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ABSTRACT 

Patients with renal anemia (RA) are usually treated with recombinant human erythropoietin (EPO) because 
of insufficient renal EPO secretion. The establishment of a good hemoglobin (Hgb) response model is a 
necessary condition for dose optimization design. The purpose of this paper is to apply physics-informed 
neural networks (PINN) to build the Hgb response model under EPO treatment. Neural network training 
is guided by physiological model to avoid overfitting problem. During the training process, the parameters 
of the physiological model can be estimated simultaneously. To handle differential equations with impulse 
inputs and time delays, we propose approximate analytical expressions for the pharmacokinetic (PK) model 
and weighted formulations for the pharmacology (PD) model, respectively. The improved PK/PD model 
was incorporated into PINN for training. Tests on simulated data show that the proposed method has good 
performance. 
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INTRODUCTION 

 Renal anemia (RA) is a disease caused by the defi-
ciency of erythropoietin (EPO) secretion by kidney. This is due 
to impaired renal function or some toxic substances in the 
plasma of uremic patients interfering with the production and 
metabolism of red blood cells [1]. It is a common complication 
of chronic kidney disease and a risk factor for cardiovascular 
complications. Now the efficacy of EPO in the treatment of RA 
has been well documented [2]. EPO is a glycoprotein with 165 
amino acids. When oxygen delivery to specific cells within the 
kidney is reduced, secretion of EPO increases while circulating 
in the plasma and stimulating bone marrow progenitor cells, 
thereby increasing erythrocyte production [3]. If the increase 
in erythrocyte numbers relieves the hypoxic signal, EPO ex-
pression is downregulated. Despite its clinical effectiveness, 
there are potential drug-induced risks in patients treated with 
EPO. In practice, clinicians usually adjust the frequency and 
dose of EPO based on current hemoglobin (Hgb) measure-
ments and previous dosing rules. It requires rich clinical expe-
rience. While low Hgb level leads to anemia, high Hgb levels 
can increase the risk of Hgb variation patterns and even mor-
tality for the patient [4]. Therefore, it is important to develop 
decision support tools that can help the medical staff deter-
mine the appropriate dose and frequency of EPO to maintain 
the target Hgb level and reduce the cost of treatment. 

To help physicians make patient-specific decisions on 
the optimal dosage of EPO treatment, a model that describes 
the Hgb response to the EPO dosing is necessary. Existing 

methods of erythropoiesis modeling can be divided into two 
main categories. One is physiologically driven modeling, 
which usually uses a combination of pharmacokinetic (PK) 
and pharmacodynamics (PD) models to describe the dynamics 
of Hgb concentration following the administration of intrave-
nous EPO [5], [6], [7]. The other is data-driven modeling. It 
sets EPO dose data and Hgb measurements as input and out-
put, respectively. Then data-driven models like neural net-
work or autoregressive model can be trained to represent the 
erythropoiesis process [8], [9]. Both approaches have ad-
vantages and disadvantages. By building a physiologically 
driven model, we can get the details of the system states. 
Moreover, if the theoretical model is correct, the physiologi-
cally driven model can work well. But in practice, conventional 
method often has difficulties in estimating physiological pa-
rameters for ill-posed inverse problems [10]. On the other 
hand, although a data-driven model can approximate complex 
functions, it is sensitive to data noise and may not perform in 
prediction. 

Given the above problems, this work aims to develop a 
more efficient method to build an erythropoiesis model. The 
proposed method uses physics-informed neural networks 
(PINN) to identify the physiological model parameters. Just 
like the framework of PINN proposed in paper [11], the front 
part of the neural network is similar to the ordinary fully con-
nected neural network. With the network output and the as-
sociated gradients calculated from auto-differentiation, the 
physiological model equation residuals are incorporated in the 
loss function to enforce the physiological model information. 
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In this way, PINN achieves good estimation and robustness to 
noise and disturbances. 

PHYSIOLOGICAL MODEL 

Regarding the Hgb response to EPO dosage, an example 
of clinical data record is shown in Figure 1. Hgb level is rec-
orded around every 2 weeks, patients with late-stage renal dis-
ease receive EPO treatment 1 to 3 times per week [12]. 

