heated to 650 ℃. RWGS reaction happens in mode 

2, converting CO2 into syngas. The reaction of RWGS is shown 
in Equation (2) 

𝐶𝑂2 + 𝐻2 → 𝐶𝑂 + 𝐻2 𝑂(𝑔)  ∆𝐻298 = 41.12 𝑘𝐽/𝑚𝑜𝑙 (2) 

Since the process requires a large amount of heat and hy-
drogen, a good heat integration with some heat generation 
process and an eco-friendly hydrogen source are required. 

PROCESS MODEL 

The design of the proposed energy system is shown in 
Figure 2. Detailed model of the proposed system has been de-
veloped in Aspen HYSYS. The system contains five parts: Gas 

turbine, CMP unit, CCISC unit, Methanol synthesis and Steam 
turbine.  

The Gas turbine is the heat source of the entire process. 
It produces electricity and hot flue gas; thermal energy from 
the flue gas is recovered in the heat recovery steam generator 
(HRSG). In this process, the flue first passes through the 
CCISC unit then through HRSG. 

The CCISC unit is the key process in the system. It can 
remove the CO2 in the flue gas of the Gas turbine by convert-
ing it into syngas which is the feedstock of the methanol syn-
thesis. The CCISC is designed to use electricity to heat the re-
actor to 650°; the conversion rate can reach up to 85%.  

 The CMP unit is the hydrogen source of the process. 
This unit consumes electricity for heating. The hydrogen will 
be used for the CCISC unit and methanol synthesis. And the 
Carbon black produced by the CMP unit is valuable by-prod-
uct.  
 The methanol synthesis process can convert syn gas into 
methanol, where the carbon in the syngas is converted from 
gas phase into liquid phase. Methanol is an important 

 

Figure 2. Simplified diagram for the net-zero GHG emission energy systems that integrates CMP, CCISC and Methanol 
synthesis. 
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chemical material which can produce formaldehyde, methoxy 
methane, olefins or alkenes. 
 The steam turbine is used to generate more electricity 
from steam generated from the HRSG. There are three kinds 
of steam: High pressure (HP), Medium Pressure (MP) and low 
pressure (LP). HP and MP will be used to generator electricity 
and LP will be used to the Steam grid for residential heating 
demand. 

RESULTS 

Sensitivity analysis on Gas Turbine Fuel and Heat Output 
is introduced to the system.  

 

Figure 3. Realation between Gas Turbine Fuel and Net electricity 
efficiency. 

As shown in Figure 3, the affect of Gas Turbine Fuel to 
Net electricity efficiency (Net electricity output/ Gas Turbine 
Fuel LHV) is tested. It is assumed there is a fixed heating de-
mand of 100MW, and all the steam left is used to generated 
electricity.  As GT fuel grows, the efficiency of the net electric-
ity grows first quickly. As the GT fuel reaches 35 kg/s the effi-
ciency will reach 50%. 

As shown in Figure 4, the relation between Net electricity, 
Gas Turbine Fuel and Heat output is tested. The Heat output 
has higher impact to the Net electricity under low Gas turbine 
fuel. 

 

Figure 4. Relation between Net electricity, Gas Turbine Fuel and 
Heat output. 

CONCLUSIONS 

This work presents a novel energy system for providing 
electric and thermal energy with zero carbon emission by 
burning natural gas. By integrating catalytic methane pyrolysis 
(CMP), carbon capture and in-situ conversion (CCISC), meth-
anol synthesis as well as gas turbine combined heat and power 
(CHP) system, the energy system can have high energy effi-
ciency and output carbon free electricity as well as steam for 
residential areas. In summary, the proposed method can elim-
inate GHG emission associated with production of electricity 
and thermal energy for residential areas and also produce 
methanol and carbon black.  Proposed method can provide a 
path for reducing or completely eliminating GHG emissions 
produced by energy generation via burning of natural gas.  
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ABSTRACT 

A micro refinery unit at Polytechnique Montreal converts natural gas to diesel range fuel as the main prod-
uct in two high pressure and high temperature reacting units. First, it transforms methane to syngas by 
catalytic partial oxidation (CPOX) at 20 bar and 800⁰C. Then, it produces the medium-chain hydrocarbons 
from syngas by Fischer-Tropsch (FT) reaction at 20 bar and 300⁰C. 

The aim of this study is to evaluate the impact of passive intercooling on the performance and robustness 
of a pre-set control configuration for this sequence of interconnected chemical reactors.  We simulate the 
whole process in Aspen Plus v8.4 and first design a PI temperature controller for the Fischer-Tropsch reac-
tor in Aspen Plus Dynamics. As the FT process is highly exothermic, the controller is essential to properly 
remove the heat generated in the reactor.  Despite being feasible in simulations, the closed-loop results 
suffer from many shortcomings, notably with respect to process constraints.   

The impact of intercooling on the closed-loop dynamics is studied by decoupling thermally the reactors 
using a passive intercooler to remove the excess heat from the syngas at the exit of the CPOX reactor.   

Simulation results show that intercooling improves the performance of the FT operation and reduces the 
control cost as it keeps the control system far from the cooling flow constraints in the FT reactor. In this 
case, the controller has an acceptable performance against the step changes in temperature and has a built-
in robustness against underestimated heat exchange within the FT process.  

Keywords: Process control, micro refinery, passive cooling 
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INTRODUCTION 

The energy demand is growing dramatically as the 
world's population keeps on increasing and economies pro-
ceed [1]. Since the capacity of the exploitable oil is decreasing, 
other virgin resources such as associated and stranded gas res-
ervoirs are notably marked [2]. Among these options, Gas-to-
Liquid (GtL) processes have the potential to transform the nat-
ural gas or associated gas into the higher-value hydrocarbons 
as synthetic fuel. In particular, the liquid synthetic fuels are 
promising alternatives of oil-related transportation sector 
since the price of crude oil gradually rises while its reservoirs 
are going to finish [3]. However, large scale industrial GTL 
plants are not always economical as in most cases, building a 
commercial plant needs a huge investment resulting in the 
plant to be infeasible. Moreover, in some areas, providing the 
industrial utilities such as water resource and electricity is lim-
ited or sometimes impossible. 

In such cases, to exploit the gas reservoir and convert it 
to the added value fuels, micro-scale GTL process which is 
called Micro Refinery Unit (MRU) is feasible as it needs a lesser 

investment and consume much lower utility as well. The FT 
reaction is highly exothermic [4, 5] and one of the main chal-
lenges of such reactions is having a safe and accurate start up 
and to provide a stable operation [6]. Among research on the 
reactor design and configuration to improve the heat removal 
from FT process, a few studies focused on the design of tem-
perature controller [7]. An appropriate feedback control 
throughout the process is essential to prevent runaway reac-
tion which causes catalyst deactivation, loss of selectivity and 
conversion and/or loss of operability that can induce the reac-
tor explosion [8, 9].  
In this paper, we first describe the overall CPOX/FT process.  
We first consider PI control for the temperature of the FT re-
actor.  We then consider the combination of passive cooling 
and PI control to regulate the temperature of the FT reactor.  
Finally, we study via simulations the impact of heat exchange 
uncertainty on the closed-loop dynamics.  

PROCESS OVERVIEW AND CHALLENGE 
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 The process consists of thermal-sustained catalytic par-
tial oxidation (CPOX) at 800⁰C and 20 bar to convert the nat-
ural gas into syngas (H2 and CO) and Fischer-Tropsch reac-
tion (FT) at 300⁰C to produce diesel from syngas on Iron-
based catalyst. The FT reactor is a coiled fluidized bed.  To re-
move the generated heat and adjust the temperature of FT re-
actor, a control system is considered to manipulate the cooling 
water flow through the coil. Two challenges in the design of 
FT section are: 
- To decrease the temperature of the syngas from CPOX to FT 
reactor.  
- To improve the performance of the temperature controller 
against the disturbances in the syngas feed to the FT reactor. 
 Hence, we develop a simulation-based controller design by 
Aspen Plus Dynamic v8.4 in two scenarios; with a passive in-
tercooler between the reactors and without it and then com-
pare the results of FT temperature to complete the design 
based on the efficient method. 
 

PROCESS CONTROL 

Modeling and simulation 
 

We first solve the gas to liquid (GtL) process in steady 
state. A Gibbs reactor resembles the CPOX by considering all 
the possible components in the product.  To simulate the flu-
idized bed FT reactor, we applied a CSTR and attached a Long-
muir-Hishelwood-Hougen-Watson (LHHW) kinetics [10] 
which is adopted to the experimental data of RIPI for the com-
mercialized iron-based catalyst [11, 12]. Thus, the governing 
stoichiometry and kinetics for the Fischer-Tropsch and water 
gas shift (WGS) reactions are:  
 

FT ∶  9CO + 19H2  → C9H20 (C∗) + 9H2O                                     (1) 

 

WGS ∶ CO + H2O → CO2 + H2                                                        (2) 

 

𝑟𝐹𝑇 = 𝐾𝐹𝑇

𝑃𝐻2
𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝐹𝑇𝑃𝐻2𝑂
+ 𝑏𝐹𝑇𝑃𝐶𝑂

                                                (3) 

𝑟𝑊 = 𝐾𝑊

𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐻2

𝑃𝐶𝑂2

𝐾𝑃

𝑃𝐶𝑂 + 𝑎𝑤𝑃𝐻2𝑂 + 𝑏𝑤𝑃𝐶𝑂2

                                                  (4) 

𝐾𝑖 = 𝑘𝑖
° 𝑒𝑥𝑝 (−

𝐸𝑖

𝑅𝑇
)                                                                             (5) 

𝑙𝑛(𝐾𝑃) =
4578

𝑇
− 4.33                                                                        (6) 

 
𝐶∗ is the mixture of hydrocarbons in the product stream based 
on [12].  Table (1) shows the parameters of the equations (3) to 
(6). 
 

Table 1. Kinetic parameters of FTs 

Parameter  Value  Unit 

kFT
°  2.1 × 10−3 kmol (kg. s. Pa)⁄  

EFT 86 kJmol−1 
aFT 1.25 × 10−7 Pa−1 
bFT 7 × 10−6 Pa−1 

kW
°  1079.4 kmol (kg. s. Pa)⁄  

EW 132 kJmol−1 
aw 2.78 × 10−6 Pa−1 
bw 1.23 × 10−5 Pa−1 

 
The intercooler cools down the syngas stream from 800⁰C to 
300⁰C which is the operating temperature of fluidized bed FT 
reactor. Table 2 summarizes the characteristics of the MRU. 

Table 2. Specifications of the FT reactor 

Spec Value 
FT reactor dimensions (mm) 200 × 1600 
Coil diameter (in.) 3 4⁄  
Coil length (m) 12 
Density of the Iron catalyst (kg/m3) 1290 
Bed porosity  0.6 
Catalyst diameter (m) 2 × 10−4 
Air flow (mole/h) 1190 
Natural gas flow (mole/h) 500 

 
Equations (7, 8) determine the heat transfer coefficient as well 
as inlet and outlet temperature of cooling water through the 
internal coil of FT reactor. 
 

𝑄 = 𝑈𝐴∆𝑇𝐿𝑀 = 𝑚𝑐̇ (𝑇𝑐,𝑜 − 𝑇𝑐,𝑖)                                                        (7) 

 

∆𝑇𝐿𝑀 =
(𝑇𝑏 − 𝑇𝑐,𝑖) − (𝑇𝑏 − 𝑇𝑐,𝑜)

ln (
𝑇𝑏 − 𝑇𝑐,𝑖

𝑇𝑏 − 𝑇𝑐,𝑜
)

                                                    (8) 

 
The resulted values for 𝑇𝑐,𝑖 and 𝑇𝑐,𝑂 as well as liquid holdup of 

the coil required for the dynamic simulation are filled in the 
dynamic sheet of the CSTR in Aspen Plus. 
Next, we switch to the pressure driven mode and export the 
simulation to the dynamic module.  
 

Control strategy 
A temperature control module is attached to the reactor 

based on the “heating medium flow” as the process variable. 
Then, we applied the internal model control technique to tune 
the parameters of a PI controller [13]. Figure (1) represents the 
process flow diagram in the dynamic mode.  
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RESULTS AND DISCUSSION 

Steady-state simulation and heat transfer functions de-
termine the characterizations of the cooling coil (Table 3). 

