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Abstract: In this paper, a semi-analytic method is introduced to predict the deck-slamming probability
and corresponding loads. This method is based on a nonlinear statistical approach that takes into
account the linear and second-order components of the relative wave elevation up to the second
order. The linear and second-order wave elevation is assumed to be a two-term Volterra series. The
joint probability density function of the relative wave elevation and velocity are formulated using
the Hermite-moment method, and the probability distributions of the wave crest and relative wave
velocity are calculated. These probability distributions are verified using the data sampled from
the linear and second-order relative wave elevation. Based on this formulation, the probabilities of
deck slamming and slamming-induced loads are estimated. This method is applied to a tension leg
platform (TLP) model, and the effects of the second-order component of the relative wave elevation
on the deck slamming are investigated.

Keywords: nonlinear stochastic process; deck slamming; slamming occurrence; Hermite-moment
method; joint probability distribution

1. Introduction

As recent offshore platforms are required to be operated in harsher environments,
deck slamming is of great interest for structural design. Deck slamming, in which free
surface hits the bottom of a deck, can cause large impulsive loads on an offshore structure.
Therefore, it is important to consider this phenomenon in the design stage of such struc-
tures. Many classification societies have provided rules and guidance regarding the deck
clearance of offshore structures [1–3]. They state that the considerations of the probability
of deck slamming occurrence and wave impact pressure are necessary to determine the
deck clearance.

The interpretation of the deck slamming phenomenon requires an understanding of
the relative wave elevation, which takes into account the absolute wave elevation and
the platform motion. However, it is well known that the second-order components can
take up more than 30% of the total elevation under certain extreme sea states [4], and the
second-order components of the platform motion should also be included to represent the
platform characteristics [5]. Therefore, consideration of the second-order components is
essential for an accurate interpretation of the relative wave elevation.

For this reason, it is difficult to predict the relative wave elevation based on conven-
tional linear theory. Thus, the deck slamming phenomenon is typically analyzed using
the model test and computational fluid dynamics (CFD) simulations, which can express
nonlinearity. However, because these methods are time-consuming and expensive, some
studies have been conducted on efficiently estimating the deck slamming phenomenon
using a statistical method. This analysis can be used to quickly predict the deck slamming
occurrence, and the number of selections for the model test and CFD simulation can there-
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fore be reduced. In addition, there is an advantage of an easy application during the early
design stage.

First, since the 1940s, studies on statistical analysis methods for nonlinear problems
have been conducted. Kac and Siegert [6] and Bedrosian and Rice [7] investigated nonlinear
signals with second-order components in the communication field. In the above studies,
they first developed a probability distribution by using an eigenvalue analysis for the
signals represented as a two-term Volterra series. Later, Neal [8] brought this method to
the ocean engineering field. Neal [8] expressed the eigenvalue problem with the frequency-
domain transfer functions and wave spectrum and studied the probability distribution of
the second-order hydrodynamic force. His approach was a pioneering work in ocean engi-
neering, particularly introducing an eigenvalue approach for nonlinear statistical signals
which Gaussian probability is not valid any more. However, his approach is limited to
narrow-banded signals. Furthermore, Marthinsen and Winterstein [9] applied the Hermite-
moment method using statistical moments calculated from the eigenvalue problem and
analyzed the second-order load and response of the tension leg platform (TLP).

Studies on predicting a deck slamming using the statistical method began in the 1960s.
Ochi [10] and Ochi and Motter [11] studied the prediction of slamming characteristics
for ships based on linear theory. In the above studies, the slamming characteristics are
estimated by conducting a statistical modeling of the relative wave elevation and velocity
using frequency-domain transfer functions at the analysis point. Using the joint probability
distribution, they calculated the probability of a slamming occurrence and the expected
impact pressure. However, because this approach is based on the linear wave theory, it has
a limitation in that this statistical method does not properly consider the nonlinearity of
the relative wave elevation. Studies considering nonlinearity have since been conducted to
predict the relative wave elevation. Manuel et al. [12] and Sweetman and Winterstein [13]
applied the statistical analysis technique of nonlinear problems to the deck slamming
phenomenon and analyzed the relative wave elevation. They assumed the relative wave
elevation as a two-term Volterra series and conducted the statistical modeling of the
relative wave elevation using an eigenvalue analysis and the Hermite-moment method.
Finally, they presented the probability distribution of the peak values of air gap from this
model. However, there is a limitation in that studies on the impact pressure have not been
carried out.