 

Figure 1. A clinical example data of EPO dosages and Hgb 
responses 

Paper [13] has proposed a physiological erythropoiesis 
model to describe the Hgb-EPO relationship. The model con-
sists of PK and PD model equations. The PK model describes 
how the body affects specific exogenous chemical substances 
through absorption and distribution mechanisms after drug 
administration, as well as changes in the metabolism of sub-
stances in the body, and the effects and excretion pathways of 
drug metabolites [14]. The PD model explains pharmacological 
effects on living systems, including reactions and binding to 
cellular components, and the biochemical and physiological 
consequences of these effects [15]. 

For the PK model, it can be described as: 

d𝐸(𝑡)

d𝑡
= −

𝑉⋅𝐸(𝑡)

𝐾𝑚+𝐸(𝑡)
− α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)  (1) 

𝐸𝑝(𝑡) = 𝐸(𝑡) + 𝐸𝑒𝑛      (2) 

𝑘𝑖𝑛(𝑡) =
𝑆⋅𝐸𝑝(𝑡)

𝐶+𝐸𝑝(𝑡)
    (3) 

Een =
C⋅Hen

μ⋅KH⋅S−Hen
    (4) 

The PD model is defined as bellow: 

d𝑅(𝑡)

d𝑡
= 𝑘𝑖𝑛(𝑡 − 𝐷) −

4𝑥1(𝑡)

μ2    (5) 

d𝑥1(𝑡)

d𝑡
= 𝑥2(𝑡)    (6) 

d𝑥2(𝑡)

d𝑡
= 𝑘𝑖𝑛(𝑡 − 𝐷) −

4𝑥1(𝑡)

μ2
−

4𝑥2(𝑡)

μ
  (7) 

𝐻𝑔𝑏(𝑡) = 𝐾𝐻 ⋅ 𝑅(𝑡)    (8) 

In the PK model equations, 𝐸(𝑡)  denotes the amount of 
exogenous recombinant human EPO, 𝐸𝑒𝑛  denotes the endog-
enous EPO, 𝐸𝑝(𝑡) is the total EPO of the dynamic pool in 

plasma, 𝑘𝑖𝑛(𝑡) is the red blood cells (RBC) production rate, and 
𝑑𝑜𝑠𝑒(𝑡)  is the EPO dosing in international unit (IU) which is 
modeled as a train of impulses.[13] Additionally, the model 
contains some parameters: 𝐻𝑒𝑛 is the Hgb level due to endog-
enous EPO, μ represents the mean RBC life span, 𝑉 is the max-
imum exogenous EPO clearance rate, 𝐾𝑚 stands for the exog-
enous EPO level that produces half-maximum clearance rate, 
α is the linear clearance constant, 𝑆 represents the maximal 
RBC production rate stimulated by EPO, 𝐶 is the amount of 
EPO that produces half-maximum RBC production rate [13]. 

In the PD model, states 𝑅(𝑡) represent the population of 
red blood cells (RBC), states 𝑥1(𝑡) and 𝑥2(𝑡) are internal states 
that aid in calculating 𝑅(𝑡), 𝐻𝑔𝑏(𝑡) is the hemoglobin level 
which can be detected clinically, parameters 𝐷 is the time re-
quired for EPO-stimulated RBCs to start forming, 𝐾𝐻 is the av-
erage amount of Hgb per RBC (mean corpuscular hemoglobin, 
or MCH, in a complete blood count) which takes value of 𝐾𝐻 =
29.5𝑝𝑔/𝑐𝑒𝑙𝑙 [13]. 

The initial conditions can be determined as below 

𝑅0 =
𝐻𝑔𝑏0

𝐾𝐻
     (9) 

𝑥10 =
μ⋅(𝐻𝑒𝑛−μ⋅𝐾𝐻⋅𝑅̇0)

4𝐾𝐻
    (10) 

𝑥20 =
𝐾𝐻⋅𝑅0−𝐻𝑒𝑛+μ⋅𝐾𝐻⋅𝑅̇0

𝐾𝐻
    (11) 

Based on the above physiological model, eight unknown 
model parameters α, 𝐶, 𝐷, 𝐻𝑒𝑛, 𝐾𝑚, μ, 𝑆, 𝑉 can be estimated us-
ing collected data for each patient. In this work, we use the 
inverse PINN for the parameter estimation. 

PHYSICS-INFORMED MACHINE LEARNING 

Paper [11] proposed the PINN which is a type of neural 
network trained to solve supervised learning tasks while fol-
lowing given physical law described by partial differential 
equations. It is shown by [16] that the method performs well 
to identify the unknown model parameters. 

