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ABSTRACT 

The determination of physicochemical properties of crude oils is a very important and time-intensive pro-
cess that needs elaborate laboratory procedures. Over the last few decades, several correlations have been 
developed to estimate these properties, but they have been very limited in their scope and range. In recent 
years, methods based on spectral data analysis have been shown to be very promising in characterising 
petroleum crude. In this work, the physicochemical properties of crude oils using FTIR spectrums are pre-
dicted. A total of 107 samples of FTIR spectral data consisting of 6840 wavenumbers is used. One Dimen-
sional convolutional neural networks (CNNs) were used with FTIR spectral data as the one-dimensional 
input and Keras and TensorFlow were used for model building. The Root Mean Square Error decreased 
from 160 to around 60 for viscosity when compared to previous machine learning methods like PLS, PCR, 
and PLS-GA on the same data. The important hyper-parameters of the CNN were optimised. In addition, a 
comparison of results obtained with different neural network architectures is presented. Some common 
preprocessing techniques were also tested on the spectral data to determine their impact on model perfor-
mance. To increase interpretability, the intermediate neural network layers were analysed to reveal what 
the convolutions represented, and sensitivity analysis was done to gather key insights into which wave-
numbers were the most important for prediction of the crude oil properties using the neural network. 
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INTRODUCTION 

Determination of crude oil properties and its characteri-
zation has long been one of the most important prelimi-
nary/critical steps for different aspects of oil refinery and res-
ervoir calculations. Crude oil viscosity is one of the properties 
that determines how the crude flows in the system and hence 
is important to determine along with others like sulfur per-
centage and the cuts of other crudes. These properties are gen-
erally determined by laboratory experimentation; the related 
methods have evolved for years. Traditionally, the characteri-
zation of crude oil has been carried out using various chroma-
tography methods, but these are intensive, expensive and 
time-consuming. The separation and identification of two or 
more major components could take a year or more using clas-
sical analytical methods [1]. Gas Chromatography and its com-
bination with GC-MS has been very instrumental in analyzing 
petroleum components [2]. GC has been used to evaluate res-
ervoir compartmentalization and connectivity [3]. However, 
these methods are extensively time and resource consuming 
and involve a lot of sample preparation and testing. 

 
As an alternative, Fourier transform infrared spectros-

copy technique (FTIR) has been deployed to characterize 
crudes. Abdulkadir et al. [1] determined that IR spectroscopy 
is indeed viable for characterizing crude oils and models can 
be using Partial Least Squares (PLS) regression on FTIR data. 
They used it to predict the aliphatic content and saturates for 
5-7 samples. Brito et al. [4] have used human-saliva FTIR spec-
tra coupled with support vector machines (SVMs) to find the 
best wavenumber regions to predict blood glucose levels. 

Earlier, Principal Component Regression (PCR) on the 
preprocessed FTIR Spectra was used to predict density and vis-
cosity with very good results for density and acceptable results 
for viscosity [5]. However, to improve the performance of the 
previous machine learning methods further a model with neu-
ral networks is attempted. Since fairly good performance with 
the PLS and PCR regression models were achieved earlier, an 
artificial neural network (ANN) would not provide much of a 
performance increase. Recently, some literature has shown 
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that one dimensional CNNs can be used to take spectral infor-
mation as input generating good predictions of different prop-
erties [6-9] in soil, plant leaves, pharmaceutical tablets etc.  

METHODOLOGY 

Dataset 
The crude oil samples used in this study were obtained 

from seven different Canadian oil fields provided by an energy 
corporation company in Canada. The FTIR spectral infor-
mation corresponding to these samples were obtained using a 
Thermo Fisher Scientific FTIR microscope. Other physico-
chemical properties crucial to the characterization of crude 
were obtained using appropriate analytical instruments and 
laboratory methods by the company was provided. Overall, 
107 samples of crude with 6366 wavenumbers each are used as 
attributes. The output space had 13 properties with most im-
portant being density and viscosity. Other properties included 
sulphur content, Total Acid Number, Micro Carbon Residue 
and the yields of different cuts of the crude. 