This paper summarizes the stochastic analysis of Nam [14], introduced in the author’s
degree dissertation, extending the works of Nam and Kim [5]. This paper introduces an
improved nonlinear stochastic approach which complements the two approaches of [12]
and [13] by suggesting a statistical relationship between relative wave elevation and
velocity. In order to predict the occurrence of deck slamming, not only the relative wave
elevation but also the relative velocity are needed. In the case of [10] and [11], the study
was limited to Gaussian process, and only wave elevation was considered in the case of [12]
and [13]. This study extends their studies to non-Gaussian distribution of the relative
wave velocity, which is essential to define the occurrence of deck slamming and predict the
instantaneous slamming pressure.

In this study, a nonlinear stochastic approach is used to efficiently predict the probabil-
ity of deck slamming occurrence and slamming pressure. The proposed method is based on
the assumption of potential flow. Under this assumption, the relative wave elevation can be
represented as a two-term Volterra series, and the statistical moments are calculated from
the eigenvalue analysis. By applying the Hermite-moment method to the relative wave
elevation, a statistical modeling of the relative wave elevation and velocity is conducted.
From these results, the joint probability density function of the relative wave elevation
and velocity is derived, and the probability distributions are calculated. Finally, using the
probability distributions of the relative wave elevation and velocity, the probability of deck
slamming occurrence and slamming pressure are estimated. This method is applied to the
TLP model and is verified using the data sampled from the time series of a nonlinear wave
elevation up to the second order. Furthermore, based on the computational results, the
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effect of the second-order components of the relative wave elevation on the deck slamming
is investigated.

2. Mathematical Background
2.1. Mathmatical Modeling

Prior to defining the relative wave elevation, the motion of the offshore structure is
defined in a coordinate system (O-xyz) which has origin at the center of the structure and
mean water level, as shown in Figure 1.

Figure 1. Coordinate system for offshore structure.

In this study, the relative wave elevation is defined as the wave elevation viewed
from the offshore structure, taking into account the platform motion and absolute wave
elevation. If we assume that the platform motion is small, then the relative wave elevation
at the analysis point (x, y) can be calculated using Equation (1).

ηR(x, y, t) ≡ η(x, y, t)− ξ3 − yξ4 + xξ5 (1)

In the above equation, ηR is the relative wave elevation, η is the absolute wave
elevation, and ξi is the ith mode component of the platform motion, i.e., i = 1, 2, 3 means
translational motion and i = 4, 5, 6 means rotational motion. In this case, ξ3, ξ4, and ξ5 are
heave, roll, and pitch motion of the platform. By defining the relative waves as above, the
occurrence of the deck slamming phenomenon is interpreted when the relative waves have
values above the deck clearance.

Next, mathematical modeling of the nonlinear relative wave elevation with the second-
order term is conducted for a statistical analysis. As the basic assumption for the application
of the statistical method used in this study, the nonlinear relative wave elevation can be
expressed as a two-term Volterra series. Under the assumption of a potential flow, the
nonlinear relative wave elevation up to the second order can be represented as a two-term
Volterra series using the frequency-domain transfer functions.

ηR(t) = Re

 ∞

∑
j=1

Aj H
(1)
R

(
ωj

)
eiωjt

+ Re

 ∞

∑
j=1

∞

∑
k=1

Aj Ak H(2)
R

(
ωj, ωk

)
ei(ωj+ωk)t

+ Re

 ∞

∑
j=1

∞

∑
k=1

Aj A∗k H(2)
R

(
ωj,−ωk

)
ei(ωj−ωk)t

 (2)

In Equation (2), ωj and Aj indicate the discretized frequency component and complex

amplitude of ωj, respectively, and H(i)
R is the ith order frequency-domain transfer functions

of the relative wave elevation. The first term of Equation (2) is the linear component, and
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the second and third terms are the sum and difference-frequency components. In addition,
H(i)

R can be calculated from Equation (1) as follows:

H(i)
R = H(i)

W − H(i)
M,3 − yH(i)

M,4 + xH(i)
M,5 (3)

In the above equation, H(i)
W and H(i)

M,k are the ith order frequency-domain transfer func-
tions of the absolute wave elevation and the kth mode platform motion. These frequency-
domain transfer functions are computed from commercial software that can conduct a
frequency-domain analysis of a second-order potential flow.