Table 3. Computed parameters of FT for the dynamic simulation 

Spec Value 
𝑄𝐹𝑇 , 𝑘𝑊 12.3 
𝑚𝑐̇ , 𝑘𝑔ℎ−1 540 
𝑈𝐴, 𝑊𝐾−1 167 
𝑇𝑐,𝑖 , ℃ 208 
𝑇𝑐,𝑜, ℃ 226 
𝑇𝑎𝑝𝑝, ℃ 74 

 
In the dynamic mode, a step change in the output variable 
(cooling flow rate) in the open loop determines the parameters 
of the PI controller (Figure 2). 

 
Thus, the transfer function of the FT process is: 
 

𝐺(𝑠) =
0.06𝑒−0.005𝑠

0.92𝑠 + 1
                                                                            (9) 

 
And the parameters of the PI controller are 𝐾𝑐 = 18.1 and 𝜏𝐼 =
0.92 𝑚𝑖𝑛𝑢𝑡𝑒. 

Control without passive cooling  
To investigate the impact of passive cooling system, first 

we removed the intercooler by putting the duty of HX3 equal 
to 0 in the dynamic simulation meaning no change in the tem-
perature of syngas to FT reactor (800⁰C).  In this case, the sim-
ulation shows that the control system of FT fails to recover the 
desirable temperature of FT process (Figure 3). 

Therefore, designing the process without passive cooling 
not only damage the catalyst, also cause a control failure and 
reaction run away.  

Control with passive cooling  
In this case, we keep the intercooler, HX3 (Figure 1) be-

tween the reactors to decrease the syngas temperature and 
make it close to the operating temperature of the FT reactor 
(300⁰C).  However, HX3 has no automatic temperature con-
trol and the coolant flow rate is adjusted in the start-up by a 
manual valve. 

 

 Step change in the set point  

Figure 1. Process flow of MRU in Aspen Plus Dynamics V8.4 

Figure 2. Open-loop response of the FT temperature, (a) step 
change in coolant flow rate, (b) temperature response. 

Figure 3. Response of the temperature controller in case of no 
passive cooling, (a) FT temperature and set point, (b) coolant 
flow rate. SP is setpoint and PV is the process variable.   
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The response of the FT temperature against ±5⁰C in the 
set point confirms that the controller has an appropriate per-

formance in case of involving the passive cooling (Figure 4). 

Disturbance in the syngas temperature 
The temperature of the syngas entering the FT reactor 

may changes due to an upstream variation or insufficient heat 
transfer across the intercooler. We simulate this case by de-
creasing the heat duty of HX3 by 10% which rises the temper-
ature of SYNFT from 300⁰C to 350⁰C (Figure 1). The results 
show that the controller properly recovers the set temperature 
inside the FT reactor (Figure 5). 
It also reconfirms the positive impact of the passive cooling in 
the design of MRU.  Although the intercooler may not per-
fectly cool down the syngas stream up to the operating tem-
perature of the FT, it assists the temperature controller to ad-
just the temperature and concentrations in FT reactor. 
 

Robustness of the controller 
One challenge in the modeling and simulation of the FT 

synthesis as an exothermic process is the uncertainty of the 
overall heat transfer coefficient (U) since the real value is 
higher than what is obtained from the correlations [14]. 
We increased the UA as the manipulated variable in Aspen dy-
namics by 10%. According to the results, the controller is ca-
pable to adjust the temperature on its set point if U is under-
estimated (Figure 6). 
 

  

Figure 4. Closed loop response of the FT temperature by ±5⁰C in 
set point, (a) temperature variation, (b) coolant flow rate as  the 
control output 

Figure 5. Closed loop response of the FT temperature in case of 
10% thermal inefficiency of the intercooler, (a) temperature and 
set point in FT, (b) coolant flow rate as the control output.  

Figure 6. Robustness of the temperature controller against 10%  
increase in overall heat transfer coefficient between the cooling 

coil and the reactor, (a) FT temperature, (b) coolant flow rate 
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CONCLUSION 

A micro refinery process was simulated by Aspen plus dy-
namics v8.4. This process consists of CPOX and FT both of 
which are exothermic reactions. Thus, the designing a proper 
cooling system improves the operability and efficiency of the 
process. In the conceptual design, we considered a passive in-
tercooler between the two reactors to cool down the syngas 
stream into the operating temperature of the iron catalyzed FT 
reaction. The CPOX is simulated by a Gibbs reactor and the FT 
reactor is simulated by a CSTR.  For the FT process, we com-
bine a practical LHHW kinetic model with heat transfer be-
tween the internal cooling coil and the fluidized bed of FT re-
actor. Then we design a PI temperature controller based on the 
dynamic behavior of FT to remove the generated heat inside 
the reactor. The results show that involving a passive inter-
cooler improves operability of the FT reactor, prevent reaction 
runaway, and gently decreases the thermal shocks through the 
reactor. In addition, the control system is robust in case of un-
derestimation of overall heat transfer coefficient and is capable 
to recover the temperature of FT reactor against the step 
change in the set point and disturbances in the temperature of 
the feeding syngas to FT reactor. It is notable that the control-
ler needs to change the cooling water flow rate so much just to 
change a few on the temperature which mainly refers to the 
strong exothermic nature of the FT reaction. Hence, other 
cooling alternative such as evaporative cooling might be more 
appropriate.  
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ABSTRACT 

The determination of physicochemical properties of crude oils is a very important and time-intensive pro-
cess that needs elaborate laboratory procedures. Over the last few decades, several correlations have been 
developed to estimate these properties, but they have been very limited in their scope and range. In recent 
years, methods based on spectral data analysis have been shown to be very promising in characterising 
petroleum crude. In this work, the physicochemical properties of crude oils using FTIR spectrums are pre-
dicted. A total of 107 samples of FTIR spectral data consisting of 6840 wavenumbers is used. One Dimen-
sional convolutional neural networks (CNNs) were used with FTIR spectral data as the one-dimensional 
input and Keras and TensorFlow were used for model building. The Root Mean Square Error decreased 
from 160 to around 60 for viscosity when compared to previous machine learning methods like PLS, PCR, 
and PLS-GA on the same data. The important hyper-parameters of the CNN were optimised. In addition, a 
comparison of results obtained with different neural network architectures is presented. Some common 
preprocessing techniques were also tested on the spectral data to determine their impact on model perfor-
mance. To increase interpretability, the intermediate neural network layers were analysed to reveal what 
the convolutions represented, and sensitivity analysis was done to gather key insights into which wave-
numbers were the most important for prediction of the crude oil properties using the neural network. 

Keywords: FTIR, Crude Oil Properties, Neural Network architectures, One Dimensional Convolutional Neural Network 
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INTRODUCTION 

Determination of crude oil properties and its characteri-
zation has long been one of the most important prelimi-
nary/critical steps for different aspects of oil refinery and res-
ervoir calculations. Crude oil viscosity is one of the properties 
that determines how the crude flows in the system and hence 
is important to determine along with others like sulfur per-
centage and the cuts of other crudes. These properties are gen-
erally determined by laboratory experimentation; the related 
methods have evolved for years. Traditionally, the characteri-
zation of crude oil has been carried out using various chroma-
tography methods, but these are intensive, expensive and 
time-consuming. The separation and identification of two or 
more major components could take a year or more using clas-
sical analytical methods [1]. Gas Chromatography and its com-
bination with GC-MS has been very instrumental in analyzing 
petroleum components [2]. GC has been used to evaluate res-
ervoir compartmentalization and connectivity [3]. However, 
these methods are extensively time and resource consuming 
and involve a lot of sample preparation and testing. 

 
As an alternative, Fourier transform infrared spectros-

copy technique (FTIR) has been deployed to characterize 
crudes. Abdulkadir et al. [1] determined that IR spectroscopy 
is indeed viable for characterizing crude oils and models can 
be using Partial Least Squares (PLS) regression on FTIR data. 
They used it to predict the aliphatic content and saturates for 
5-7 samples. Brito et al. [4] have used human-saliva FTIR spec-
tra coupled with support vector machines (SVMs) to find the 
best wavenumber regions to predict blood glucose levels. 

Earlier, Principal Component Regression (PCR) on the 
preprocessed FTIR Spectra was used to predict density and vis-
cosity with very good results for density and acceptable results 
for viscosity [5]. However, to improve the performance of the 
previous machine learning methods further a model with neu-
ral networks is attempted. Since fairly good performance with 
the PLS and PCR regression models were achieved earlier, an 
artificial neural network (ANN) would not provide much of a 
performance increase. Recently, some literature has shown 

mailto:aray@eng.uwo.ca
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that one dimensional CNNs can be used to take spectral infor-
mation as input generating good predictions of different prop-
erties [6-9] in soil, plant leaves, pharmaceutical tablets etc.  

METHODOLOGY 

Dataset 
The crude oil samples used in this study were obtained 

from seven different Canadian oil fields provided by an energy 
corporation company in Canada. The FTIR spectral infor-
mation corresponding to these samples were obtained using a 
Thermo Fisher Scientific FTIR microscope. Other physico-
chemical properties crucial to the characterization of crude 
were obtained using appropriate analytical instruments and 
laboratory methods by the company was provided. Overall, 
107 samples of crude with 6366 wavenumbers each are used as 
attributes. The output space had 13 properties with most im-
portant being density and viscosity. Other properties included 
sulphur content, Total Acid Number, Micro Carbon Residue 
and the yields of different cuts of the crude. 

Dataset Analysis and Preprocessing 
Upon analyzing the correlation of output space attrib-

utes, it was found that most of them were highly correlated 
with density or viscosity. In our previous paper [5], both den-
sity and viscosity were predicted using machine learning 
methods; particularly good predictions were obtained for den-
sity using PCR, but the error for viscosity was not within ac-
ceptable limits. Hence, the more advanced CNN architecture 
for predicting the viscosity was investigated. The data was 
cleaned by removing the first 476 wavenumbers from the spec-
tra due to missing values and noise. The resulting data was 
subject to auto-scaling so that all variables (spectral values at 
each wavenumber) have mean equal to zero and standard de-
viation equal to one. 

Convolutional Neural Networks 
CNN is a widely used class of deep learning architectures 

primarily used in computer vision applications. Recent studies 
have started to use a modified CNN called a one-dimensional 
CNN to predict properties from spectral information [6-9]. In 
these applications, the spectral information is regarded as a 
one-dimensional image and fed to the input layer. CNNs are 
generally made up of three types of layers: convolutional lay-
ers, pooling layers and fully connected layers and a network is 
created by stacking them [10].  

Convolutional Layer 
The convolutional layer is the most vital layer in a CNN 

and uses learnable kernels to train. The filters in a convolu-
tional layer convolve over the entire input to generate a 2D 
activation map [10, 11]. The network then learns the values in 
the kernel to fire when a specific feature is detected. These lay-
ers can decrease the complexity and number of parameters 
compared to a traditional ANN. The common hyper-parame-
ters for this layer are depth, stride and zero-padding. Depth is 
the depth of the output or the number of kernels; Stride is the 
number of pixels the filters move by when convolving on the 
input. Increasing stride can result in less overlap and reduce 
the output dimensions but it can also capture less data. Zero-
padding is used to pad the border of the input with zeros and 
hence preserve the data near the corners and also the 
dimensions. 

To calculate the output dimensions of the convolutional 
layer, the formula used is Output Size = 1+ (N-F)/S  

where N is Input Size, F is Filter Size and S is Stride, 

Pooling layer 
Pooling layers are used to reduce the dimensions of the 

layers which further reduces the number of parameters and 
the computational complexity, The most common kind of 
pooling is max pooling which replaces the value of a kernel 
with the MAX value inside it [11]. The most common filters 
used for max pooling are 2*2 with a stride of 2. This doesn’t 
cause any overlap of filters. Generally, increasing the kernel 
size causes a loss in information and decreases performance 
greatly [10]. 

Fully Connected Layer 
A fully connected layer is very similar to how neurons are 

connected in a traditional ANN in which each neuron in one 
layer is connected to each neuron in the next layer. This 
generally results in a lot of trainable parameters and is 
generally used to connect the features from the convolutions 
to the output [10, 11]. 

Common architectures 
The CNN’s generally follow a common architecture in 

which one cant just connect any type of layer after another. 
Generally convolutional layers are stacked with pooling layers 
and this forms an unit of a convolutional layer and a pooling 
layer which is repeated and is finished with a fully connected 
layer. Sometimes stacking two convolutional layers followed 
by a pooling layer to form an unit helps in selecting more 
complex features [10]. 

Gaussian Noise 
A Gaussian noise layer was used with a standard 

deviation of 0.05. This layer adds noise with a mean of zero 
and a specified standard deviation to the input layer. Studies 
[12] suggest adding Gaussian Noise can have a regularizing 
effect and reduce overfitting. 