Dataset Analysis and Preprocessing 
Upon analyzing the correlation of output space attrib-

utes, it was found that most of them were highly correlated 
with density or viscosity. In our previous paper [5], both den-
sity and viscosity were predicted using machine learning 
methods; particularly good predictions were obtained for den-
sity using PCR, but the error for viscosity was not within ac-
ceptable limits. Hence, the more advanced CNN architecture 
for predicting the viscosity was investigated. The data was 
cleaned by removing the first 476 wavenumbers from the spec-
tra due to missing values and noise. The resulting data was 
subject to auto-scaling so that all variables (spectral values at 
each wavenumber) have mean equal to zero and standard de-
viation equal to one. 

Convolutional Neural Networks 
CNN is a widely used class of deep learning architectures 

primarily used in computer vision applications. Recent studies 
have started to use a modified CNN called a one-dimensional 
CNN to predict properties from spectral information [6-9]. In 
these applications, the spectral information is regarded as a 
one-dimensional image and fed to the input layer. CNNs are 
generally made up of three types of layers: convolutional lay-
ers, pooling layers and fully connected layers and a network is 
created by stacking them [10].  

Convolutional Layer 
The convolutional layer is the most vital layer in a CNN 

and uses learnable kernels to train. The filters in a convolu-
tional layer convolve over the entire input to generate a 2D 
activation map [10, 11]. The network then learns the values in 
the kernel to fire when a specific feature is detected. These lay-
ers can decrease the complexity and number of parameters 
compared to a traditional ANN. The common hyper-parame-
ters for this layer are depth, stride and zero-padding. Depth is 
the depth of the output or the number of kernels; Stride is the 
number of pixels the filters move by when convolving on the 
input. Increasing stride can result in less overlap and reduce 
the output dimensions but it can also capture less data. Zero-
padding is used to pad the border of the input with zeros and 
hence preserve the data near the corners and also the 
dimensions. 

To calculate the output dimensions of the convolutional 
layer, the formula used is Output Size = 1+ (N-F)/S  

where N is Input Size, F is Filter Size and S is Stride, 

Pooling layer 
Pooling layers are used to reduce the dimensions of the 

layers which further reduces the number of parameters and 
the computational complexity, The most common kind of 
pooling is max pooling which replaces the value of a kernel 
with the MAX value inside it [11]. The most common filters 
used for max pooling are 2*2 with a stride of 2. This doesn’t 
cause any overlap of filters. Generally, increasing the kernel 
size causes a loss in information and decreases performance 
greatly [10]. 

Fully Connected Layer 
A fully connected layer is very similar to how neurons are 

connected in a traditional ANN in which each neuron in one 
layer is connected to each neuron in the next layer. This 
generally results in a lot of trainable parameters and is 
generally used to connect the features from the convolutions 
to the output [10, 11]. 

Common architectures 
The CNN’s generally follow a common architecture in 

which one cant just connect any type of layer after another. 
Generally convolutional layers are stacked with pooling layers 
and this forms an unit of a convolutional layer and a pooling 
layer which is repeated and is finished with a fully connected 
layer. Sometimes stacking two convolutional layers followed 
by a pooling layer to form an unit helps in selecting more 
complex features [10]. 

Gaussian Noise 
A Gaussian noise layer was used with a standard 

deviation of 0.05. This layer adds noise with a mean of zero 
and a specified standard deviation to the input layer. Studies 
[12] suggest adding Gaussian Noise can have a regularizing 
effect and reduce overfitting. 

Dropout Layer 
Dropout randomly drops nodes from the layer while 

training and simulates the effect of ensemble learning. In this 
work, a dropout layer was used to add a regularizing effect and 
prevent overfitting. The amount of dropout to use will be 
investigated as a hyperparameter [13]. 

One Dimensional CNNs 
One dimensional CNNs are a modified version of the 

conventional deep CNNs and use only an one dimensional 
input of the shape [n,1]. 1-D CNNs have shown some 
advantages over the deeper traditional CNNs [14]. They 
require simple array operations as opposed to more bulky 
matrix operations in CNNs; this significantly reduces the 
computational load. Studies have shown that 1D CNNs are 
really good at performing signal processing tasks with a 
relatively shallower architecture which is easier to train and 
implement. Since we are using this in an industrial setting, 1D 
CNNs having a much lower computational load helps in 
implementing it as a more cost effective and real time solution. 