It should be mentioned that the application of the two-term Volterra series, i.e., up to
the second order, is limited to simulate the fully nonlinear waves and it cannot simulate
very harsh wave conditions such as wave breaking. However, this theory can cover a
significant part of nonlinearity of wave run-up [4].

2.2. Statistical Modeling

To statistically analyze ηR expressed as a two-term Volterra series, the eigenvalue
analysis method is used. An eigenvalue analysis is a typical method for calculating the
statistical characteristics of nonlinear properties. By solving the eigenvalue problem for a
two-term Volterra series, the characteristic function and moment-generating function of
nonlinear properties, which can be used for a statistical analysis, can be obtained. Neal [8]
defined the eigenvalue problem with the frequency-domain transfer function as follows:∫ ∞

−∞
K(ω1, ω2)ψj(ω2)dω2 = λjψj(ω1) (4)

K(ω1, ω2) =
√

S(ω1)S(ω2)H(2)
R (ω1,−ω2) (5)

where K(ω1, ω2) is the Hermitian kernel, which is defined by the energy spectrum of the
input wave S(ω) and transfer functions. From the above analysis, ηR can be rewritten
using the standard Gaussian process, uj(t):

ηR(t) =
2n

∑
j=1

cjuj(t) +
2n

∑
j=1

λju2
j (t) (6)

cj =

∣∣∣∣∫ ∞

−∞
H(1)

R (ω)
√

S(ω)ψj
∗(ω)dω

∣∣∣∣ (7)

In the above equations, n is the number of discretized frequencies, and cj and eigen-
value λj are calculated through the eigenvalue problem. We can then formulate the
moment-generating function using the statistical characteristics of uj(t) [15].

M(θ) =
1

∞
∏
j=1

(
1− 2λjθ

)1/2
e

∞
∑

j=1

cj
2θ2

2(1−2λjθ)
(8)

Moreover, the statistical moments of ηR(t) are obtained as follows [9]:

mηR =
2n

∑
j=1

λj, σηR
2 =

2n

∑
j=1

(
cj

2 + 2λj
2
)

, α3 =
2n

∑
j=1

(
6cj

2λj + 8λj
3

σηR
3

)
, α4 = 3 +

2n

∑
j=1

48
(
cj

2λj
2 + λj

4)
σηR

4 (9)

These four statistical moments are used to conduct the statistical modeling of ηR(t).
In this study, the Hermite-moment model is used, which can transform the non-Gaussian
process into a standard normal process u(t) by using Hermite-polynomial expansion [16].
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Through the Hermite-moment method, the statistical analysis for nonlinear variables can
easily be performed. When applying this method to ηR(t), the result is as follows:

ηR = g(u) = mηR + κσηR

[
u +

4

∑
n=3

ĥn Hen−1(u)

]
(10)

In the above equation, Hen−1(u) is the nth-order Hermite-polynomial. The coefficient
κ is a scale factor, and ĥ3 and ĥ4 are the shape factors of a non-Gaussian distribution. The
coefficients κ, ĥ3, and ĥ4 are computed by matching the statistical moments on each side of
Equation (10) up to the fourth order through the following [17]:

κ2
(

1 + 2ĥ3
2 + 6ĥ4

2
)
= 1

κ3
(

8ĥ3
3 + 108ĥ3ĥ4

2 + 36ĥ3ĥ4 + 6ĥ3

)
= α3

κ4
(

60ĥ3
4 + 3348ĥ4

4 + 2232ĥ3
2ĥ4

2

+60ĥ3
2 + 252ĥ4

2 + 1296ĥ4
3 + 576ĥ3

2ĥ4 + 24ĥ4 + 3

)
= α4

(11)

Equation (11) is the coupled nonlinear equation; thus, the coefficients are calculated
numerically. The details can be found in Yang et al. [18].

The probability of deck slamming occurrence can be calculated from the statistical
model of ηR. However, the estimation of deck slamming pressure requires an analysis of
the relative wave velocity. Therefore, statistical modeling of a relative wave velocity is
conducted by differentiating the statistical model of ηR(t).