Dropout Layer 
Dropout randomly drops nodes from the layer while 

training and simulates the effect of ensemble learning. In this 
work, a dropout layer was used to add a regularizing effect and 
prevent overfitting. The amount of dropout to use will be 
investigated as a hyperparameter [13]. 

One Dimensional CNNs 
One dimensional CNNs are a modified version of the 

conventional deep CNNs and use only an one dimensional 
input of the shape [n,1]. 1-D CNNs have shown some 
advantages over the deeper traditional CNNs [14]. They 
require simple array operations as opposed to more bulky 
matrix operations in CNNs; this significantly reduces the 
computational load. Studies have shown that 1D CNNs are 
really good at performing signal processing tasks with a 
relatively shallower architecture which is easier to train and 
implement. Since we are using this in an industrial setting, 1D 
CNNs having a much lower computational load helps in 
implementing it as a more cost effective and real time solution. 

1D CNNs have been used in a lot of signal processing 
applications including those that involve ECGs signal and 
vibration data[14]. In recent studies, 1D CNNs have been 
proved to work very well with spectral information as an input 
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– this enabled gaining insights and useful predictions from 
data. There have been applications in soil quality predictions 
[6, 7]. Kawamura et al. [7] have used it on Vis-NIR spectra to 
estimate available phosphorus in soil. Ng et al. [6] have also 
used spectral information from combined sources like Vis-NIR 
and MIR to predict several soil properties. Prilianti et al. [8] 
have successfully used a 1D CNN to predict pigment concen-
tration in leafs from the reflectance spectra. Bjerrum et al. 
[9]have developed methods like data augmentation and scat-
ter correction specially for 1DCNNs and successfully predicted 
drug content in tablets from NIR spectra. However, there is 
lack of literature that describes the use of 1D CNNs in petro-
chemistry with FTIR spectra and this is the matter of investi-
gation in this study.  

Hyperparameters 
The most important hyperparameters to be tuned were 

the batch size, learning rate and the optimization technique 
employed. All models were trained with epochs around 200-
300 with early stopping and reduceLRonPlateau callbacks. 

Table 1: Initial Hyperparameter Search Space 

Hyperparameter Search Space 
Batch size 8,16,32,64 
Epochs 150-300 
Learning Rate 0.01,0.001 

We tested seven different gradient descent-based 
optimization techniques to train our algorithms. They are 
Stochastic Gradient Descent, Adagrad, Adadelta, RMSProp, 
Adam, Adamax and Nadam [15].      

Neural Network Architecture  

Previous studies of using 1D CNNs on spectra suggest 
that shallow networks perform much better than deep 
networks and hence we decided to go forth with shallow 
networks for our models. This also helps us with the reduced 
computational load and aids realtime application[8]. For the 
initial testing of hyperparameters, a standard 2 hidden layer 
CNN was used alongwith Gaussian Noise and Dropout. The 
architecture is shown in Table 2. 

Table 2: Architecture of 1D CNN used for hyperparameter testing. 

Layer Parameters 
Gaussian Noise Standard deviation = 0.05 
Conv 1D no of filters = 32; kernel size = 8; ReLU 
Conv 1D no of filters = 32; kernel size = 16; ReLU 
Dropout dropout = 0.5 
Dense Layer no of units = 128; ReLU 
Dense Layer no of units = 1; Linear 

After the initial hyperparameters were determined, the 
best batch size and learning rate were fixed to decide the best 
neural network architecture for our data. For this, a Neural 
Architecture Search approach was implemented using keras-
tuner in Tensorflow [16]. Neural Architecture Search is 
automated architecture engineering algorithm which 
determines the best neural network architecture. Generally, it 
has three dimensions: Search Space, Search Strategy and 
Performance Estimation Strategy [17]. 

Search Space: This consists of the possible neural 
architectures the algorithm will search through. In our study, 
we consider shallow networks only. For the initial runs we 

considered two convolutional layers and one fully connected 
layer with the hyperparameters as the number of kernels and 
filter size for each layer and the number of dense connected 
units. Later, we increased this and the algorithm had to decide 
between 2 to 5 hidden layers and the number of kernels and 
filter size in each. 

Search Strategy: This deals with the algorithm to 
navigate the search space. The most popular strategies are 
Random,    Bayesian Optimization [18] and HyperBand 
Tuner[19].For our study, we decided to use Bayesian 
Optimization since it would be too computationally expensive 
to do an exhaustive search or a RandomSearch. 

Performance Estimation Strategy: A normal Train-Test 
validation was investigated since we have a small dataset.  

RESULTS AND DISCUSSION 

All the hyperparameters were first tested with a standard 
1D CNN containing 2 hidden layers and 2 fully connected 
layers to get a good estimate of hyperparameters to do the 
neural architecture search. 

Hyperparameters 

Batch size 
The best batchsize tends to depend a lot on the learning 

rate and strongly on the optimization algorithm used but a 
general trend was the the error increased as the batch size 
increased. For the majority of test cases a batchsize of 8 or 16 
gave the best results. 

Epochs 
The best epoch size was found manually from the loss 

graphs.Most of the models were found to converge in between 
200 to 300 epochs so an epoch count of 300 was chosen. 

Learning rate 
For learning rate we implemented a function which 

reduced learning rate during training if the loss plateaued for 
a certain number of epochs. Two learning rates of 0.01 and 
0.001 were tested and the learning rate would become half if 
the loss was stagnant for 10 epochs or more. For all test cases 
a lower learning rate of 0.001 gave better results and the 
learning rate plateau function was triggered frequently. 

Optimization algorithms 
All the optimization algorithms were run twice for 

different sets of the above hyperparameters. SGD appeared to 
be very  

unstable and did not converge at all.  All the 
optimization algorithms had much better performance at a 
lower learning rate of 0.001 than 0.01 except Adagrad which 
seemed to be an exception on repeated testing. All the 
algorithms performed best at batchsize = 8 except Nadam 
which gave pretty even performance for both 8 and 16. 

Adam, Adamax and Nadam had the best values of RMSE 
at learning rate equal to 0.001 with Nadam being the most 
consistent through its runs. RMSProp gave comparable RMSE 
values but was very unstable and gave very different values of 
error for each run. Finally due to its stability across different 
runs and low RMSE values we decided upon Nadam as the 
preferred optimization algorithm with a learning rate of 0.001 
and a batchsize of 8 or 16. 
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Figure 1. predicted viscosity vs actual viscosity for standard 
neural network with Adamax,learning rate=0.001,batchsize=16 

 

Table 3: Results of initial hyperparameter optimization. [RMSE 
values on right; where lr: learning rate, bs: batch size.] 

Optimiza-
tion Algo-
rithm 

lr=10-2 
bs=8 

lr=10-2 
bs=16 

lr=10-3 

bs=8 
 

lr=10-3 

bs=16 
 

Adadelta 70 83 NA NA 
RMSProp 201.68 207.89 33.67 22.474 
Adagrad 80.964 75.736 333.67 132.11 
Adam 2349.1 2349.1 30.408 30.527 
Adamax 105.75 2827.6 114.96 5.59 
Nadam 150.72 252.11 5 22 

 

Neural Architecture Search 
Since very low RMSE values of around 5 to 20 was 

achieved during our initial hyperparameter process with just 
two layers, there were concerns of overfit if the number of 
layers were increased and hence the search space was limited 
to 2 hidden layers and one dense layer. The search space is as 
follows. 

Table 4: Architecture of 1D CNN used for hyperparameter testing. 

Hyperparameter Search Space 
layer1_filters [32,64,96,128…256] step=32 
layer1_kernels [2,4,8,16,24,32] 
layer2_filters [32,64,96,128…256] step=32 
layer2_kernels [2,4,8,16,24,32] 
Dense Layer [32,48,64,80,96,112,128] 

An exhaustive search of all the possible combinations of 
the architecture would be too computationally expensive so 
Bayesian Optimization for the search was used. 

 

 

 
The best results are as follows:  

Table 5: Results of hyperparameter optimization of the neural 
network using Bayesian Neural Architecture Search 

layer1_
filters 

layer1_k
ernels 

layer2_
filters 

layer2_k
ernels 

Den
se  

RM
SE 

32 16 256 8 128 6.12 
32 16 224 2 128 9.45 
32 12 256 4 128 16.5 
32 32 256 2 96 7.2 
32 32 256 2 64 8.5 
32 32 256 2 80 13.6 
32 32 256 2 48 28.6 

 
Multiple runs of Bayesian Optimization was run and the 

best values for filters of layer 1 and 2 were 32 and 256. From 
the results we can see layer 1 preferred to be the minimum 
value of 32 consistently while for layer 2 the number of filters 
was always in the higher range above 200. The results are in 
Table 5. 

For Kernels we see more variation but the trends suggest 
that layer 1 kernels prefer to be at the maximum end around 16 
and layer 2 kernels prefer to be in the lower range mostly 2,4 
and 8. 

A run of Bayesian Optimization was done to confirm this 
where the layer1 and layer2 filters were fixed at 32 and 256. 
The results showed that layer 1 preferred to be a higher value 
of 32 and layer 2 stayed around 2 or 4. These results are in 
Table 6. 

A run of Bayesian Optimization was done without 
Gaussian Noise and it gave much worse average performance 
than previous runs and the trend of hyperparameters were 
inconsistent thus showing that Gaussian Noise is important. 

 Table 6: Results of optimization of the number of kernels 
using Bayesian Neural Architecture Search 

l1_kernel l2_kernel RMSE 
32 4 5.86 
32 2 10.629 
16 2 66.776 
2 8 70.496 
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ABSTRACT 

A novel, real-time, non-contact, non-invasive and high-sensitivity planar microwave sensor is developed 
for water cut measurements of crude oil samples. This sensor demonstrates the capability of measuring 
water cut of bitumen in real-time, which is of low-cost and eliminates the hurdles of current measurement 
techniques, prevents loss of production, and paves the way for oil field automation. The platform of the 
proposed sensor is based on a passive split ring resonator-based sensor with a defected ground gap coupled 
transmission line as the reader. The performance of the microwave sensor has been verified with varying 
water concentration in oil samples. The non-contact nature and high-resolution of the proposed structure 
enables monitoring of water cut in the full range.  

Keywords: water cut measurement, planar microwave sensor, non-contact sensing, production monitoring 
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INTRODUCTION 

The oil-water two-phase flow is commonly found in the 
petroleum exploration, production and development of oil 
fields. Monitoring the composition of the fluid, especially the 
water cut is vital [1]. Precise measurement of water content can 
improve the production surveillance [1] and optimize produc-
tion processes [2]. The accurate measurement can aid in the 
quality control of the oilfields production operations, monitor 
the condition of oil wells, minimize energy consumption, and 
automate the oil fields [3]. The classical offline methods such 
as distillation, Karl-Fischer titration and centrifuge require the 
samples to be taken offline to laboratories for analysis which 
lengthens the measurement cycle and can potentially delay 
crucial operational recommendations to be made regarding 
certain processes in the petroleum industry [4]. With the ad-
vancement in technology, online water cut meters have grad-
ually been developed over decades which are commonly based 
on capacitance measurement, gamma ray attenuation, density 
difference or infrared spectroscopy [2]. Amongst these meth-
ods, microwave technology has gained the attention of various 
researchers in academia as well as in the industry. This tech-
nique is robust and precise with full-range water cut measure-
ment despite drift in the instrument [2].  

Recently, planar microwave sensors have gained consid-
erable attention as potential candidates because of the several 
compelling advantages that they offer, such as a simple and 
unique fabrication process, easy integration into the circuit, 
[5] low-cost, high-quality factor, [6] non-contact and real-time 
sensing capability [5]. These sensors are versatile and have 

been employed in a wide variety of applications ranging from 
oil and gas industries, optical sensing, pH sensing, gas concen-
tration monitoring and chemical detection to volatile organic 
compound sensing [5-7].  

Here, we propose a fast and reliable approach using pla-
nar microwave sensors to measure the water cut of the oil-wa-
ter emulsions due to the numerous advantages that they offer. 
The principle of operation in the microwave sensor is based on 
the variation in the dielectric properties of the sample under 
the test, which is impacted by the water content in the mix-
ture. A coupled reader-tag pair sensing approach is proposed, 
which enables sensing and monitoring in harsh environments. 
The tag is the main sensing element and can tolerate high tem-
peratures and this property is immensely useful in harsh envi-
ronments. The design of the ground engineered gap coupled 
transmission line as the reader is such that it can be placed at 
an arbitrary distance from the tag sensor and monitor the var-
iation of water content in the sample around the tag while pro-
tecting the sensor from high temperature environment. The 
tag is chipless, battery-less, passive split-ring resonator sensor, 
which was fabricated on a flexible substrate of 0.254 mm 
thickness. The tag can be mounted on a container while the 
reader is fabricated on a more rigid substrate of thickness 1.575 
mm purchased from Rogers Corporation.  