The PINN structure [17] used in this work is shown in 
Figure 2. Time is the input. States of the physiological system 
are output. The hidden layers perform nonlinear transfor-
mations on the data [18]. It is similar to a fully connected neu-
ral network but adds three extra layers to accelerate conver-
gence. Input-scaling layer is designed to shrink the input time 
domain through a linear scaling function. When differential 
equations solution has a certain pattern, for example, the so-
lution follows periodicity or attenuation, feature layer can be 

set as 𝑠𝑖𝑛(𝑘𝑡) or 𝑒−𝑘𝑡 respectively [16]. If states have different 
magnitudes, the output-scaling layer can be used to scale 
them. 
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Figure 2. Physics informed neural networks architecture 

 

The main idea of PINN is to incorporate the physical 
model equation residual (error) into the loss function of the 
neural network training. During the training process, the net-
work model parameters and the physical model parameters 
can be estimated simultaneously. Consider a set of ODE equa-
tions 

𝑑𝑥𝑠

𝑑𝑡
= 𝑓𝑠(𝑥𝑠 , 𝑡; 𝑝)  𝑠 = 1, … , 𝑆   

 (12) 

The loss function is composed of 3 parts as follows. 

𝐿𝑜𝑠𝑠(θ, 𝑝) = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎(θ) + 𝐿𝑜𝑠𝑠𝑜𝑑𝑒(θ) +
𝐿𝑜𝑠𝑠𝑎𝑢𝑥(θ)                                                                                          (13) 

where 

𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎(θ) = ∑ 𝑤𝑚
𝑑𝑎𝑡𝑎𝐿𝑜𝑠𝑠𝑚

𝑑𝑎𝑡𝑎

𝑀

𝑚=1

 

= ∑ 𝑤𝑚
𝑑𝑎𝑡𝑎 [

1

𝑁𝑑𝑎𝑡𝑎
∑ (𝑦𝑚(𝑡𝑛) − 𝑥𝑚̂(𝑡𝑛; θ))

2𝑁𝑑𝑎𝑡𝑎

𝑛=1 ]𝑀
𝑚=1  (14) 

𝐿ossode(θ) = ∑ ws
odeLosss

ode

S

s=1

 

= ∑ ws
ode [

1

Node
∑ (

dxŝ

dt
|τn

− fs(xŝ(τn; θ), τn; p))
2

Node

n=1 ]S
s=1      

(15) 

𝐿𝑜𝑠𝑠𝑎𝑢𝑥(θ) = ∑ 𝑤𝑠
𝑎𝑢𝑥𝐿𝑜𝑠𝑠𝑠

𝑎𝑢𝑥

𝑆

𝑠=1

 

= ∑ 𝑤𝑠
𝑎𝑢𝑥[𝑥𝑠(𝑇0) − 𝑥𝑠̂(𝑇0; θ)]2𝑆

𝑠=1   (16) 

Ndata is the number of sample data points where both the 
input (time and additional control input) and the output re-

sponse are available. 𝑁𝑜𝑑𝑒 is the number of collocation points 
used to evaluate the model residual. Note that there is no re-

sponse data needed for those collocation points. 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 is 
difference values between measurements of 𝑦1, 𝑦2, … , 𝑦𝑀 and 
network outputs 𝑥1̂, 𝑥2̂, … , 𝑥𝑀̂ at time 𝑡1, 𝑡2, … , 𝑡𝑁𝑑𝑎𝑡𝑎. 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 

is similar to 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎, but it specifically considers the start 

time point 𝑇0 as an additional source. 𝐿𝑜𝑠𝑠𝑜𝑑𝑒 is the key point 
of PINN. By automatic differentiation, the derivative of output 
states 𝑥1̂, 𝑥2̂, … , 𝑥𝑆̂ concerning input 𝑡 at the time point 
τ1, τ2, … , τ𝑁𝑜𝑑𝑒 can be obtained. Then we can calculate the 

residual error according to the differential equations and use 
it as a part of the loss function. In this way, differential equa-
tions are integrated into the neural network, which attaches 
physical constraints to machine learning. The weighting coef-

ficients (𝑤1
𝑑𝑎𝑡𝑎 , 𝑤2

𝑑𝑎𝑡𝑎, … , 𝑤𝑀
𝑑𝑎𝑡𝑎), (𝑤1

𝑜𝑑𝑒 , 𝑤2
𝑜𝑑𝑒 , … , 𝑤𝑆

𝑜𝑑𝑒) and 
(𝑤1

𝑎𝑢𝑥 , 𝑤2
𝑎𝑢𝑥 , … , 𝑤𝑆

𝑎𝑢𝑥) are used to balance the loss terms. Fi-
nally, by minimizing the loss function, the parameters θ of the 
neural network and unidentified parameters 𝑝 of differential 
equations are optimized together. 