.
ηR =

dg(u)
dt

= κσηR

[
1 +

4

∑
n=3

(n− 1)ĥn Hen−2(u)

]
.
u (12)

In Equation (12),
.
ηR is the relative wave velocity, and

.
u is the time differential of u.

Here, it is well known that
.
u, the time differential of the standard normal variable, also

follows the normal process and is statistically independent with u [19]. Equation (12) also
shows that u and

.
u should be considered simultaneously when statistically analyzing

.
ηR.

Thus,
.
ηR is formulated by using the joint probability density function of u and

.
u, expressed

as Equation (13).

Pn
(
u,

.
u
)
=

1
2πσ .

u
exp

[
−1

2

(
u2 +

.
u2

σ .
u

2

)]
(13)

In Equation (13), σ .
u indicates the standard deviation of

.
u, and can be calculated from

the second spectral moment of u as Equation (14). The spectral moment u can be obtained
from Equations (15) and (16).

σ .
u

2 =
∫ ∞

0
S .

u(ω)dω =
∫ ∞

0
ω2Su(ω)dω = mu,2 (14)

SηR(ω) =
∣∣∣H(1)

R (ω)
∣∣∣2S(ω) + 8

∫ ∞

0

∣∣∣H(2)
R (ω− µ, µ)

∣∣∣2S(|ω− µ|)S(|µ|)dµ (15)

SηR(ω) = κσηR

[
Su(ω) +

4

∑
n=3

(n− 1)!ĥ2
n[Su(ω)]n−1

]
(16)

In Equations (15) and (16), SηR(ω) and Su(ω) are the spectral densities of ηR and
u, respectively, and [Su(ω)]n is the n-fold convolution. SηR(ω) is calculated using the
linear and second-order frequency-domain transfer function as Equation (15), and Su(ω)
is computed from the relationship between the spectral density of ηR and u as shown in
Equation (16) [20]. From these equations, the spectral moment u can be calculated using
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Equation (17), and the details can be found in Lim and Kim [21]. Thus, we can obtain the
value of σ .

u from Equation (17).

mηR ,1 =
(
κσηR

)2
[(

1 + 4ĥ2
3 + 18ĥ2

4

)
mu,1

]
mηR ,2 =

(
κσηR

)2
[(

1 + 4ĥ2
3 + 18ĥ2

4

)
mu,2 +

(
4ĥ2

3 + 36ĥ2
4

)
mu,1

2
] (17)

Finally, the joint probability density function of ηR and
.
ηR can be formulated as follows

by transformation from the joint probability density function of u and
.
u.

P
(
ηR,

.
ηR
)
= Pn

(
u,

.
u
)∣∣∣∣∣ ∂

(
u,

.
u
)

∂
(
ηR,

.
ηR
) ∣∣∣∣∣ =

[
1

g′(g−1(ηR))

]2
Pn

(
g−1(ηR),

1
g′(g−1(ηR))

.
ηR

)
(18)

In the above equation,
∣∣∣∣ ∂(u,

.
u)

∂(ηR ,
.
ηR)

∣∣∣∣ indicates a Jacobian determinant, and g−1(ηR) is an

inverse function of g(u). The value of g−1(ηR) can also be formulated numerically from
Equation (10), the details of which can be found in Yang et al. [18].

2.3. Prediction of Deck Slamming Occurrence

The deck slamming phenomenon occurs when ηR has a value over the deck clearance.
Therefore, the probability of a deck slamming occurrence is calculated from the fact that the
crest of ηR will be higher than the deck height. The wave crest defined by Forristall [22] is
the maximum value of ηR when zero up-crossing; thus, the probability distribution of the
crest of ηR can be calculated as the ratio of the average up-crossing rate to zero up-crossing
rate [20].