EXPERIMENTAL SECTION 

Two emulsion samples, including water/pentane and wa-
ter/bitumen were used for water cut measurements. Pentane 
employed in the experiment was purchased from VWR 
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Chemicals Ltd with a purity of  99%. For the water/bitumen 
case, 170 g of Mackay River bitumen was mixed with 30g of 
toluene (17 wt.%) to allow the formation of workable oil/water 
emulsion at room temperature. The toluene is used as the car-
rier phase for bitumen, and its volume was subtracted from the 
oil phase in water cut measurements. The setup consisted of 
the sensor, a mixer for homogenizing the solvent mixture at a 
constant RPM, a beaker containing the mixture of oil & water 
and a Vector Network Analyzer (VNA), which records the data 
and shows the variation of the sample that is changing around 
the tag.  

The core principle of operation of this sensor can be ex-
plained using equation (1).  

 

𝑓𝑟 ≈
𝑐

2𝑙√𝜀𝑒𝑓𝑓
           (1)  

where c is the speed of light (m/s), l is the tag’s length and 𝜀𝑒𝑓𝑓  

is the overall effective permittivity of the tag sensor. According 
to the above equation, increasing the effective permittivity of 
the material under test decreases the resonance frequency of 
the tag relatively. The variation in the effective permittivity 
will cause the resonance frequency to shift upward/down-
wards depending on the sample under test. As the mixture in-
side the tube changes from pure water (𝜀𝑒𝑓𝑓 = 80) to samples 

with more oil (Bitumen/Pentane: 𝜀𝑒𝑓𝑓 = 2.6/1.84) concentra-

tion, the effective permittivity around the tag thereby in-
creases.  

In this experiment, three concentrations of pentane/wa-
ter emulsion samples were prepared and examined by varying 
the concentration of pentane in water, and four different sam-
ples were prepared for the bitumen-water mixture. The beaker 
containing the mixture was stirred under the mixer for an av-
erage of two minutes to create a perfectly homogenized mix-
ture. The tag was mounted on the container, and the sensor’s 
frequency response for the mixture was observed and recorded 
in the VNA. Increasing the concentration of the different sam-
ples affects the effective permittivity of the mixture during the 
test. This change in permittivity is brought about by the tag, 
which senses the variation of the material around it and wire-
lessly communicates it to the reader in the circuit. The reader 
receives the signals, and the VNA then records the shift in fre-
quency response of the sensor. The concentration of pentane 
was determined up to 90% in water which clearly establishes 
the robustness of this planar sensor, and the concentration of 
water was varied up to 28.57% in the bitumen sample by grad-
ually adding 20 g of water in each step.  

Figure 1 depicts the variation in the resonance profile of 
pentane/water emulsion under test in v/v%. Figure 2 shows 
the variation of water concentration in the bitumen sample in 
w/w%. Based on the reference material and the increasing con-
centration of pentane sample, the effective permittivity re-
duces, and we observe an upshift in the frequency response as 
expected. Based on equation (1), for the bitumen-water emul-
sion, the addition of more water increases the overall effective 
permittivity, and we observed a downshift in the resonance 
frequency.  

 

Figure 1. Resonant frequency profile for 3 different effective 
permittivities of Pentane-water mixture.  

 

 

Figure 2. Transmission response of the sensor to varying 
concentration of water in bitumen sample.  

 
The proposed sensor is a promising candidate for real-

time monitoring, and label-free sensing of hydrocarbons for 
water cut measurement in the petroleum industry. The versa-
tility of this sensor clearly demonstrates its potential for de-
tecting other hydrocarbons for solvent detection and water cut 
measurements.  

CONCLUSION 

This work presents a novel technique for detecting sol-
vents and water concentration in the petroleum industry using 
a non-contact high-resolution microwave sensor measuring in 
real-time. The experimental results confirm the potential of 
this sensor for its high sensitivity and quality-factor for detec-
tion by varying concentration of hydrocarbons in water. The 
resonance frequency was the main variable considered for 
studying the sensor’s response to changes in the concentration 
of the hydrocarbons. This technique produced promising re-
sults and is a low-cost microwave sensor with a sensing capa-
bility that could be extended for the detection of other hydro-
carbons in water as well.  
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ABSTRACT 

Mitigation of carbon emissions is an important step to achieve the climate change goals. Amine-based post-
combustion CO2 capture (PCC) process is a promising technology, and many commercial projects have 
been developed based on different capture mechanisms governing in various carbon capture and storage 
(CCS) processes. The thermally regenerative amine-based PCC is a traditional technology, which consists 
of an absorber to capture CO2 from the flue gas and a desorber to strip CO2 from the CO2-rich. Although 
there have been substantial improvements in the industrial applications of amines technology, further de-
velopments are still required owing to significant energy requirement, high capital cost, and amine degra-
dation. One of the most critical issues in the amine-based PCC process is the degradation of solvent, which 
occurs by the transformation of amines into other chemical components by thermal degradation and oxi-
dative degradation. In the thermal degradation, the amines react with CO2 to form compounds having high 
molecular weight, and in the oxidative degradation, the amines react with O2 to synthesize compounds 
having low molecular weight. In addition, the high stable salts are formed as a result of the reaction between 
the amines and the carboxylic acids. These high stable salts lead to considerable problems in the regenera-
tion process, and increase the chance of corrosion in the process equipment. Monoethanolamine (MEA) is 
the most recognized solvent, which is considered a benchmark solvent in the solvent-based PCC processes. 
It has been confirmed that to absorb one molecule of CO2 two molecules of MEA are required, producing 
ion pair of MEACOO- (carbamate) and MEAH+ (protonated MEA). In this research, the MEA thermal deg-
radation is investigated through employing hybrid intelligent techniques of artificial neural network-parti-
cle swarm optimization (ANN-PSO) and coupled simulated annealing-least square support vector machine 
(CSA-LSSVM). The models development is carried out utilizing experimental data, and the input parame-
ters are MEA concentration, CO2 loading, temperature, and time, and the output is the remaining MEA 
concentration after experiencing the degradation phenomenon. The results can be employed for the further 
improvement of a solvent-based PCC process in terms of energy efficiency and operation cost. More im-
portantly, the findings of this study can be used for the detailed and more accurate modeling and optimi-
zation of the corresponding processes. 

Keywords: Amines, CO2 capture, intelligent model, thermal degradation, statistical analysis 
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INTRODUCTION 

Carbon capture and storage (CCS) is an unavoidable 
strategy to decelerate the climate change progress and meet 
the expectations of Paris Agreement [1-4]. Although there have 
been substantial developments in the industrial applications 
of amine technology, additional enhancements are still needed 
due to their high energy requirement, significant capital cost, 
and amine degradation [5, 6]. One of the most concerning is-
sues in the amine-based PCC processes is the degradation of 
solvent, which occurs by the transformation of amines into 
other chemical components due to the chemical reactions. 
This adverse phenomenon takes place by the thermal degra-
dation and oxidative degradation. In thermal degradation, the 

amines react with carbon dioxide to synthesize compounds 
having high molecular weight, and in oxidative degradation, 
the amines react with O2 to form compounds having low mo-
lecular weight. In addition, high-stable salts are formed be-
cause of the reaction between the amines and the carboxylic 
acids. These high-stable salts create greater problems on the 
regeneration process and enhance the chance of corrosion in 
the process equipment [7]. Monoethanolamine (MEA) is the 
most common solvent, which is considered as a benchmark 
solvent, in the solvent-based PCC processes. In the capture 
process, MEA is wasted via thermal degradation, oxidative 
degradation, and volatility losses. Thermal degradation occurs 
by the polymerization of carbamate, causing high molecular 
weight by-products. Oxidative degradation, which takes place 
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in the stripper leading to the high-stable salts, is not a usual 
concern in the current applications of the amines absorp-
tion/stripping as oxygen is not in the system. The solvent 
losses due to the volatility in the absorber and stripper can be 
prevented through using a sophisticated control system [8]. In 
the CO2 capture process, thermal degradation mostly occurs 
in the stripper, and significant research works have reported 
that high temperature in the presence of CO2 is the key reason 
of degradation. Some studies stated that the thermal degrada-
tion occurs due to the high temperature in the absence of CO2, 
emphasizing the essential role of heat. This type of degrada-
tion leads to dimerization, cyclization, and dealkylation. The 
main products of the thermal degradation of MEA are oxazol-
idine-2-one (OZD), N-(2-hydroxyethyl)imidazolidine-2-one 
(HEIA), N-(2-hydroxyethyl) ethylenediamine (HEEDA), and 
N,N’-bis-(2-hydroxyethyl)urea. Oxidative degradation nor-
mally occurs in the absorber, and the major reactions taking 
place are addition, piperazinones, and dealkylation. Some of 
the key products of the MEA oxidative degradation are ammo-
nia, formaldehyde, acetaldehyde, methylamine, formamide, 
formic acid, glyoxal, and acetic acid [9]. There have been sev-
eral research investigations on the solvents’ degradation em-
ployed in the carbon capture processes. For instance,  Davis 
and Rochelle [10] quantified the MEA thermal degradation as 
a function of CO2 loading, temperature, and initial MEA con-
centration over the normal operating condition of the stripper. 
They concluded that most of the MEA loss happens in the for-
mation of N,N’-bis-(2-hydroxyethyl)urea, HEEDA, and HEIA 
[10]. Thermal degradation and CO2 removal capacity of vari-
ous samples of MEA were evaluated at 160 oC over the period 
of 2-8 weeks. It was found that the concentration of MEA de-
creases by 95% because of the thermal degradation at 160 oC 
for 8 weeks ; however, the remaining solvent keeps its capacity 
at 22% to remove CO2 [11]. Development of a CO2 capture pro-
cess model was carried out incorporating the degradation rate 
of MEA resulted from the experimental data. The model was 
used to assess the effect of the operating conditions on the pro-
cess solvent loss. It was claimed that the major reason of sol-
vent loss was the oxidative degradation in the absorber, while 
thermal degradation was not an important concern [12]. 

In another study, the researchers concluded that the de-
veloped method could be employed for the simultaneous 
quantification of various products of thermal degradation [13]. 
Molecular mechanisms demonstrating the thermal degrada-
tion of MEA were examined by employing molecular dynamic 
simulation as well as metadynamics sampling. It was found 
that the OZD formation as an intermediate and the main prod-
ucts of HEEDA and HEIA are thermodynamically favorable 
[14]. The literature review reveals that no investigation based 
on smart techniques has been carried out on the solvent ther-
mal degradation analysis in a solvent-based PCC process. 
Thus, this research focuses on this gap employing the hybrid 
intelligent models. The models can offer an appropriate plat-
form for the assessment of the solvent degradation in the pro-
posed system, and the models can be utilized for the modeling 
and optimization of the solvent-based PCC processes. 

METHODOLOGY 

Data Processing  

Adequate number of data is required for the accurate 
prediction of the solvent degradation. The key step of con-
structing a smart model is to determine the model input and 
output parameters. In this study, MEA initial concentration, 
time, CO2 loading, and temperature are the input variables, 
and the MEA concentration left after particular period of time 
is the output variable. Thermal degradation greatly depends 
on the system temperature, and it happens at high tempera-
tures. CO2 loading increases the thermal degradation, and 
higher loading of CO2 appears to enhance the thermal degra-
dation either by improving the proton donors availability by 
catalyzing the dehydration or through the formation of more 
carbamate [15]. Concerning the effect of time, the products of 
thermal degradation usually increase over time [16]. Clearly, 
the solvent concentration in the system is a key parameter in 
the solvent thermal degradation. For example, an increase in 
the MEA concentration unexpectedly lowers the thermal deg-
radation rate [8]. 

Programming 
MATLAB software is employed to build the models of ar-

tificial neural network-particle swarm optimization (ANN-
PSO) and coupled simulated annealing-least square support 
vector machine (CSA-LSSVM). Various configurations of each 
model are used to obtain the reliable results. In the proposed 
models, the degradation of MEA is analyzed utilizing the input 
data and inputs. All data are normalized within the range of [-
1  1] in order to prevent the numerical overflow in the program 
runs and achieve the required convergence. The following 
equation is used to normalize the data: 

�̂� = 2
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 (1) 

where �̂� refers to the normalized value of xi, and xmin and 
xmax resemble the minimum and maximum values of the ex-
perimental data. 

