
Deep Chemometrics using One Dimensional Convolutional Neural
Networks for Predicting Crude Oil Properties from FTIR Spectral Data

Authors:

Souvik Ta, Shahla Alizadeh, Lakshminarayanan Samavedham, Ajay K. Ray

Date Submitted: 2022-10-19

Keywords: FTIR, Crude Oil Properties, Neural Network architectures, One Dimensional Convolutional Neural Network

Abstract:

The determination of physicochemical properties of crude oils is a very important and time-intensive process that needs elaborate
laboratory procedures. Over the last few decades, several correlations have been developed to estimate these properties, but they
have been very limited in their scope and range. In recent years, methods based on spectral data analysis have been shown to be very
promising in characterising petroleum crude. In this work, the physicochemical properties of crude oils using FTIR spectrums are
predicted. A total of 107 samples of FTIR spectral data consisting of 6840 wavenumbers is used. One Dimensional convolutional
neural networks (CNNs) were used with FTIR spectral data as the one-dimensional input and Keras and TensorFlow were used for
model building. The Root Mean Square Error decreased from 160 to around 60 for viscosity when compared to previous machine
learning methods like PLS, PCR, and PLS-GA on the same data. The important hyper-parameters of the CNN were optimised. In
addition, a comparison of results obtained with different neural network architectures is presented. Some common preprocessing
techniques were also tested on the spectral data to determine their impact on model performance. To increase interpretability, the
intermediate neural network layers were analysed to reveal what the convolutions represented, and sensitivity analysis was done to
gather key in-sights into which wavenumbers were the most important for prediction of the crude oil properties using the neural
network.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2022.0089
Citation (this specific file, latest version): LAPSE:2022.0089-1
Citation (this specific file, this version): LAPSE:2022.0089-1v1

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

 CSChE Sys Control Trans 2:16-20 (2022) 16

Conference Proceedings
Canadian Chemical Engineering Conference 2022

October 23-26, Vancouver, BC, Canada

PSEcommunity.org/LAPSE:2022.0089

Deep Chemometrics using One Dimensional Convolutional Neural
Networks for Predicting Crude Oil Properties from FTIR Spectral
Data

Souvik Taa, Shahla Alizadeha, Lakshminarayanan Samavedhama,b and Ajay K. Raya*

a Department of Chemical and Biochemical Engineering, Western University, Canada N6A 5B9
b Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
* Corresponding Author: aray@eng.uwo.ca

ABSTRACT

The determination of physicochemical properties of crude oils is a very important and time-intensive pro-
cess that needs elaborate laboratory procedures. Over the last few decades, several correlations have been
developed to estimate these properties, but they have been very limited in their scope and range. In recent
years, methods based on spectral data analysis have been shown to be very promising in characterising
petroleum crude. In this work, the physicochemical properties of crude oils using FTIR spectrums are pre-
dicted. A total of 107 samples of FTIR spectral data consisting of 6840 wavenumbers is used. One Dimen-
sional convolutional neural networks (CNNs) were used with FTIR spectral data as the one-dimensional
input and Keras and TensorFlow were used for model building. The Root Mean Square Error decreased
from 160 to around 60 for viscosity when compared to previous machine learning methods like PLS, PCR,
and PLS-GA on the same data. The important hyper-parameters of the CNN were optimised. In addition, a
comparison of results obtained with different neural network architectures is presented. Some common
preprocessing techniques were also tested on the spectral data to determine their impact on model perfor-
mance. To increase interpretability, the intermediate neural network layers were analysed to reveal what
the convolutions represented, and sensitivity analysis was done to gather key insights into which wave-
numbers were the most important for prediction of the crude oil properties using the neural network.

Keywords: FTIR, Crude Oil Properties, Neural Network architectures, One Dimensional Convolutional Neural Network

Date Record: Original manuscript received October 15, 2022. Published October 19, 2022.