Pr(wave crest > z) =
f+z
f+0

= exp
{
−1

2

[
g−1(z)

]2
}

(19)

f+z =
∫ ∞

0
f
+

z,
.
ηR

d
.
ηR =

∫ ∞

0
P
(
z,

.
ηR
) .
ηRd

.
ηR

.
ηR > 0 (20)

In the above equation, fz+ is the rate when ηR passes the value of height z, and f
+

z,
.
ηR

is

the rate when ηR passes the value of height z with velocity
.
ηR. To calculate the probability of

a deck slamming occurrence, assuming that the offshore structure is operated with the deck
clearance a0 and duration TR, a deck slamming occurring at least once can be interpreted
as a complementary event of all wave crests of less than the deck height. Therefore, the
probability of a deck slamming occurrence is calculated as follows:

Pr[max(ηR(t)|0 ≤ t ≤ TR) > a0] = 1− [Pr(wave crest < a0)]
Nc = 1−

[
1− exp

{
−1

2

[
g−1(a0)

]2
}]Nc

(21)

Nc =
TR
Tz

(22)

where Nc is the number of wave crests, and Tz is the zero up-crossing period.
Next, the deck slamming pressure is calculated from the relation between the impact

pressure and relative wave velocity. First, the probability distribution of upward passing
.
ηR when ηR has the value of the deck clearance, that is, when a deck slamming occurs, can
be obtained as follows:

P
( .

ηR
∣∣ηR = a0

)
=

f+
a0,

.
ηR

f+a0

=
P
(
a0,

.
ηR
) .
ηR∫ ∞

0 P
(
a0,

.
ηR
) .
ηRd

.
ηR

=
1

σ .
u

2[g′(g−1(a0))]
2

.
ηR exp

[
−1

2

( .
ηR

σ .
u[g′(g−1(a0))]

)2]
.
ηR > 0 (23)

The deck slamming pressure can be estimated using the time variation of momentum
proposed by Kaplan [23], or the empirical model of Cuomo [24]; however, the equation
from Det Norske Veritas (DNV) [25] is used in this study because of the limitation on the
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analysis of the deck slamming area and wetting time. DNV proposed a simple method to
estimate the impact pressure as follows:

Ps =
1
2

ρCV
[ .

ηR
∣∣ηR = a0

]2 (24)

In the above equation, PS is the slamming pressure, and CV is the slamming coefficient.
CV is dependent on the local geometry information at the contact point of wave and deck
such as local shape and surface slope/angle. DNV proposed using 0.5 for CV in the head
sea and 10.0 for oblique waves at 45◦, and the present study also adopts these values
because the aim of this study is not to accurately predict the pressure but to propose a
simple statistical method for prediction. From Equations (23) and (24), the probability
distribution of the slamming pressure is calculated.

P(Ps) =
1

ρCVσ .
u

2[g′(g−1(a0))]
2 exp

[
− 1

ρCVσ .
u

2[g′(g−1(a0))]
2 Ps

]
(25)

To provide the reference impact pressure for the determination of the deck clearance,
an analysis taking into account both the probability of the deck slamming occurrence
and slamming pressure is necessary. Therefore, the maximum average impact pressure is
presented in this study. During time TR, the number of deck slamming occurrences N can
be calculated from Equations (21) and (22).

N = Pr(wave crest > a0)× Nc = exp
{
−1

2

[
g−1(a0)

]2
}

TR
Tz

(26)

From Equations (25) and (26), the mean value of the impact pressure corresponding
to the upper probability of one over N times can be calculated. In this study, this value is
defined as a term of the maximum average impact pressure, and implies maximum impact
pressure the offshore platform may experience during time TR.

P1/N
s = ρCVσ .

u
2
[

g′
(

g−1(a0)
)]2

ln N (27)

P1/N
s = P1/N

s + ρCVσ .
u

2
[

g′
(

g−1(a0)
)]2

(28)

The overall procedure for this analysis can be summarized as follows:
Using the input data of offshore structure, compute the linear and quadratic transfer

function for motion responses and relative wave elevation at the specified points;

• Using the input data of wave spectrum, generate the Hermit Kernel;
• Solve the eigenvalue problem and obtain the eigenvalues;
• Calculate the probability density function using characteristic function and

statistical moments;
• Generating mapping function for Hermit-moment method;
• Predict the probability of deck slamming occurrence.

It must be mentioned that this analysis aims at the prediction of deck slamming
occurrence, not the analysis of whole slamming occurrence. That is, the fluid-structure
interaction during deck slamming is beyond of this study.

3. Validation of Proposed Method
3.1. Computational Model

In this study, the proposed stochastic approach is applied to the TLP model to verify
the method and investigate the effect of a nonlinear relative wave on the deck slamming
occurrence. The TLP model consists of four cylindrical columns and rectangular pontoons
and the major dimensions of the TLP is summarized in Table 1 [14,26].
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Table 1. Principal dimensions of tension leg platform (TLP) model.