1D CNNs have been used in a lot of signal processing 
applications including those that involve ECGs signal and 
vibration data[14]. In recent studies, 1D CNNs have been 
proved to work very well with spectral information as an input 
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– this enabled gaining insights and useful predictions from 
data. There have been applications in soil quality predictions 
[6, 7]. Kawamura et al. [7] have used it on Vis-NIR spectra to 
estimate available phosphorus in soil. Ng et al. [6] have also 
used spectral information from combined sources like Vis-NIR 
and MIR to predict several soil properties. Prilianti et al. [8] 
have successfully used a 1D CNN to predict pigment concen-
tration in leafs from the reflectance spectra. Bjerrum et al. 
[9]have developed methods like data augmentation and scat-
ter correction specially for 1DCNNs and successfully predicted 
drug content in tablets from NIR spectra. However, there is 
lack of literature that describes the use of 1D CNNs in petro-
chemistry with FTIR spectra and this is the matter of investi-
gation in this study.  

Hyperparameters 
The most important hyperparameters to be tuned were 

the batch size, learning rate and the optimization technique 
employed. All models were trained with epochs around 200-
300 with early stopping and reduceLRonPlateau callbacks. 

Table 1: Initial Hyperparameter Search Space 

Hyperparameter Search Space 
Batch size 8,16,32,64 
Epochs 150-300 
Learning Rate 0.01,0.001 

We tested seven different gradient descent-based 
optimization techniques to train our algorithms. They are 
Stochastic Gradient Descent, Adagrad, Adadelta, RMSProp, 
Adam, Adamax and Nadam [15].      

Neural Network Architecture  

Previous studies of using 1D CNNs on spectra suggest 
that shallow networks perform much better than deep 
networks and hence we decided to go forth with shallow 
networks for our models. This also helps us with the reduced 
computational load and aids realtime application[8]. For the 
initial testing of hyperparameters, a standard 2 hidden layer 
CNN was used alongwith Gaussian Noise and Dropout. The 
architecture is shown in Table 2. 

Table 2: Architecture of 1D CNN used for hyperparameter testing. 

Layer Parameters 
Gaussian Noise Standard deviation = 0.05 
Conv 1D no of filters = 32; kernel size = 8; ReLU 
Conv 1D no of filters = 32; kernel size = 16; ReLU 
Dropout dropout = 0.5 
Dense Layer no of units = 128; ReLU 
Dense Layer no of units = 1; Linear 

After the initial hyperparameters were determined, the 
best batch size and learning rate were fixed to decide the best 
neural network architecture for our data. For this, a Neural 
Architecture Search approach was implemented using keras-
tuner in Tensorflow [16]. Neural Architecture Search is 
automated architecture engineering algorithm which 
determines the best neural network architecture. Generally, it 
has three dimensions: Search Space, Search Strategy and 
Performance Estimation Strategy [17]. 

Search Space: This consists of the possible neural 
architectures the algorithm will search through. In our study, 
we consider shallow networks only. For the initial runs we 

considered two convolutional layers and one fully connected 
layer with the hyperparameters as the number of kernels and 
filter size for each layer and the number of dense connected 
units. Later, we increased this and the algorithm had to decide 
between 2 to 5 hidden layers and the number of kernels and 
filter size in each. 

Search Strategy: This deals with the algorithm to 
navigate the search space. The most popular strategies are 
Random,    Bayesian Optimization [18] and HyperBand 
Tuner[19].For our study, we decided to use Bayesian 
Optimization since it would be too computationally expensive 
to do an exhaustive search or a RandomSearch. 

Performance Estimation Strategy: A normal Train-Test 
validation was investigated since we have a small dataset.  

RESULTS AND DISCUSSION 

All the hyperparameters were first tested with a standard 
1D CNN containing 2 hidden layers and 2 fully connected 
layers to get a good estimate of hyperparameters to do the 
neural architecture search. 

Hyperparameters 

Batch size 
The best batchsize tends to depend a lot on the learning 

rate and strongly on the optimization algorithm used but a 
general trend was the the error increased as the batch size 
increased. For the majority of test cases a batchsize of 8 or 16 
gave the best results. 

Epochs 
The best epoch size was found manually from the loss 

graphs.Most of the models were found to converge in between 
200 to 300 epochs so an epoch count of 300 was chosen. 

Learning rate 
For learning rate we implemented a function which 

reduced learning rate during training if the loss plateaued for 
a certain number of epochs. Two learning rates of 0.01 and 
0.001 were tested and the learning rate would become half if 
the loss was stagnant for 10 epochs or more. For all test cases 
a lower learning rate of 0.001 gave better results and the 
learning rate plateau function was triggered frequently. 