INTRODUCTION

Determination of crude oil properties and its characteri-
zation has long been one of the most important prelimi-
nary/critical steps for different aspects of oil refinery and res-
ervoir calculations. Crude oil viscosity is one of the properties
that determines how the crude flows in the system and hence
is important to determine along with others like sulfur per-
centage and the cuts of other crudes. These properties are gen-
erally determined by laboratory experimentation; the related
methods have evolved for years. Traditionally, the characteri-
zation of crude oil has been carried out using various chroma-
tography methods, but these are intensive, expensive and
time-consuming. The separation and identification of two or
more major components could take a year or more using clas-
sical analytical methods [1]. Gas Chromatography and its com-
bination with GC-MS has been very instrumental in analyzing
petroleum components [2]. GC has been used to evaluate res-
ervoir compartmentalization and connectivity [3]. However,
these methods are extensively time and resource consuming
and involve a lot of sample preparation and testing.

As an alternative, Fourier transform infrared spectros-

copy technique (FTIR) has been deployed to characterize
crudes. Abdulkadir et al. [1] determined that IR spectroscopy
is indeed viable for characterizing crude oils and models can
be using Partial Least Squares (PLS) regression on FTIR data.
They used it to predict the aliphatic content and saturates for
5-7 samples. Brito et al. [4] have used human-saliva FTIR spec-
tra coupled with support vector machines (SVMs) to find the
best wavenumber regions to predict blood glucose levels.

Earlier, Principal Component Regression (PCR) on the
preprocessed FTIR Spectra was used to predict density and vis-
cosity with very good results for density and acceptable results
for viscosity [5]. However, to improve the performance of the
previous machine learning methods further a model with neu-
ral networks is attempted. Since fairly good performance with
the PLS and PCR regression models were achieved earlier, an
artificial neural network (ANN) would not provide much of a
performance increase. Recently, some literature has shown

Ta et al. CSChE Sys Control Trans 2:16-20 (2022) 17

that one dimensional CNNs can be used to take spectral infor-
mation as input generating good predictions of different prop-
erties [6-9] in soil, plant leaves, pharmaceutical tablets etc.

METHODOLOGY

Dataset
The crude oil samples used in this study were obtained

from seven different Canadian oil fields provided by an energy
corporation company in Canada. The FTIR spectral infor-
mation corresponding to these samples were obtained using a
Thermo Fisher Scientific FTIR microscope. Other physico-
chemical properties crucial to the characterization of crude
were obtained using appropriate analytical instruments and
laboratory methods by the company was provided. Overall,
107 samples of crude with 6366 wavenumbers each are used as
attributes. The output space had 13 properties with most im-
portant being density and viscosity. Other properties included
sulphur content, Total Acid Number, Micro Carbon Residue
and the yields of different cuts of the crude.

Dataset Analysis and Preprocessing
Upon analyzing the correlation of output space attrib-

utes, it was found that most of them were highly correlated
with density or viscosity. In our previous paper [5], both den-
sity and viscosity were predicted using machine learning
methods; particularly good predictions were obtained for den-
sity using PCR, but the error for viscosity was not within ac-
ceptable limits. Hence, the more advanced CNN architecture
for predicting the viscosity was investigated. The data was
cleaned by removing the first 476 wavenumbers from the spec-
tra due to missing values and noise. The resulting data was
subject to auto-scaling so that all variables (spectral values at
each wavenumber) have mean equal to zero and standard de-
viation equal to one.

Convolutional Neural Networks
CNN is a widely used class of deep learning architectures

primarily used in computer vision applications. Recent studies
have started to use a modified CNN called a one-dimensional
CNN to predict properties from spectral information [6-9]. In
these applications, the spectral information is regarded as a
one-dimensional image and fed to the input layer. CNNs are
generally made up of three types of layers: convolutional lay-
ers, pooling layers and fully connected layers and a network is
created by stacking them [10].