MODIFIED PK/PD MODEL FOR PINN 

To incorporate the physiological model into the PINN 
framework, we face two challenges from the original PK/PD 
model, which are explained below. 

Impulse input sequences in PK equations 
Eq. 1 is a differential equation with impulse input se-

quence. This equation describes the decay process of exoge-
nous EPO in the human body. Based on a simulation of this 
differential equation with parameter V, Km, α being set as 
1660, 76.5, 0.25, respectively. Black dash-dot curve in Figure 3 
illustrates the trajectory of EPO in human body during 10 days 
after receiving 7000 IU EPO medications on the second day. 
In practice, dose(t) is a train of impulses. This causes two is-
sues when PINN is used to incorporate this physiological equa-
tion. First, the width of the impulse tends to be zero and the 

derivative 
𝑑𝐸(𝑡)

𝑑𝑡
 goes to infinity at the dosing time. It is impos-

sible to directly evaluate the differential equation residual 
d𝐸(𝑡)

d𝑡
− [−

𝑉⋅𝐸(𝑡)

𝐾𝑚+𝐸(𝑡)
− α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)]. Secondly, the profile 

of 𝐸(𝑡) is not smooth under an impulse sequence input as 
shown in the figure. It is not very efficient to approximate this 
nonsmooth function through the neural network. To address 
this issue, we propose a method to approximate this differen-
tial equation based on the following observations. 

 

Figure 3. Trajectory of E(t) under a single EPO dosage 
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According to the differential equation 1, when 𝐸(𝑡) is 
much bigger than 𝐾𝑚, the equation can be simplified as 

d𝐸(𝑡)

d𝑡
≈ −𝑉 − α ⋅ 𝐸(𝑡) + 𝑑𝑜𝑠𝑒(𝑡)   (17) 

For this equation, the solution trajectory of 𝐸(𝑡) is an ex-
ponential function as shown by the red line in Figure 3 with 
α =  0.6. Compared with the exponential function, the curve 
of differential equation solution 𝐸(𝑡) decreases more quickly. 

To improve the approximation accuracy, we propose the 
following exponential function Eq. 18 to approximate 𝐸(𝑡), 

𝐸(𝑡) = ∑ 𝑑𝑜𝑠𝑒𝑗
𝑁(𝑡)
𝑗=1 ⋅ 𝑒𝑥𝑝 [− (𝑎0 ⋅ 𝑒

−𝑑𝑜𝑠𝑒𝑗

𝑎1 + 𝑎2) ⋅

(𝑡 − 𝑡𝑗)
𝑎3

]                                                                                           (18) 

where 𝑎0, 𝑎1, 𝑎2, 𝑎3 are four undetermined parameters, 𝑡𝑗 

and 𝑑𝑜𝑠𝑒𝑗 correspond to the 𝑗-th EPO administration time and 

dosage value, respectively. 𝑁(𝑡) is the total number of dosing 
times up to time 𝑡. For example, if the patient receives 5000 
IU EPO treatment and 10000 IU EPO treatment on the 20th 
day and 60th day, the corresponding (𝑡𝑗, 𝑑𝑜𝑠𝑒𝑗) are (20, 5000), 

(30, 10000). Using exponentiation of time difference, this pro-
posed exponential function can match the differential equa-
tion solution better at the later stage. 

To demonstrate the performance of the proposed model 
equation, we simulate the original equation 1 to get the profile 
of 𝐸(𝑡) under the EPO dose sequence as shown in the top part 
of Figure 3. Afterwards, we sample data from the true solution 
(as shown by the black dash-dot curve in Figure 3) and then 
use least squares method to estimate the parameters in the 
proposed model equation 18. The estimated parameter values 
are a0 = 1.87, a1 = 3640, a2 = 0.269, a3 = 1.53. The 𝐸(𝑡) trajec-
tory calculated by the proposed exponential function Eq. 18 is 
drawn in Figure 3 by blue line, which approximates the true 
response curve (black dash-dot curve) very well.  