Model Performance Assessment 
 The statistical parameters including mean square error 

(MSE), average absolute relative error percentage (AARE%), 
and coefficient of determination (R2) are used to assess the 
precision and performance of the models. The following equa-
tions introduce the above-stated statistical measures [17-19]: 

𝐴𝐴𝑅𝐸% =  100 ∑ |
𝑥𝑑

𝑖 − 𝑥𝑚
𝑖

𝑥𝑑
𝑖

|

𝑛

𝑖=1

/𝑛 (2) 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑥𝑑

𝑖 − 𝑥𝑚
𝑖 )

2
𝑛

𝑖=1

 (3) 

𝑅2 = 1 −
∑ (𝑥𝑑

𝑖 − 𝑥𝑚
𝑖 )

2𝑛
𝑖=1

∑ (𝑥𝑑
𝑖 − �̅�)

2𝑛
𝑖=1

 (4) 

where 𝑥𝑑
𝑖  and 𝑥𝑚

𝑖  are the amounts of the experimental 
data and predicted by the model; �̅� stands fot the average value 
of the experimental data; and n indicates the data number. 

RESULTS AND DISCUSSION 

Various parameters are optimized to configure the most 
optimal ANN-PSO model, such as constants for gBest and 
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pBest, number of particles, number of maximum iterations, 
and number of neurons in the hidden layer. Figure 1 displays 
the performance of the ANN-PSO model for the data sets of 
training and testing. The values of AARE% for the training and 
testing phases are 6.57 and 5.33, respectively. The LSSVM 
model with the radial Kernel function contains two critical pa-
rameters of tuning (𝜎2) and regularization (𝛾), and their opti-
mal values are computed by CSA optimization algorithm. 
These two parameters substantially affect the model predic-
tion accuracy. The estimated optimal values of 𝜎2 and 𝛾 are 
218.52 and 2.89×105, respectively. Figure 2 illustrates the per-
formance of the CSA-LSSVM model in the training and testing 
phases. The AARE% values for the data sets of training and 
testing are 3.30 and 5.36, respectively. 

 

 

Figure 1. Performance of ANN-PSO. 

 

 

Figure 2. Performance of CSA-LSSVM. 

Comparison of Developed Models 
The statistical criteria of R2 (coefficient of determina-

tion), AARE%, and MSE are employed to assess the developed 
models performance. Figure 3 depicts the performance of 
ANN-PSO and CSA-LSSVM based on training and testing data 
sets. Table 1 reports the developed models performance based 
on the statistical criteria, revealing that CSA-LSSVM is a more 
accurate model. 
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Figure 3. Performance of the models based on the training and 
testing phases. 

Table 1: Performance of the developed models. 

Model R2 
(Tr) 

R2 
(Ts) 

MSE 
(Tr) 

MSE 
(Ts) 

AARE
% (Tr) 

AARE
% (Ts) 

ANN-
PSO 

0.975 0.977 0.195 0.211 6.57 5.33 

CSA-
LSSVM 

0.990 0.984 0.073 0.176 3.30 5.36 

 

Parametric Sensitivity Analysis 
Sensitivity analysis is performed to figure out the rela-

tionship between the input variables and the output variable. 
Correlation matrix theory can determine the degree of the lin-
ear relationship between two variables in a multi-variable sys-
tem. Different approaches can be utilized to compute the 
strength of the linear relationship. The Pearson product-mo-
ment correlation coefficient is one of the most suitable tech-
niques to do the correlation matrix analysis. The analysis re-
veals that the variables of temperature, loading, and time have 
a negative relationship with the output variable, indicating 
that an increase in these variables decreases the remaining 
concentration of the solvent in the system. Temperature has 
the strongest negative relationship with the target variable. 

In the solvent-based PCC operation, it was claimed that 
10% of the operation cost is associated with the solvent degra-
dation [20]. This suggests the significance of understanding 
amine degradation in the performance analysis of the PCC 
processes. Moreover, the capacity of solvent to absorb CO2 re-
duces when it faces the unfavorable phenomenon of degrada-
tion. The byproducts of the degradation should be removed 
from the system. They are hazardous wastes, and their quan-
tity and specifications require to be determined for the more 
accurate control of the process. Moreover, a suitable model of 

the thermal degradation outside of the customary operating 
conditions is needed to optimize the system [21]. Increasing 
temperature accelerates the MEA degradation, and in a con-
stant pressure system, lower CO2 concentration leads to the 
elevated temperature of the reboiler, leading to the thermal 
degradation enhancement [8]. An increase in MEA concentra-
tion increases the risk of corrosion, and results in increased 
viscosity of the solution. Based on the results obtained by 
Davis [8], an increase in temperature results in more thermal 
degradation while increasing CO2 loading and amine concen-
tration reduces the thermal degradation. In this research, in-
crease in temperature and CO2 loading accelerates the thermal 
degradation while an increase in MEA concentration lowers 
the thermal degradation. Thus, there is a discrepancy between 
the two models with respect to the CO2 loading. However, the 
results of this study regarding the influence of CO2 loading on 
the thermal degradation agree with the models developed by 
Braakhuis, Høisæter [15] and Léonard, Toye [22].  

CONCLUSIONS 

In this research, amines thermal degradation in the con-
ventional solvent-based post-combustion CO2 capture (PCC) 
process was analyzed by employing the hybrid intelligent 
models of ANN-PSO and CSA-LSSVM. Moreover, a correlation 
was introduced using the capability of the GEP based on the 
concept of maximum fitness and optimal evolution. The train-
ing phase reveals that CSA-LSSVM model is more accurate 
than ANN-PSO. The results indicate that increase in tempera-
ture, CO2 loading, and time accelerate the thermal degrada-
tion, and an increase in initial the MEA concentration results 
in the reduction of the thermal degradation. Considering the 
global warming, together with the several solvents capable of 
absorbing CO2 and extreme cost of experimental activities, 
this research offers a convenient groundwork for a systematic 
analysis of the thermal degradation mechanism of the solvents 
and more precise development of the optimization models. 
The developed methodology together with the developed 
models can be employed for the prediction of thermal and ox-
idative degradation of various solvents and the comparison of 
their capability in CO2 absorption. The selected suitable sol-
vent can be used to optimize the standard PCC processes em-
ploying the first principle models and/or intelligent tech-
niques. 
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ABSTRACT 

In recent years, Fourier Transform InfraRed (FTIR) spectrometry has been widely used to estimate different 
characteristics and contents of materials in many fields. Even though numerous works have been published 
in this area, it has still been difficult to suggest a global method that can predict the properties of crude oils 
from different resources based solely on FTIR data. In this study, we compare the application of several 
methods in order to predict particular important properties (i.e., viscosity, density, total sulfur content, 
total acid number, etc.) of crude oil samples from seven different Canadian oil fields. We employed chemo-
metric methods such as Partial Least Squares regression (PLS) and principal component regression (PCR) 
and compared the results to the performance of neural networks (NN) with a different number of layers. 
These methods were evaluated by calculating the coefficient of determination (R2) and prediction root 
mean squared errors (RMSE). Although less complicated statistical methods like PCR and PLS could lead 
to excellent predictions for some properties, we found that neural networks could improve the results in 
other properties. In addition, the prediction accuracy of some properties, like viscosity, was improved by 
classification before the application of regression methods. 

Keywords: FTIR, Crude Oil Properties, Statistical Methods, Deep Neural Network, Shallow Neural Network, Chemo-
metric Methods 
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INTRODUCTION 

An accurate determination of specifications of crude oil 
as the essential source of the world's fossil fuel is vital in the 
oil industry. Since petroleum is a complex mixture of organic 
compounds, its quality is mostly evaluated by physicochemical 
properties [1]. These properties are of high interest for address-
ing many reservoir engineering and operational process prob-
lems.  

American Society for Testing and Materials (ASTM) and 
American Petroleum Institute (API) have standard methods 
for reporting crude oil analysis. So, these properties are ideally 
determined experimentally on actual fluid samples via elabo-
rate laboratory procedures, which are mostly expensive and 
not too eco-friendly.  

Accordingly, it is of high value to propose methods for 
both reliable and rapid evaluation of crude oils, which can es-
timate properties without any sample preparation so more 
eco-friendly, and with less labor work. In this work, we pro-
pose the best chemometric methods and neural networks us-
ing FTIR spectroscopy for simultaneously reliable and rapid 
determination of crude oil properties. 

Owing to rapid and significant advances in multivariate 
statistics and machine learning techniques, it is now possible 

to estimate many properties of interest (that are difficult or 
costly to measure) using other relatively simpler, faster, and 
less expensive measurements. Analytical procedures which are 
less dependent on sample size [2] are now available for map-
ping out the relationship between the easily available meas-
urements, such as Fourier Transform InfraRed (FTIR), and the 
difficult to obtain measurements, such as the viscosity of crude 
oil. 

METHODS 

Stepping towards incorporating FTIR data into physico-
chemical properties, we studied the data of one hundred and 
seven crude oil samples obtained from seven different Cana-
dian oil fields that a petroleum company in Canada supplied. 
They obtained the FTIR spectra corresponding to these sam-
ples using a Thermo Fisher FTIR microscope. They also meas-
ured several physicochemical properties of these crude oil 
samples using appropriate analytical instruments. The com-
pany wants to develop robust models that can only provide ac-
curate estimates of the physicochemical properties utilizing 
FTIR data, thus avoiding the need for elaborate, expensive, and 
time-consuming laboratory procedures. 
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We analyzed the application of several methods to pre-
dict particular important properties of crude oil samples by 
randomly dividing data into training, calibration, and test sets. 
We employed chemometric methods such as Partial Least 
Squares regression (PLS) and principal component regression 
(PCR) and compared the results to the performance of neural 
networks (NN) with a different number of layers. We evalu-
ated these methods by calculating the coefficient of determi-
nation (R2) and prediction root mean squared errors (RMSE). 

 These results have been partially reported in a separate 
study involving eighty-two crude oil samples focused on pre-
dicting viscosity and density with chemometric methods [1]. 

DISCUSSION 

This study focuses on the importance of spectra data in 
predicting the physicochemical properties of crude oil samples 
from different oil fields. We suggest the best methods, includ-
ing chemometric ones, like PLS and PCR, and varying depth 
neural network ones, to calculate several important crude oil 
properties, like viscosity, density, total acid number, total sul-
fur content, etc., disrespect of analyzing a light oil or a heavy 
one.  
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ABSTRACT 

The historical prices of oil, coal, and natural gas in the United States after adjusting for energy content and 
inflation are computed and provided in a comparative context from 1984 to the present (August 2022). The 
price history reflects impacts by disruptive local or global events. Although current oil and gas prices are 
high, when adjusted for inflation, they are still not as high as prices experienced during the early 1980s and 
late 2000s. However, high global inflation rates compound other factors that are increasing energy prices 
now, leading to record high prices in absolute terms, and sticker shock to consumers worldwide. The recent 
impacts of the pandemic, Texas Freeze, and Russian invasion of mainland Ukraine are evident. Although 
oil and gas generally trend up or down together, they remain decoupled on an energy basis as they have 
been since 2006. 
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INTRODUCTION 

Everyday consumers are usually most directly connected 
to global energy systems through fuel and energy purchases, 
particularly electricity, heating, and transportation fuels. The 
actual prices paid by consumers can have major impacts on 
public policy, economic activity, and simply daily life. Memo-
ries are short, and it is easy to believe that things are the worst 
they have ever been (especially just before US midterm elec-
tions). Therefore, it is useful to look at price history to under-
stand if the changes we have been experiencing are common 
or unique.  

Prices reflect reality, and therefore they are useful meas-
urements that give hints as to what is going on with the larger 
global energy system. By looking at prices on an inflation-ad-
justed and energy-adjusted basis, one can understand how 
changes in technology and disruptive world events impact our 
relationship with energy and the interactions between its dif-
ferent forms. One can also ascertain the relative health of our 
energy system from this information, and perhaps heed the 
warnings it might provide. Therefore, I present inflation-ad-
justed and energy-adjusted historical prices since 1984 are 
with an analysis in the context of world events and the resili-
ency of the larger global energy system. 

METHODOLOGY 

Natural Gas 
Data for natural gas uses the average US Natural Gas 

Price at the city gate expressed in USD per thousand cubic feet 

published by the US Energy Information Administration in 
various Monthly Energy Review reports, using the most recent 
data set available [1]. Residential customers have typically paid 
about 100% to 300% more than the city gate price in the past 
three years, which includes delivery charges to the home and 
other factors. The variability in residential prices compared to 
city gate prices is presently the highest it has been in the past 
40 years. Although wellhead prices are no longer tracked in 
the dataset, the city gate price historically was typically any-
where between 20 to 200% higher than the price of gas at the 
wellhead.  