Convolutional Layer
The convolutional layer is the most vital layer in a CNN

and uses learnable kernels to train. The filters in a convolu-
tional layer convolve over the entire input to generate a 2D
activation map [10, 11]. The network then learns the values in
the kernel to fire when a specific feature is detected. These lay-
ers can decrease the complexity and number of parameters
compared to a traditional ANN. The common hyper-parame-
ters for this layer are depth, stride and zero-padding. Depth is
the depth of the output or the number of kernels; Stride is the
number of pixels the filters move by when convolving on the
input. Increasing stride can result in less overlap and reduce
the output dimensions but it can also capture less data. Zero-
padding is used to pad the border of the input with zeros and
hence preserve the data near the corners and also the
dimensions.

To calculate the output dimensions of the convolutional
layer, the formula used is Output Size = 1+ (N-F)/S

where N is Input Size, F is Filter Size and S is Stride,

Pooling layer
Pooling layers are used to reduce the dimensions of the

layers which further reduces the number of parameters and
the computational complexity, The most common kind of
pooling is max pooling which replaces the value of a kernel
with the MAX value inside it [11]. The most common filters
used for max pooling are 2*2 with a stride of 2. This doesn’t
cause any overlap of filters. Generally, increasing the kernel
size causes a loss in information and decreases performance
greatly [10].

Fully Connected Layer
A fully connected layer is very similar to how neurons are

connected in a traditional ANN in which each neuron in one
layer is connected to each neuron in the next layer. This
generally results in a lot of trainable parameters and is
generally used to connect the features from the convolutions
to the output [10, 11].

Common architectures
The CNN’s generally follow a common architecture in

which one cant just connect any type of layer after another.
Generally convolutional layers are stacked with pooling layers
and this forms an unit of a convolutional layer and a pooling
layer which is repeated and is finished with a fully connected
layer. Sometimes stacking two convolutional layers followed
by a pooling layer to form an unit helps in selecting more
complex features [10].

Gaussian Noise
A Gaussian noise layer was used with a standard

deviation of 0.05. This layer adds noise with a mean of zero
and a specified standard deviation to the input layer. Studies
[12] suggest adding Gaussian Noise can have a regularizing
effect and reduce overfitting.

Dropout Layer
Dropout randomly drops nodes from the layer while

training and simulates the effect of ensemble learning. In this
work, a dropout layer was used to add a regularizing effect and
prevent overfitting. The amount of dropout to use will be
investigated as a hyperparameter [13].

One Dimensional CNNs
One dimensional CNNs are a modified version of the

conventional deep CNNs and use only an one dimensional
input of the shape [n,1]. 1-D CNNs have shown some
advantages over the deeper traditional CNNs [14]. They
require simple array operations as opposed to more bulky
matrix operations in CNNs; this significantly reduces the
computational load. Studies have shown that 1D CNNs are
really good at performing signal processing tasks with a
relatively shallower architecture which is easier to train and
implement. Since we are using this in an industrial setting, 1D
CNNs having a much lower computational load helps in
implementing it as a more cost effective and real time solution.

1D CNNs have been used in a lot of signal processing
applications including those that involve ECGs signal and
vibration data[14]. In recent studies, 1D CNNs have been
proved to work very well with spectral information as an input

Ta et al. CSChE Sys Control Trans 2:16-20 (2022) 18

– this enabled gaining insights and useful predictions from
data. There have been applications in soil quality predictions
[6, 7]. Kawamura et al. [7] have used it on Vis-NIR spectra to
estimate available phosphorus in soil. Ng et al. [6] have also
used spectral information from combined sources like Vis-NIR
and MIR to predict several soil properties. Prilianti et al. [8]
have successfully used a 1D CNN to predict pigment concen-
tration in leafs from the reflectance spectra. Bjerrum et al.
[9]have developed methods like data augmentation and scat-
ter correction specially for 1DCNNs and successfully predicted
drug content in tablets from NIR spectra. However, there is
lack of literature that describes the use of 1D CNNs in petro-
chemistry with FTIR spectra and this is the matter of investi-
gation in this study.

Hyperparameters
The most important hyperparameters to be tuned were

the batch size, learning rate and the optimization technique
employed. All models were trained with epochs around 200-
300 with early stopping and reduceLRonPlateau callbacks.