In addition to the single impulse input study, the accu-
racy of the proposed model equation is also tested over a se-
quence of EPO dosages which was obtained from clinical data. 
The top part of Figure 4 is the EPO treatment record. The so-
lution of the differential equation and the approximate expo-
nential function are shown in the middle part of Figure 4, re-
spectively. Notice that the bottom one is the zoomed version 
of the red box in the middle figure to show more details. 𝑅2 of 
𝐸(𝑡) prediction is equal to 99.76%. This result verifies that the 
proposed model equation approximates the original exponen-
tial differential equation very well. 

 

 

 

Figure 4. Trajectories of EPO in the body based on clinical data 

TIME DELAY IN PD EQUATIONS 

The other issue comes from Eq. 5 and Eq. 7. These two 
equations are delay differential equations. The delay item 𝐷 is 
the parameter to be estimated. However, in the neural net-
work, it is hard to calculate the partial derivative of the loss 
function with respect to the delay parameter. 

Paper [13] has studied the low-pass filter nature of the 
RBC pool. As shown in Figure 5, a twice-weekly dosing se-
quence is simulated and it generates pulsatile and periodic 
EPO levels 𝐸𝑃 and corresponding production rate 𝑘𝑖𝑛; but the 
periodic dynamics are largely smoothed out by the low-pass 
nature of the RBC pool filter [13]. 

 

Figure 5. Low-pass nature of the RBC pool filter 

 

Therefore, during the therapy, PK and cell production 
PD is relevant to the mean value of the production rate, which 

is denoted as 𝑘in
̅̅ ̅̅  in Eq. 19 where [𝑖𝑇, (𝑖 + 1)𝑇] is a single dose 

period. The Eq. 3 can be reconsidered as a memoryless nonlin-
ear relationship between EPO doses and mean production rate 
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𝑘in
̅̅ ̅̅ ,[13] which means a similar mean production rate profile 𝑘in

̅̅ ̅̅  
will lead to similar Hgb trajectory. 

𝑘in
̅̅ ̅̅ (𝑑𝑜𝑠𝑒𝑖 , 𝑇) =

1

𝑇
∫ 𝑘in(𝑡)𝑑𝑡

(𝑖+1)𝑇

𝑖𝑇
                    (19) 

Based on the above analysis, we propose to convert the 
delay differential equations into a different form which makes 
the estimation easier. The method is based on a weighting 
function and the new equations are defined as follows: 

d𝑅(𝑡)

d𝑡
= λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2) −

4𝑥1(𝑡)

μ2
    (20) 

d𝑥2(𝑡)

d𝑡
= λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2) −

4𝑥1(𝑡)

μ2
−

4𝑥2(𝑡)

μ

      (21) 

λ1 + λ2 = 1        (22) 

The term 𝑘𝑖𝑛(𝑡 − 𝐷) is replaced by the weighting func-
tion λ1𝑘𝑖𝑛(𝑡 − 𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2), where λ1 and λ2 are param-
eters to be determined, and 𝐷1 and 𝐷2 are fixed as 4 and 7, 
respectively. This is based on the fact that the time required 
for progenitor cells to be stimulated by EPO and finally be-
come reticulocytes ready to mature into RBCs is 4 - 7days [3]. 
The original delay parameter 𝐷 can be estimated as 

𝐷 = 𝜆1𝐷1 + 𝜆2𝐷2       (23) 

Figure 6 shows the RBC production rate 𝑘𝑖𝑛 and the av-

erage weekly production rate 𝑘in
̅̅ ̅̅ (𝑇 = 7)  of the original form 

and the proposed weighting function respectively. Here, λ1 
and λ2 are both set as 0.5. It illustrates that during every dose 
period, there is some difference between the original form 
𝑘𝑖𝑛(𝑡 − 𝐷) and the proposed weighting function λ1𝑘𝑖𝑛(𝑡 −
𝐷1) + λ2𝑘𝑖𝑛(𝑡 − 𝐷2). For example, in the second dose period 
(day 22 to 29), the original model solution includes two pulses 
whereas the proposed weighting function produces three 
pulses with a smaller magnitude. However, the average weekly 

production rate 𝑘in
̅̅ ̅̅  of the original form gets superimposed by 

the 𝑘in
̅̅ ̅̅  of the proposed weighting function. The trajectories of 

Hgb level obtained from these two methods in this short term 
are similar, as shown in Figure 7. 