The city gate price is chosen as the representative price 
because it avoids the additional complications associated with 
contracts, transportation, and delivery to the customer, as 
noted by its lower volatility compared to the other two met-
rics. After removing the data points related to the February 
2021 Texas Freeze incident, the average absolute value of the 
percent change in price from month to month of all data avail-
able since 1976 is only 5.7% per month for the city gate, com-
pared to 6.3% for the wellhead and 6.8% for the residential 
customer after delivery. Similarly, the interquartile range (the 
difference between the third quartile and first quartile) of ab-
solute percentage monthly price change for the city gate is the 
lowest as well at 6.0%, compared to 7.7% for the residential 
price. 

The price per standard cubic feet was converted to price 
per GJ by assuming an average energy content of 1037 BTU per 
cubic foot of natural gas on a higher heating value (HHV) ba-
sis. The energy content can vary from this depending on the 
specific blend of gases that comprise it from day to day. The 
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value chosen was approximately the average value in the US 
from 2015-2021 with very little variation, noting that it is 
slightly higher (1%) than the previous twelve years [2] due to 
small changes in composition.  

Coal 
The coal price data was sourced from the US Energy In-

formation Administration, which was listed in USD per short 
ton (1 short ton = 2000 lbs ≈ 907.18 kg) for four different types 
of coal, including both thermal and metallurgical coals [4, 5]. 
Quarterly data for steam coal exports was available from 2016 
and annual data for domestic coal prior to it. The price used 
for “coal” in this study is a weighted “basket” of steam coal 
prices (a.k.a. thermal coal, used for energy purposes) consist-
ing of 75 wt% bituminous coal, 8% lignite, and 17% anthracite 
coals. The heating values of bituminous, lignite, and anthracite 
coals were assumed to be 35, 17, and 35 GJHHV/tonne (1 tonne 
= 1000 kg) respectively (which uses a medium-rank bitumi-
nous heating value) [6-8]. Note that heating values will vary 
wildly from coal to coal but variations in the numbers do not 
alter the interpretation of the resulting plots much. 

Oil 
Oil prices used in this analysis are the composite prices 

for the refiner’s acquisition cost of crude, provided on a 
monthly basis in USD per barrel [1]. The composite prices re-
flect both domestic and imported crudes. This is appropriate 
because it reflects the price of the oil purchased either domes-
tically (“first purchase price”) or internationally (“free on 
board cost”) plus transportation and other costs associated 
with getting the oil to the refinery. The refinery acquisition 
composite cost is the most appropriate for comparison to the 
natural gas city gate and thermal coal export prices in this con-
text. There is no distinction in oil quality (composition, API 
gravity, sweetness, etc.), and so an average heating value of 
6.12 GJHHV per barrel of oil equivalent is used to determine the 
price on an energy content basis. 

Inflation 

Inflation adjustments were made using the appropriate 
consumer price index (CPI) value for that month [3]. For ref-
erence, January 1914 had an index of 10 and the years 1982 to 
1984 collectively have a CPI of 100 by definition. All US Dollar 
prices were adjusted to August 2022, which has an index of 
296.171. The overall CPI metric is used, not energy, specifically 
so that the changes in energy prices compared to the rest of 
the economy can be easily seen. For example, the CPI for Au-
gust 2022 was 8.4%, but the CPI for the Energy Commodities 
is a whopping 27.1% [3]. 

RESULTS 

The resulting inflation adjusted US energy prices are 
shown in Figure 1, on a USDAugust2022 per GJHHV basis.  

Gas and Oil Remain Decoupled 

Table 1: Selected inflation and energy adjusted oil and gas price 
relationships. R is the correlation between oil and gas prices. O–G 
is the average relative price premium of oil over gas. Trend Match 
is the percentage of months when oil and gas both moved in the 
same direction (+/-) compared to the previous month. 

Period R O–G Trend Match 
1984-2005 0.786 17% 49% 
1992-2005 0.828 14% 32% 
2008-Aug 2022  0.583 152% 58% 
    

 
As discussed in a 2015 work [9], oil and gas prices were 

fully coupled from 1984 (and in fact much before it) until 
2006, when hurricane Katrina significantly disrupted oil net-
works and its price. Essentially, prior to 2006, visual inspec-
tion shows that oil and gas were very similar in price per en-
ergy content at any time. Exceptions are seen in a few places, 
such as from impacts on oil (and not gas) of the Persian Gulf 
War in August 1990, but the correlation from 1984 to 2005 

 
Figure 1. Comparative inflation adjusted prices of natural gas, oil, and coal in the United States. Selected disruptive events are 
noted. See text for methdology. 
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(inclusive) is a remarkable 𝑅 = 0.786, as shown in Table 1. It 
was particularly highly correlated after the Persian Gulf War 
impacts resided (1992 to 2005 inclusive). However, after the 
shale gas boom takes full swing in 2008, the correlation drops 
precipitously—only 𝑅 = 0.583 from 2008 to the present.  

The relative price of oil to gas (“O-G”) shown in Table 1 
is computed as follows: 

"𝑂 − 𝐺" =
𝑃𝑜𝑖𝑙−𝑃𝑔𝑎𝑠

𝑃𝑔𝑎𝑠
    (1) 

where 𝑃𝑜𝑖𝑙 and 𝑃𝑔𝑎𝑠 are the inflation and energy adjusted 

prices of oil and gas in USDAug2002 per GJHHV. Prior to 2005, the 
oil price on an energy adjusted basis was on average roughly 
17% higher than the price of gas (using the particular prices 
chosen), but after 2008 the oil been on average 152% higher 
per GJHHV than gas. Thus, the decoupling has been consistent 
and persistent since the shale gas boom, signaling a permanent 
change in global energy systems.  

The “Trend Match” statistic shows the percentage of 
months in which oil and gas both trended in the same direc-
tion as compared to the previous month. This is interesting 
because when taken into comparison with 𝑅, short term and 
long term trends can be separated. For the highly correlated 
period after the Gulf War but before the shale boom (1992-
2005), the trend match is low at only 32%. This can be inter-
preted that this period shows that generally speaking the oil 
and gas prices were strongly correlated at the macro or long 
term level, but at the micro level, they were not. Essentially, 
there is some market noise and other factors here which only 
has small impacts when comparing the two fuels. In fact, the 
price direction changes are likely anti-correlated, since the 
trend match should be 50% for completely random walks. 

Contrast this with the post-shale boom period (2008-
present), which has the least correlated prices, but the highest 
trend match at 58%. This means that although certain events 
might drastically change one price (but not the other) at the 
macro level (and then sustain it), oil and gas prices are much 
more correlated in the short term. In other words, they now 
tend more to rise and fall together in the short term, indicating 
that and noise or technical difference impacts on price are 
somewhat overcome by other day-to-day factors that impact 
energy more generally. 

Coal’s Historically Stability and Relative Cost 
Unchanged 

Coal remains remarkably stable compared to the other 
two fuels, even when considering that the data are only avail-
able on annual or quarterly amounts and so short term noise 
cannot be seen. Coal continues to be consistently lower in cost 
than oil or gas on an energy and inflation adjusted basis and 
relatively impervious to major world events until very recently.  

It is no surprise then that CO2 emissions from coal power 
reached an all time global high in 2021 [10] due in large part to 
its availability, low price, and stability. This record high CO2 
emissions from coal is even despite efforts in North America 
and Europe to drastically reduce coal use, improve efficiency, 
and even capture CO2 emissions in some cases. Canada for ex-
ample has reduced coal power generation from 2000 to 2021 
by 66%, and Europe likewise by 41% [11]. These cuts have been 
more than offset by growth primarily in China and India, to-
gether which are responsible for almost two thirds of the 

world’s coal power generation. They have increased coal power 
production by 404% and 226% over the same period [11]. 

Impacts from the Pandemic 
Three recent world events stand out strongly in the plot. 

The first is the impact of the pandemic on oil prices in North 
America. Billions of people across the world were either en-
couraged or forced to work from home or avoid travel, drasti-
cally reducing the demand for transportation fuels. The imme-
diate plunge in oil price is evident, and it took all of 2020 to 
rebound to pre-pandemic levels. Headlines were made when 
West Texas Intermediate Futures contracts dropped below 
negative 40 USD per barrel on April 20, 2020 [12]. The de-
mand became so low that there was insufficient storage avail-
able for upstream oil being produced, and companies had to 
pay to have it taken off their hands.  

Gas prices in the pandemic actually increased somewhat 
over its February 2020 level, partly because it is not a major 
transportation fuel, and perhaps partly because it was needed 
for atypical peaking power generation uses due to drastic shifts 
in daily power demand cycles arising from massive changes in 
personal habits and behaviours.  

Impacts from the Texas Freeze 
The Texas Freeze impacted gas prices severely in the 

United States, but did not affect the other two fuels signifi-
cantly. In February 14-15, 2021, an extreme cold weather event 
occurred (extreme for Texas that is) in which parts of urban 
Texas were well below freezing for days at a time, the Dallas-
Fort-Worth area reaching down to –2°F (–19°C). The energy 
infrastructure Texas is not built for that unusual amount of 
cold, and nearly 49% of Texas’ electricity generation capacity 
was knocked out at the same time at its worst moments. Con-
trolled outages were required, and some areas were more im-
pacted than others because of difficulties in implementing 
rolling outages. By 1:20 AM on the 15th emergency operations 
reached their highest level.  

The impact on the grid was massive. Electricity prices in 
Texas from Feb 14-19 2021 averaged at roughly $6600 USD per 
MWh (the price was typically about $21 per MWh the previous 
winter!) and returned to normal by the Feb 20 [13]. Despite the 
relatively brief outage in just one US State, the country’s aver-
age gas price for the whole month went up 258%. It is the big-
gest single month impact on gas price in both absolute and 
relative terms for the entire data range.  

Impacts from Russia’s Invasion of Ukraine 
The 2022 invasion of Ukraine sparked more massive 

price fluctuations. Oil grew quickly over its already relatively 
high pre-invasion price, and gas had its third highest single 
month and two month percentage increases. Our Coal metric 
price reached an all time high (noting the annual and quarterly 
inflation adjusted prices used) in April 2022, shortly after the 
invasion. The coal price jump is significant because it reflects 
Europe’s reliance on Russian oil and gas; prior to the invasion, 
the EU imported about 35% of its natural gas and about 25% 
of its oil from Russia [11]. 

Reductions in consumption of Russian imports (largely-
self imposed by Europe for both punitive and other measures) 
caused increased demand for coal for power purposes. The 
subsequent impact on electricity prices is huge; electricity 
prices in Europe more than doubled since the invasion and are 
now about ten times as high as pre-pandemic prices. 
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CONCLUSIONS 
A review of energy price history using energy adjusted 

and inflation-adjusted metrics is instructive because it pro-
vides important insights into the health and interconnected-
ness of global energy systems. Although consumers may be 
faced with sticker-shock at the pump, the impacts of inflation 
are huge at present, and so in relative historical terms the oil 
price is not presently the “worst” it has ever been.  

What is more telling is how recent disruptive world 
events seem to have more of an impact on our energy systems 
than in the past. The three major examples of the past two 
years each point to individual problems with the resiliency of 
our global energy infrastructure. The first resulted in the his-
torical absurdity of massively negative oil futures prices, the 
second resulted in the single biggest price disruption in natu-
ral gas, and the third produced highest price of coal (all since 
1984 and in inflation adjusted terms).  

This is a canary in the coal mine. It should be a warning 
that our global energy systems are quite vulnerable to disrup-
tion and are already stretched with what is a regionally limited 
European war. Although the way the world responded to the 
pandemic was a unique event, a cold weather event in a single 
US state and a geographically restricted war are not unique in 
history. They are quite likely to happen again in even more se-
rious fashion. We need better preparedness, or we will face far 
worse consequences in the near future.  