Table 1: Initial Hyperparameter Search Space

Hyperparameter Search Space
Batch size 8,16,32,64
Epochs 150-300
Learning Rate 0.01,0.001

We tested seven different gradient descent-based
optimization techniques to train our algorithms. They are
Stochastic Gradient Descent, Adagrad, Adadelta, RMSProp,
Adam, Adamax and Nadam [15].

Neural Network Architecture

Previous studies of using 1D CNNs on spectra suggest
that shallow networks perform much better than deep
networks and hence we decided to go forth with shallow
networks for our models. This also helps us with the reduced
computational load and aids realtime application[8]. For the
initial testing of hyperparameters, a standard 2 hidden layer
CNN was used alongwith Gaussian Noise and Dropout. The
architecture is shown in Table 2.

Table 2: Architecture of 1D CNN used for hyperparameter testing.

Layer Parameters
Gaussian Noise Standard deviation = 0.05
Conv 1D no of filters = 32; kernel size = 8; ReLU
Conv 1D no of filters = 32; kernel size = 16; ReLU
Dropout dropout = 0.5
Dense Layer no of units = 128; ReLU
Dense Layer no of units = 1; Linear

After the initial hyperparameters were determined, the
best batch size and learning rate were fixed to decide the best
neural network architecture for our data. For this, a Neural
Architecture Search approach was implemented using keras-
tuner in Tensorflow [16]. Neural Architecture Search is
automated architecture engineering algorithm which
determines the best neural network architecture. Generally, it
has three dimensions: Search Space, Search Strategy and
Performance Estimation Strategy [17].

Search Space: This consists of the possible neural
architectures the algorithm will search through. In our study,
we consider shallow networks only. For the initial runs we

considered two convolutional layers and one fully connected
layer with the hyperparameters as the number of kernels and
filter size for each layer and the number of dense connected
units. Later, we increased this and the algorithm had to decide
between 2 to 5 hidden layers and the number of kernels and
filter size in each.

Search Strategy: This deals with the algorithm to
navigate the search space. The most popular strategies are
Random, Bayesian Optimization [18] and HyperBand
Tuner[19].For our study, we decided to use Bayesian
Optimization since it would be too computationally expensive
to do an exhaustive search or a RandomSearch.

Performance Estimation Strategy: A normal Train-Test
validation was investigated since we have a small dataset.

RESULTS AND DISCUSSION

All the hyperparameters were first tested with a standard
1D CNN containing 2 hidden layers and 2 fully connected
layers to get a good estimate of hyperparameters to do the
neural architecture search.

Hyperparameters

Batch size
The best batchsize tends to depend a lot on the learning

rate and strongly on the optimization algorithm used but a
general trend was the the error increased as the batch size
increased. For the majority of test cases a batchsize of 8 or 16
gave the best results.

Epochs
The best epoch size was found manually from the loss

graphs.Most of the models were found to converge in between
200 to 300 epochs so an epoch count of 300 was chosen.

Learning rate
For learning rate we implemented a function which

reduced learning rate during training if the loss plateaued for
a certain number of epochs. Two learning rates of 0.01 and
0.001 were tested and the learning rate would become half if
the loss was stagnant for 10 epochs or more. For all test cases
a lower learning rate of 0.001 gave better results and the
learning rate plateau function was triggered frequently.

Optimization algorithms
All the optimization algorithms were run twice for

different sets of the above hyperparameters. SGD appeared to
be very

unstable and did not converge at all. All the
optimization algorithms had much better performance at a
lower learning rate of 0.001 than 0.01 except Adagrad which
seemed to be an exception on repeated testing. All the
algorithms performed best at batchsize = 8 except Nadam
which gave pretty even performance for both 8 and 16.

Adam, Adamax and Nadam had the best values of RMSE
at learning rate equal to 0.001 with Nadam being the most
consistent through its runs. RMSProp gave comparable RMSE
values but was very unstable and gave very different values of
error for each run. Finally due to its stability across different
runs and low RMSE values we decided upon Nadam as the
preferred optimization algorithm with a learning rate of 0.001
and a batchsize of 8 or 16.