Optimization algorithms 
All the optimization algorithms were run twice for 

different sets of the above hyperparameters. SGD appeared to 
be very  

unstable and did not converge at all.  All the 
optimization algorithms had much better performance at a 
lower learning rate of 0.001 than 0.01 except Adagrad which 
seemed to be an exception on repeated testing. All the 
algorithms performed best at batchsize = 8 except Nadam 
which gave pretty even performance for both 8 and 16. 

Adam, Adamax and Nadam had the best values of RMSE 
at learning rate equal to 0.001 with Nadam being the most 
consistent through its runs. RMSProp gave comparable RMSE 
values but was very unstable and gave very different values of 
error for each run. Finally due to its stability across different 
runs and low RMSE values we decided upon Nadam as the 
preferred optimization algorithm with a learning rate of 0.001 
and a batchsize of 8 or 16. 
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Figure 1. predicted viscosity vs actual viscosity for standard 
neural network with Adamax,learning rate=0.001,batchsize=16 

 

Table 3: Results of initial hyperparameter optimization. [RMSE 
values on right; where lr: learning rate, bs: batch size.] 

Optimiza-
tion Algo-
rithm 

lr=10-2 
bs=8 

lr=10-2 
bs=16 

lr=10-3 

bs=8 
 

lr=10-3 

bs=16 
 

Adadelta 70 83 NA NA 
RMSProp 201.68 207.89 33.67 22.474 
Adagrad 80.964 75.736 333.67 132.11 
Adam 2349.1 2349.1 30.408 30.527 
Adamax 105.75 2827.6 114.96 5.59 
Nadam 150.72 252.11 5 22 

 

Neural Architecture Search 
Since very low RMSE values of around 5 to 20 was 

achieved during our initial hyperparameter process with just 
two layers, there were concerns of overfit if the number of 
layers were increased and hence the search space was limited 
to 2 hidden layers and one dense layer. The search space is as 
follows. 

Table 4: Architecture of 1D CNN used for hyperparameter testing. 

Hyperparameter Search Space 
layer1_filters [32,64,96,128…256] step=32 
layer1_kernels [2,4,8,16,24,32] 
layer2_filters [32,64,96,128…256] step=32 
layer2_kernels [2,4,8,16,24,32] 
Dense Layer [32,48,64,80,96,112,128] 

An exhaustive search of all the possible combinations of 
the architecture would be too computationally expensive so 
Bayesian Optimization for the search was used. 

 

 

 
The best results are as follows:  

Table 5: Results of hyperparameter optimization of the neural 
network using Bayesian Neural Architecture Search 

layer1_
filters 

layer1_k
ernels 

layer2_
filters 

layer2_k
ernels 

Den
se  

RM
SE 

32 16 256 8 128 6.12 
32 16 224 2 128 9.45 
32 12 256 4 128 16.5 
32 32 256 2 96 7.2 
32 32 256 2 64 8.5 
32 32 256 2 80 13.6 
32 32 256 2 48 28.6 

 
Multiple runs of Bayesian Optimization was run and the 

best values for filters of layer 1 and 2 were 32 and 256. From 
the results we can see layer 1 preferred to be the minimum 
value of 32 consistently while for layer 2 the number of filters 
was always in the higher range above 200. The results are in 
Table 5. 

For Kernels we see more variation but the trends suggest 
that layer 1 kernels prefer to be at the maximum end around 16 
and layer 2 kernels prefer to be in the lower range mostly 2,4 
and 8. 

A run of Bayesian Optimization was done to confirm this 
where the layer1 and layer2 filters were fixed at 32 and 256. 
The results showed that layer 1 preferred to be a higher value 
of 32 and layer 2 stayed around 2 or 4. These results are in 
Table 6. 

A run of Bayesian Optimization was done without 
Gaussian Noise and it gave much worse average performance 
than previous runs and the trend of hyperparameters were 
inconsistent thus showing that Gaussian Noise is important. 

 Table 6: Results of optimization of the number of kernels 
using Bayesian Neural Architecture Search 

l1_kernel l2_kernel RMSE 
32 4 5.86 
32 2 10.629 
16 2 66.776 
2 8 70.496 
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