The solutions need to be multi-faceted, and include im-
proved foreign energy policy, energy security, energy supply 
chain robustness, energy independence, and the incorporation 
of alternative forms of energy for transportation and use. Di-
versification improves resiliency, and these approaches can all 
be done while pursuing greenhouse gas reduction goals. These 
are the most urgent challenges of the energy systems engineer. 
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ABSTRACT 

Patients with renal anemia (RA) are usually treated with recombinant human erythropoietin (EPO) because 
of insufficient renal EPO secretion. The establishment of a good hemoglobin (Hgb) response model is a 
necessary condition for dose optimization design. The purpose of this paper is to apply physics-informed 
neural networks (PINN) to build the Hgb response model under EPO treatment. Neural network training 
is guided by physiological model to avoid overfitting problem. During the training process, the parameters 
of the physiological model can be estimated simultaneously. To handle differential equations with impulse 
inputs and time delays, we propose approximate analytical expressions for the pharmacokinetic (PK) model 
and weighted formulations for the pharmacology (PD) model, respectively. The improved PK/PD model 
was incorporated into PINN for training. Tests on simulated data show that the proposed method has good 
performance. 
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INTRODUCTION 

 Renal anemia (RA) is a disease caused by the defi-
ciency of erythropoietin (EPO) secretion by kidney. This is due 
to impaired renal function or some toxic substances in the 
plasma of uremic patients interfering with the production and 
metabolism of red blood cells [1]. It is a common complication 
of chronic kidney disease and a risk factor for cardiovascular 
complications. Now the efficacy of EPO in the treatment of RA 
has been well documented [2]. EPO is a glycoprotein with 165 
amino acids. When oxygen delivery to specific cells within the 
kidney is reduced, secretion of EPO increases while circulating 
in the plasma and stimulating bone marrow progenitor cells, 
thereby increasing erythrocyte production [3]. If the increase 
in erythrocyte numbers relieves the hypoxic signal, EPO ex-
pression is downregulated. Despite its clinical effectiveness, 
there are potential drug-induced risks in patients treated with 
EPO. In practice, clinicians usually adjust the frequency and 
dose of EPO based on current hemoglobin (Hgb) measure-
ments and previous dosing rules. It requires rich clinical expe-
rience. While low Hgb level leads to anemia, high Hgb levels 
can increase the risk of Hgb variation patterns and even mor-
tality for the patient [4]. Therefore, it is important to develop 
decision support tools that can help the medical staff deter-
mine the appropriate dose and frequency of EPO to maintain 
the target Hgb level and reduce the cost of treatment. 

To help physicians make patient-specific decisions on 
the optimal dosage of EPO treatment, a model that describes 
the Hgb response to the EPO dosing is necessary. Existing 

methods of erythropoiesis modeling can be divided into two 
main categories. One is physiologically driven modeling, 
which usually uses a combination of pharmacokinetic (PK) 
and pharmacodynamics (PD) models to describe the dynamics 
of Hgb concentration following the administration of intrave-
nous EPO [5], [6], [7]. The other is data-driven modeling. It 
sets EPO dose data and Hgb measurements as input and out-
put, respectively. Then data-driven models like neural net-
work or autoregressive model can be trained to represent the 
erythropoiesis process [8], [9]. Both approaches have ad-
vantages and disadvantages. By building a physiologically 
driven model, we can get the details of the system states. 
Moreover, if the theoretical model is correct, the physiologi-
cally driven model can work well. But in practice, conventional 
method often has difficulties in estimating physiological pa-
rameters for ill-posed inverse problems [10]. On the other 
hand, although a data-driven model can approximate complex 
functions, it is sensitive to data noise and may not perform in 
prediction. 

Given the above problems, this work aims to develop a 
more efficient method to build an erythropoiesis model. The 
proposed method uses physics-informed neural networks 
(PINN) to identify the physiological model parameters. Just 
like the framework of PINN proposed in paper [11], the front 
part of the neural network is similar to the ordinary fully con-
nected neural network. With the network output and the as-
sociated gradients calculated from auto-differentiation, the 
physiological model equation residuals are incorporated in the 
loss function to enforce the physiological model information. 
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In this way, PINN achieves good estimation and robustness to 
noise and disturbances. 

PHYSIOLOGICAL MODEL 

Regarding the Hgb response to EPO dosage, an example 
of clinical data record is shown in Figure 1. Hgb level is rec-
orded around every 2 weeks, patients with late-stage renal dis-
ease receive EPO treatment 1 to 3 times per week [12]. 

 

Figure 1. A clinical example data of EPO dosages and Hgb 
responses 

Paper [13] has proposed a physiological erythropoiesis 
model to describe the Hgb-EPO relationship. The model con-
sists of PK and PD model equations. The PK model describes 
how the body affects specific exogenous chemical substances 
through absorption and distribution mechanisms after drug 
administration, as well as changes in the metabolism of sub-
stances in the body, and the effects and excretion pathways of 
drug metabolites [14]. The PD model explains pharmacological 
effects on living systems, including reactions and binding to 
cellular components, and the biochemical and physiological 
consequences of these effects [15]. 

For the PK model, it can be described as: 

d𝐸(𝑡)

d𝑡
= −

𝑉⋅𝐸(𝑡)

𝐾𝑚+𝐸(𝑡)
− α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)  (1) 

𝐸𝑝(𝑡) = 𝐸(𝑡) + 𝐸𝑒𝑛      (2) 

𝑘𝑖𝑛(𝑡) =
𝑆⋅𝐸𝑝(𝑡)

𝐶+𝐸𝑝(𝑡)
    (3) 

Een =
C⋅Hen

μ⋅KH⋅S−Hen
    (4) 

The PD model is defined as bellow: 

d𝑅(𝑡)

d𝑡
= 𝑘𝑖𝑛(𝑡 − 𝐷) −

4𝑥1(𝑡)

μ2    (5) 

d𝑥1(𝑡)

d𝑡
= 𝑥2(𝑡)    (6) 

d𝑥2(𝑡)

d𝑡
= 𝑘𝑖𝑛(𝑡 − 𝐷) −

4𝑥1(𝑡)

μ2
−

4𝑥2(𝑡)

μ
  (7) 

𝐻𝑔𝑏(𝑡) = 𝐾𝐻 ⋅ 𝑅(𝑡)    (8) 

In the PK model equations, 𝐸(𝑡)  denotes the amount of 
exogenous recombinant human EPO, 𝐸𝑒𝑛  denotes the endog-
enous EPO, 𝐸𝑝(𝑡) is the total EPO of the dynamic pool in 

plasma, 𝑘𝑖𝑛(𝑡) is the red blood cells (RBC) production rate, and 
𝑑𝑜𝑠𝑒(𝑡)  is the EPO dosing in international unit (IU) which is 
modeled as a train of impulses.[13] Additionally, the model 
contains some parameters: 𝐻𝑒𝑛 is the Hgb level due to endog-
enous EPO, μ represents the mean RBC life span, 𝑉 is the max-
imum exogenous EPO clearance rate, 𝐾𝑚 stands for the exog-
enous EPO level that produces half-maximum clearance rate, 
α is the linear clearance constant, 𝑆 represents the maximal 
RBC production rate stimulated by EPO, 𝐶 is the amount of 
EPO that produces half-maximum RBC production rate [13]. 

In the PD model, states 𝑅(𝑡) represent the population of 
red blood cells (RBC), states 𝑥1(𝑡) and 𝑥2(𝑡) are internal states 
that aid in calculating 𝑅(𝑡), 𝐻𝑔𝑏(𝑡) is the hemoglobin level 
which can be detected clinically, parameters 𝐷 is the time re-
quired for EPO-stimulated RBCs to start forming, 𝐾𝐻 is the av-
erage amount of Hgb per RBC (mean corpuscular hemoglobin, 
or MCH, in a complete blood count) which takes value of 𝐾𝐻 =
29.5𝑝𝑔/𝑐𝑒𝑙𝑙 [13]. 

The initial conditions can be determined as below 

𝑅0 =
𝐻𝑔𝑏0

𝐾𝐻
     (9) 

𝑥10 =
μ⋅(𝐻𝑒𝑛−μ⋅𝐾𝐻⋅�̇�0)

4𝐾𝐻
    (10) 

𝑥20 =
𝐾𝐻⋅𝑅0−𝐻𝑒𝑛+μ⋅𝐾𝐻⋅�̇�0

𝐾𝐻
    (11) 

Based on the above physiological model, eight unknown 
model parameters α, 𝐶, 𝐷, 𝐻𝑒𝑛, 𝐾𝑚, μ, 𝑆, 𝑉 can be estimated us-
ing collected data for each patient. In this work, we use the 
inverse PINN for the parameter estimation. 

PHYSICS-INFORMED MACHINE LEARNING 

Paper [11] proposed the PINN which is a type of neural 
network trained to solve supervised learning tasks while fol-
lowing given physical law described by partial differential 
equations. It is shown by [16] that the method performs well 
to identify the unknown model parameters. 

The PINN structure [17] used in this work is shown in 
Figure 2. Time is the input. States of the physiological system 
are output. The hidden layers perform nonlinear transfor-
mations on the data [18]. It is similar to a fully connected neu-
ral network but adds three extra layers to accelerate conver-
gence. Input-scaling layer is designed to shrink the input time 
domain through a linear scaling function. When differential 
equations solution has a certain pattern, for example, the so-
lution follows periodicity or attenuation, feature layer can be 

set as 𝑠𝑖𝑛(𝑘𝑡) or 𝑒−𝑘𝑡 respectively [16]. If states have different 
magnitudes, the output-scaling layer can be used to scale 
them. 
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Figure 2. Physics informed neural networks architecture 

 

The main idea of PINN is to incorporate the physical 
model equation residual (error) into the loss function of the 
neural network training. During the training process, the net-
work model parameters and the physical model parameters 
can be estimated simultaneously. Consider a set of ODE equa-
tions 

𝑑𝑥𝑠

𝑑𝑡
= 𝑓𝑠(𝑥𝑠 , 𝑡; 𝑝)  𝑠 = 1, … , 𝑆   

 (12) 

The loss function is composed of 3 parts as follows. 

𝐿𝑜𝑠𝑠(θ, 𝑝) = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎(θ) + 𝐿𝑜𝑠𝑠𝑜𝑑𝑒(θ) +
𝐿𝑜𝑠𝑠𝑎𝑢𝑥(θ)                                                                                          (13) 

where 

𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎(θ) = ∑ 𝑤𝑚
𝑑𝑎𝑡𝑎𝐿𝑜𝑠𝑠𝑚

𝑑𝑎𝑡𝑎

𝑀

𝑚=1

 

= ∑ 𝑤𝑚
𝑑𝑎𝑡𝑎 [

1

𝑁𝑑𝑎𝑡𝑎
∑ (𝑦𝑚(𝑡𝑛) − 𝑥�̂�(𝑡𝑛; θ))

2𝑁𝑑𝑎𝑡𝑎

𝑛=1 ]𝑀
𝑚=1  (14) 

𝐿ossode(θ) = ∑ ws
odeLosss

ode

S

s=1

 

= ∑ ws
ode [

1

Node
∑ (

dxŝ

dt
|τn

− fs(xŝ(τn; θ), τn; p))
2

Node

n=1 ]S
s=1      

(15) 

𝐿𝑜𝑠𝑠𝑎𝑢𝑥(θ) = ∑ 𝑤𝑠
𝑎𝑢𝑥𝐿𝑜𝑠𝑠𝑠

𝑎𝑢𝑥

𝑆

𝑠=1

 

= ∑ 𝑤𝑠
𝑎𝑢𝑥[𝑥𝑠(𝑇0) − 𝑥�̂�(𝑇0; θ)]2𝑆

𝑠=1   (16) 

Ndata is the number of sample data points where both the 
input (time and additional control input) and the output re-

sponse are available. 𝑁𝑜𝑑𝑒 is the number of collocation points 
used to evaluate the model residual. Note that there is no re-

sponse data needed for those collocation points. 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 is 
difference values between measurements of 𝑦1, 𝑦2, … , 𝑦𝑀 and 
network outputs 𝑥1̂, 𝑥2̂, … , 𝑥�̂� at time 𝑡1, 𝑡2, … , 𝑡𝑁𝑑𝑎𝑡𝑎. 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 

is similar to 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎, but it specifically considers the start 

time point 𝑇0 as an additional source. 𝐿𝑜𝑠𝑠𝑜𝑑𝑒 is the key point 
of PINN. By automatic differentiation, the derivative of output 
states 𝑥1̂, 𝑥2̂, … , 𝑥�̂� concerning input 𝑡 at the time point 
τ1, τ2, … , τ𝑁𝑜𝑑𝑒 can be obtained. Then we can calculate the 

residual error according to the differential equations and use 
it as a part of the loss function. In this way, differential equa-
tions are integrated into the neural network, which attaches 
physical constraints to machine learning. The weighting coef-

ficients (𝑤1
𝑑𝑎𝑡𝑎 , 𝑤2

𝑑𝑎𝑡𝑎, … , 𝑤𝑀
𝑑𝑎𝑡𝑎), (𝑤1

𝑜𝑑𝑒 , 𝑤2
𝑜𝑑𝑒 , … , 𝑤𝑆

𝑜𝑑𝑒) and 
(𝑤1

𝑎𝑢𝑥 , 𝑤2
𝑎𝑢𝑥 , … , 𝑤𝑆

𝑎𝑢𝑥) are used to balance the loss terms. Fi-
nally, by minimizing the loss function, the parameters θ of the 
neural network and unidentified parameters 𝑝 of differential 
equations are optimized together. 