Ta et al. CSChE Sys Control Trans 2:16-20 (2022) 19

Figure 1. predicted viscosity vs actual viscosity for standard
neural network with Adamax,learning rate=0.001,batchsize=16

Table 3: Results of initial hyperparameter optimization. [RMSE
values on right; where lr: learning rate, bs: batch size.]

Optimiza-
tion Algo-
rithm

lr=10-2
bs=8

lr=10-2
bs=16

lr=10-3

bs=8

lr=10-3

bs=16

Adadelta 70 83 NA NA
RMSProp 201.68 207.89 33.67 22.474
Adagrad 80.964 75.736 333.67 132.11
Adam 2349.1 2349.1 30.408 30.527
Adamax 105.75 2827.6 114.96 5.59
Nadam 150.72 252.11 5 22

Neural Architecture Search
Since very low RMSE values of around 5 to 20 was

achieved during our initial hyperparameter process with just
two layers, there were concerns of overfit if the number of
layers were increased and hence the search space was limited
to 2 hidden layers and one dense layer. The search space is as
follows.

Table 4: Architecture of 1D CNN used for hyperparameter testing.

Hyperparameter Search Space
layer1_filters [32,64,96,128…256] step=32
layer1_kernels [2,4,8,16,24,32]
layer2_filters [32,64,96,128…256] step=32
layer2_kernels [2,4,8,16,24,32]
Dense Layer [32,48,64,80,96,112,128]

An exhaustive search of all the possible combinations of
the architecture would be too computationally expensive so
Bayesian Optimization for the search was used.

The best results are as follows:

Table 5: Results of hyperparameter optimization of the neural
network using Bayesian Neural Architecture Search

layer1_
filters

layer1_k
ernels

layer2_
filters

layer2_k
ernels

Den
se

RM
SE

32 16 256 8 128 6.12
32 16 224 2 128 9.45
32 12 256 4 128 16.5
32 32 256 2 96 7.2
32 32 256 2 64 8.5
32 32 256 2 80 13.6
32 32 256 2 48 28.6

Multiple runs of Bayesian Optimization was run and the

best values for filters of layer 1 and 2 were 32 and 256. From
the results we can see layer 1 preferred to be the minimum
value of 32 consistently while for layer 2 the number of filters
was always in the higher range above 200. The results are in
Table 5.

For Kernels we see more variation but the trends suggest
that layer 1 kernels prefer to be at the maximum end around 16
and layer 2 kernels prefer to be in the lower range mostly 2,4
and 8.

A run of Bayesian Optimization was done to confirm this
where the layer1 and layer2 filters were fixed at 32 and 256.
The results showed that layer 1 preferred to be a higher value
of 32 and layer 2 stayed around 2 or 4. These results are in
Table 6.

A run of Bayesian Optimization was done without
Gaussian Noise and it gave much worse average performance
than previous runs and the trend of hyperparameters were
inconsistent thus showing that Gaussian Noise is important.

 Table 6: Results of optimization of the number of kernels
using Bayesian Neural Architecture Search

l1_kernel l2_kernel RMSE
32 4 5.86
32 2 10.629
16 2 66.776
2 8 70.496

ACKNOWLEDGEMENTS

The project is funded by Natural Sciences and
Engineering Research Council under Alliance Grants number
R3839A44.

Ta et al. CSChE Sys Control Trans 2:16-20 (2022) 20

REFERENCES

1. Abdulkadir I, Uba S, Almustapha MN. A Rapid
Method of Crude Oil Analysis Using FT-IR
Spectroscopy. Nig. J. Basic Appl. Sci. 24(1):47-55
(2016).

2. Speight J, Handbook of Petroleum Product
Analysis: Second Edition (2015).

3. Larter SR, Aplin AC. Reservoir geochemistry:
methods, applications and opportunities. Geol.
Soc. Lond. 86(1):5–32 (1995).