 

Figure 6. Comparison between the average weekly production 

rate 𝑘in
̅̅̅̅   and 𝑘𝑖𝑛   

 

Figure 7. Hgb value of two methods in short term 

Table 1: PARAMETERS FOR PK/PD MODELS 

𝛼 𝐾𝑚 𝑉 𝐶 𝐷 𝐻𝑒𝑛 μ 𝑆 

0.25 46.5 2800 22.45 5.5 7.9 92.2 0.0084 

 

Finally, we check the approximation performance over a 
long horizon. With parameters set as Table 1, the original 
model and the approximated model are both simulated. Figure 
8 shows these two Hgb trajectories of the original form and 
delay differential equations with a weighting function. Root 
mean square error (RMSE) between two curves equals 0.0712. 

 

 

Figure 8. Long term Hgb responses: original model and 
approximation model 

Above results show that the proposed PK/PD model 
modification approximate the original model very well. They 
provide a basis for the PINN modeling as described in the next 
section. 

PINN USING THE MODIFIED PK/PD MODEL 

According to the proposed approximation model ex-
plained, the overall physiological model used in the PINN is 
based on equations 18, 2,3,4,20, 6, 21, 8. 
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During the PINN training process, the neural network 

parameters and the parameters in the physiological model are 
simultaneously estimated. The loss term corresponding to the 
model residual is based on equation 20, 6, 21. 

Based on the parameters 𝑎0, 𝑎1, 𝑎2, 𝑎3, original parame-
ters 𝑉, 𝐾𝑚, α can be further estimated through least squares 
method. Besides, the delay parameter 𝐷 can be evaluated us-
ing equation 23. 

Test on simulated data 
To demonstrate the proposed erythropoiesis modeling 

based on PINN, true parameter values as listed in Table 2 and 
a set of EPO input sequence as shown in Figure 9 are chosen 
to generate a series of Hgb data by solving this PK/PD model. 
Then Gaussian noise with zero mean and the standard devia-
tion of σϵ = 𝑐𝜇 is added to Hgb data to simulate measurement 
noise, where μ is the standard deviation of original Hgb data 
and c is equal to 5%. According to the noise-free Hgb data and 
the noise-containing Hgb data, we use PINN to identify these 
parameters in the differential equations separately and com-
pare the results. The algorithm is implemented in Python with 
the open-source library DeepXDE [19]. The neural network is 
formed from 5 hidden layers and each one has 64, 128, 256, 
128, 64 neurons. The feature layer adopts 
𝑡, 𝑠𝑖𝑛(𝑡), 𝑠𝑖𝑛(2𝑡), 𝑠𝑖𝑛(3𝑡), 𝑠𝑖𝑛(4𝑡), 𝑠𝑖𝑛(5𝑡). The swish function 
is set as the activation function. In addition, we use the Adam 
optimizer [20] and 500000 iterations with a learning rate 
equal to 10−4. 

 

 

Figure 9. Simulated true Hgb responses and PINN model 
predictions 

 
 
 
 
 
 
 
Based on noise-free data and noise-containing data, we 

can estimate the parameters for erythropoiesis modeling in 
Table 2. The fitting results based on the two cases are shown 
in Figure 9. Corresponding RMSE are 0.0160 (no noise) and 
0.0755 (with noise), respectively. The result shows these in-
ferred parameters have a higher degree of accuracy. The agree-
ment between the Hgb solution based on the estimated pa-
rameters and exact dynamics is good considering the noise in 
the training data. 

CONCLUSION 

 In this paper, we applied PINN technique to model the 
Hgb response under EPO treatment. This method combined 
physiological PK/PD model and neural network learning tech-
nology to estimate the parameters of PK/PD model.  During 
the training of the neural network, physical laws describing 
the physiological model are enforced by adding the model re-
siduals to the loss function. To address the problem that the 
PINN cannot easily handle the residual of the differential 
equation at the time instants with impulse inputs, we pro-
posed an approximate model to replace the PK model equa-
tion. In addition, to handle the time delay in the PD differen-
tial equation, we proposed a weighting function-based formu-
lation so that the delay parameter can be estimated by training 
the PINN. Tests on simulated data show that the proposed 
method has good prediction accuracy and is robust to noise. 

The proposed modeling technique can help build indi-
vidualized model for patients with renal disease. Physicians 
can rely on this modeling technique to develop patient-spe-
cific EPO dosing strategy to optimally manage the Hgb level of 
different patients. Future work can be done by integrating the 
PINN model into feedback control strategies to achieve this 
objective. 
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