MODIFIED PK/PD MODEL FOR PINN 

To incorporate the physiological model into the PINN 
framework, we face two challenges from the original PK/PD 
model, which are explained below. 

Impulse input sequences in PK equations 
Eq. 1 is a differential equation with impulse input se-

quence. This equation describes the decay process of exoge-
nous EPO in the human body. Based on a simulation of this 
differential equation with parameter V, Km, α being set as 
1660, 76.5, 0.25, respectively. Black dash-dot curve in Figure 3 
illustrates the trajectory of EPO in human body during 10 days 
after receiving 7000 IU EPO medications on the second day. 
In practice, dose(t) is a train of impulses. This causes two is-
sues when PINN is used to incorporate this physiological equa-
tion. First, the width of the impulse tends to be zero and the 

derivative 
𝑑𝐸(𝑡)

𝑑𝑡
 goes to infinity at the dosing time. It is impos-

sible to directly evaluate the differential equation residual 
d𝐸(𝑡)

d𝑡
− [−

𝑉⋅𝐸(𝑡)

𝐾𝑚+𝐸(𝑡)
− α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)]. Secondly, the profile 

of 𝐸(𝑡) is not smooth under an impulse sequence input as 
shown in the figure. It is not very efficient to approximate this 
nonsmooth function through the neural network. To address 
this issue, we propose a method to approximate this differen-
tial equation based on the following observations. 

 

Figure 3. Trajectory of E(t) under a single EPO dosage 
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According to the differential equation 1, when 𝐸(𝑡) is 
much bigger than 𝐾𝑚, the equation can be simplified as 

d𝐸(𝑡)

d𝑡
≈ −𝑉 − α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)   (17) 

For this equation, the solution trajectory of 𝐸(𝑡) is an ex-
ponential function as shown by the red line in Figure 3 with 
α =  0.6. Compared with the exponential function, the curve 
of differential equation solution 𝐸(𝑡) decreases more quickly. 

To improve the approximation accuracy, we propose the 
following exponential function Eq. 18 to approximate 𝐸(𝑡), 

𝐸(𝑡) = ∑ 𝑑𝑜𝑠𝑒𝑗
𝑁(𝑡)
𝑗=1 ⋅ 𝑒𝑥𝑝 [− (𝑎0 ⋅ 𝑒

−𝑑𝑜𝑠𝑒𝑗

𝑎1 + 𝑎2) ⋅

(𝑡 − 𝑡𝑗)
𝑎3

]                                                                                           (18) 

where 𝑎0, 𝑎1, 𝑎2, 𝑎3 are four undetermined parameters, 𝑡𝑗 

and 𝑑𝑜𝑠𝑒𝑗 correspond to the 𝑗-th EPO administration time and 

dosage value, respectively. 𝑁(𝑡) is the total number of dosing 
times up to time 𝑡. For example, if the patient receives 5000 
IU EPO treatment and 10000 IU EPO treatment on the 20th 
day and 60th day, the corresponding (𝑡𝑗, 𝑑𝑜𝑠𝑒𝑗) are (20, 5000), 

(30, 10000). Using exponentiation of time difference, this pro-
posed exponential function can match the differential equa-
tion solution better at the later stage. 

To demonstrate the performance of the proposed model 
equation, we simulate the original equation 1 to get the profile 
of 𝐸(𝑡) under the EPO dose sequence as shown in the top part 
of Figure 3. Afterwards, we sample data from the true solution 
(as shown by the black dash-dot curve in Figure 3) and then 
use least squares method to estimate the parameters in the 
proposed model equation 18. The estimated parameter values 
are a0 = 1.87, a1 = 3640, a2 = 0.269, a3 = 1.53. The 𝐸(𝑡) trajec-
tory calculated by the proposed exponential function Eq. 18 is 
drawn in Figure 3 by blue line, which approximates the true 
response curve (black dash-dot curve) very well.  

In addition to the single impulse input study, the accu-
racy of the proposed model equation is also tested over a se-
quence of EPO dosages which was obtained from clinical data. 
The top part of Figure 4 is the EPO treatment record. The so-
lution of the differential equation and the approximate expo-
nential function are shown in the middle part of Figure 4, re-
spectively. Notice that the bottom one is the zoomed version 
of the red box in the middle figure to show more details. 𝑅2 of 
𝐸(𝑡) prediction is equal to 99.76%. This result verifies that the 
proposed model equation approximates the original exponen-
tial differential equation very well. 

 

 

 

Figure 4. Trajectories of EPO in the body based on clinical data 

TIME DELAY IN PD EQUATIONS 

The other issue comes from Eq. 5 and Eq. 7. These two 
equations are delay differential equations. The delay item 𝐷 is 
the parameter to be estimated. However, in the neural net-
work, it is hard to calculate the partial derivative of the loss 
function with respect to the delay parameter. 

Paper [13] has studied the low-pass filter nature of the 
RBC pool. As shown in Figure 5, a twice-weekly dosing se-
quence is simulated and it generates pulsatile and periodic 
EPO levels 𝐸𝑃 and corresponding production rate 𝑘𝑖𝑛; but the 
periodic dynamics are largely smoothed out by the low-pass 
nature of the RBC pool filter [13]. 

 

Figure 5. Low-pass nature of the RBC pool filter 

 

Therefore, during the therapy, PK and cell production 
PD is relevant to the mean value of the production rate, which 

is denoted as 𝑘in
̅̅ ̅̅  in Eq. 19 where [𝑖𝑇, (𝑖 + 1)𝑇] is a single dose 

period. The Eq. 3 can be reconsidered as a memoryless nonlin-
ear relationship between EPO doses and mean production rate 
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𝑘in
̅̅ ̅̅ ,[13] which means a similar mean production rate profile 𝑘in

̅̅ ̅̅  
will lead to similar Hgb trajectory. 

𝑘in
̅̅ ̅̅ (𝑑𝑜𝑠𝑒𝑖 , 𝑇) =

1

𝑇
∫ 𝑘in(𝑡)𝑑𝑡

(𝑖+1)𝑇

𝑖𝑇
                    (19) 

Based on the above analysis, we propose to convert the 
delay differential equations into a different form which makes 
the estimation easier. The method is based on a weighting 
function and the new equations are defined as follows: 

d𝑅(𝑡)

d𝑡
= λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2) −

4𝑥1(𝑡)

μ2
    (20) 

d𝑥2(𝑡)

d𝑡
= λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2) −

4𝑥1(𝑡)

μ2
−

4𝑥2(𝑡)

μ

      (21) 

λ1 + λ2 = 1        (22) 

The term 𝑘𝑖𝑛(𝑡 − 𝐷) is replaced by the weighting func-
tion λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2), where λ1 and λ2 are param-
eters to be determined, and 𝐷1 and 𝐷2 are fixed as 4 and 7, 
respectively. This is based on the fact that the time required 
for progenitor cells to be stimulated by EPO and finally be-
come reticulocytes ready to mature into RBCs is 4 - 7days [3]. 
The original delay parameter 𝐷 can be estimated as 

𝐷 = 𝜆1𝐷1 + 𝜆2𝐷2       (23) 

Figure 6 shows the RBC production rate 𝑘𝑖𝑛 and the av-

erage weekly production rate 𝑘in
̅̅ ̅̅ (𝑇 = 7)  of the original form 

and the proposed weighting function respectively. Here, λ1 
and λ2 are both set as 0.5. It illustrates that during every dose 
period, there is some difference between the original form 
𝑘𝑖𝑛(𝑡 − 𝐷) and the proposed weighting function λ1𝑘𝑖𝑛(𝑡 −
𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2). For example, in the second dose period 
(day 22 to 29), the original model solution includes two pulses 
whereas the proposed weighting function produces three 
pulses with a smaller magnitude. However, the average weekly 

production rate 𝑘in
̅̅ ̅̅  of the original form gets superimposed by 

the 𝑘in
̅̅ ̅̅  of the proposed weighting function. The trajectories of 

Hgb level obtained from these two methods in this short term 
are similar, as shown in Figure 7. 

 

Figure 6. Comparison between the average weekly production 

rate 𝑘in
̅̅̅̅   and 𝑘𝑖𝑛   

 

Figure 7. Hgb value of two methods in short term 

Table 1: PARAMETERS FOR PK/PD MODELS 

𝛼 𝐾𝑚 𝑉 𝐶 𝐷 𝐻𝑒𝑛 μ 𝑆 

0.25 46.5 2800 22.45 5.5 7.9 92.2 0.0084 

 

Finally, we check the approximation performance over a 
long horizon. With parameters set as Table 1, the original 
model and the approximated model are both simulated. Figure 
8 shows these two Hgb trajectories of the original form and 
delay differential equations with a weighting function. Root 
mean square error (RMSE) between two curves equals 0.0712. 

 

 

Figure 8. Long term Hgb responses: original model and 
approximation model 

Above results show that the proposed PK/PD model 
modification approximate the original model very well. They 
provide a basis for the PINN modeling as described in the next 
section. 

PINN USING THE MODIFIED PK/PD MODEL 

According to the proposed approximation model ex-
plained, the overall physiological model used in the PINN is 
based on equations 18, 2,3,4,20, 6, 21, 8. 
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During the PINN training process, the neural network 

parameters and the parameters in the physiological model are 
simultaneously estimated. The loss term corresponding to the 
model residual is based on equation 20, 6, 21. 

Based on the parameters 𝑎0, 𝑎1, 𝑎2, 𝑎3, original parame-
ters 𝑉, 𝐾𝑚, α can be further estimated through least squares 
method. Besides, the delay parameter 𝐷 can be evaluated us-
ing equation 23. 

Test on simulated data 
To demonstrate the proposed erythropoiesis modeling 

based on PINN, true parameter values as listed in Table 2 and 
a set of EPO input sequence as shown in Figure 9 are chosen 
to generate a series of Hgb data by solving this PK/PD model. 
Then Gaussian noise with zero mean and the standard devia-
tion of σϵ = 𝑐𝜇 is added to Hgb data to simulate measurement 
noise, where μ is the standard deviation of original Hgb data 
and c is equal to 5%. According to the noise-free Hgb data and 
the noise-containing Hgb data, we use PINN to identify these 
parameters in the differential equations separately and com-
pare the results. The algorithm is implemented in Python with 
the open-source library DeepXDE [19]. The neural network is 
formed from 5 hidden layers and each one has 64, 128, 256, 
128, 64 neurons. The feature layer adopts 
𝑡, 𝑠𝑖𝑛(𝑡), 𝑠𝑖𝑛(2𝑡), 𝑠𝑖𝑛(3𝑡), 𝑠𝑖𝑛(4𝑡), 𝑠𝑖𝑛(5𝑡). The swish function 
is set as the activation function. In addition, we use the Adam 
optimizer [20] and 500000 iterations with a learning rate 
equal to 10−4. 

 

 

Figure 9. Simulated true Hgb responses and PINN model 
predictions 

 
 
 
 
 
 
 
Based on noise-free data and noise-containing data, we 

can estimate the parameters for erythropoiesis modeling in 
Table 2. The fitting results based on the two cases are shown 
in Figure 9. Corresponding RMSE are 0.0160 (no noise) and 
0.0755 (with noise), respectively. The result shows these in-
ferred parameters have a higher degree of accuracy. The agree-
ment between the Hgb solution based on the estimated pa-
rameters and exact dynamics is good considering the noise in 
the training data. 

CONCLUSION 

 In this paper, we applied PINN technique to model the 
Hgb response under EPO treatment. This method combined 
physiological PK/PD model and neural network learning tech-
nology to estimate the parameters of PK/PD model.  During 
the training of the neural network, physical laws describing 
the physiological model are enforced by adding the model re-
siduals to the loss function. To address the problem that the 
PINN cannot easily handle the residual of the differential 
equation at the time instants with impulse inputs, we pro-
posed an approximate model to replace the PK model equa-
tion. In addition, to handle the time delay in the PD differen-
tial equation, we proposed a weighting function-based formu-
lation so that the delay parameter can be estimated by training 
the PINN. Tests on simulated data show that the proposed 
method has good prediction accuracy and is robust to noise. 

The proposed modeling technique can help build indi-
vidualized model for patients with renal disease. Physicians 
can rely on this modeling technique to develop patient-spe-
cific EPO dosing strategy to optimally manage the Hgb level of 
different patients. Future work can be done by integrating the 
PINN model into feedback control strategies to achieve this 
objective. 
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