4. Sánchez-Brito M, Luna-Rosas FJ, Mendoza-
González R, Mata-Miranda MM, Martínez-
Romo JC, Vázquez-Zapién GJ. A machine-
learning strategy to evaluate the use of FTIR
spectra of saliva for a good control of type 2
diabetes. Talanta 221:121650 (2021).

5. Alizadeh S, Ta S, Ray AK, Lakshminarayanan S.
Determination of Density and Viscosity of Crude
Oil Samples from FTIR Data using Multivariate
Regression, Variable Selection and
Classification. IFAC-PapersOnLine 55(7):845–
850 (2022).

6. Ng W, Minasny B, Montazerolghaem M,
Padarian J, Ferguson R, Bailey S, McBratney AB.
Convolutional neural network for simultaneous
prediction of several soil properties using
visible/near-infrared, mid-infrared, and their
combined spectra. Geoderma 352:251–267
(2019).

7. Kawamura K, Nishigaki T, Andriamananjara A,
Rakotonindrina H, Tsujimoto Y, Moritsuka N,
Rabenarivo M, Razafimbelo T. Using a one-
dimensional convolutional neural network on
visible and near-infrared spectroscopy to
improve soil phosphorus prediction in
Madagascar. Remote Sens 13(8):1519 (2021).

8. Prilianti KR, Setiyono E, Kelana OH,
Brotosudarmo THP. Deep chemometrics for
nondestructive photosynthetic pigments
prediction using leaf reflectance spectra. Inf.
Process. Agric. 8(1):194–204 (2021).

9. Bjerrum EJ, Glahder M, Skov T. Data
Augmentation of Spectral Data for
Convolutional Neural Network (CNN) Based
Deep Chemometrics. arXiv preprint
arXiv:1710.01927 (2017).

10. O’Shea K, Nash R. An Introduction to
Convolutional Neural Networks. arXiv preprint
arXiv:1511.08458 (2015).

11. Albawi S, Mohammed TA, Al-Zawi S.
Understanding of a convolutional neural
network. in Proceedings of 2017 International
Conference on Engineering and Technology
(ICET) 1-6 (2017).

12. Bjerrum EJ, Glahder M, Skov T. Data
Augmentation of Spectral Data for
Convolutional Neural Network (CNN) Based
Deep Chemometrics. arXiv preprint
arXiv:1710.01927 (2017).

13. Srivastava N, Hinton G, Krizhevsky A,
Salakhutdinov R. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. J.
Mach. Learn. Res. 15(1):1929-1958 (2014).

14. Kiranyaz S, Avci O, Abdeljaber O, Ince T,
Gabbouj M, Inman DJ. D Convolutional Neural
Networks and Applications-A Survey. Mech.
Syst. Signal Process. 151:107398 (2021).

15. Ruder S. An overview of gradient descent
optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016).

16. Abadi M, Agarwal A, Barham P, Brevdo E, Chen
Z, Citro C, Corrado GS, Davis A, Dean J, Devin
M, Ghemawat S. TensorFlow: Large-Scale
Machine Learning on Heterogeneous
Distributed Systems. arXiv preprint
arXiv:1603.04467 (2016).

17. Elsken T, Metzen JH, Hutter F. Neural
Architecture Search: A Survey. J. Mach. Learn.
Res. 20(1):1997-2017 (2019).

18. Kandasamy K, Neiswanger W, Schneider J,
Poczos B, Xing E. Neural Architecture Search
with Bayesian Optimisation and Optimal
Transport. Adv. Neural Inf. Process. Syst. 31
(2018).

19. Li L, Jamieson K, Rostamizadeh A, Talwalkar A.
Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization. J. Mach. Learn.
Res. 18(1):6765-6816 (2017).

This conference proceeding has not been peer reviewed.

© 2022 by the authors. Licensed to PSEcommunity.org and PSE Press.
This is an open access article under the creative commons CC-BY-SA li-
censing terms. Credit must be given to creator and adaptations must be
shared under the same terms. See https://creativecommons.org/li-
censes/by-sa/4.0/

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