Column diameter 19.52 m
Pontoon length 41.48 m

Draft 31.42 m
Deck clearance 30.00 m
Displacement 35290 ton

Total length of tendons 1800 m
Pre-tension 10960 kN

Figure 2a shows the geometry of the TLP model, and Figure 2b shows the analysis
points where the statistical method used are applied. P1 and P4 indicate the front of the fore
and rear columns, and P2 and P5 are the middle of the fore and rear pontoons, respectively.
In addition, P3 is the center of the deck. In this study, the application of the TLP focuses on
a specific random wave condition as an example case. To this end, the JONSWAP spectrum
with a significant wave height of 13 m and a peak period of 14 s is considered with a
coefficient γ of 3. Nam et al. [5] carried out different sea state for the same model, and it
was found that the condition showed the highest probability of deck slamming among the
Northern North Sea. In this study, this wave condition is chosen for application example. It
is assumed that the wave heading is 0◦, as shown in Figure 2b. Table 2 shows the locations
of P1~P5.

Figure 2. Geometry of computational model. (a) is TLP model, and (b) is five analysis locations around the platform.

Table 2. Locations of the observation points.

Observation Point (x, y, z) (m)

P1 (40.27, 30.50, 0.00)
P2 (30.50, 0.00, 0.00)
P3 (0.00, 0.00, 0.00)
P4 (−20.74, 30.50, 0.00)
P5 (−30.50, 0.00, 0.00)

The frequency-domain transfer functions at the analysis points are computed using the
commercial software program WADAM developed by DNV-GL. As well known, WADAM
is one of the most reliable frequency-domain solvers up to the second-order problem. This
software adopts the potential-based approach which apples the wave Green function on
the wetted body surface. In the case of the second-order solver, the distribution of the
Green function on free surface near the body is needed. From these analyses, the frequency-
domain transfer functions of platform and absolute wave elevation can be calculated. The
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detailed theory for solving the second-order radiation/diffraction analysis can be found in
a study by Lee [27].

Figure 3 shows the computed linear frequency-domain solutions of motion responses
and the relative wave elevation ηR at the observed points. The motion responses in
Figure 3a show the typical pattern of TLP under a strong underwater pretension on the
body. Consequently, as indicated in Figure 3b, the value of the linear transfer function
around the low frequency converges to 1.0 at all points. This indicates that the vertical
motion in the area of long wavelength is small, and thus the relative wave elevation is
similar to the absolute wave elevation.

Figure 3. Magnitude of linear RAO (response amplitude operator) of motion and relative wave elevation at five locations.
(a) is platform motion, and (b) is relative wave elevation.

It should be noted that the responses of the motion and of relative elevation are
dependent on the wave spectrum. That is, the frequency range within which the wave
energy concentrates will play a critical role in the actual responses of the motion and
wave elevation. For example, if the energy of the ocean wave is confined to the range
of 0.3–0.6 rad/s, the linear component of ηR can be predicted to be larger at P4 than
at the other points. It is believed that there is an effect of standing wave between two
columns, which results in larger wave run-up than other locations. This is a very interesting
results which are related to so-called the trapped mode of offshore columns, and it can be
investigated more thoroughly as another research theme.

Figure 4 shows the quadratic transfer functions (QTFs) of the difference and sum-
frequency components of the relative wave elevation. The computational results in Figure 4
are corresponding to the analysis on P1–P5. Comparing the frequency-domain transfer
functions of P1–P5, it can be seen that the sum-frequency components fluctuate more
clearly than the difference-frequency QTFs. This is mostly due to more local behavior of
the absolute wave elevation around the body in the case of the sum-frequency solution.
Figure 5 shows the Hermitian kernels at the locations P1, P3, and P5, respectively.
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Figure 4. Quadratic transfer functions of relative wave elevation at five points. (a) is difference-frequency component, and
(b) is sum-frequency component.

Figure 5. Hermitian kernel. (a–c) are the calculated Hermitian kernel on P1, P3, and P5.

3.2. Verification of Present Method

Validation of the proposed statistical model is conducted by comparing the derived
probability distribution and data sampled from a time series of ηR. Because the presented
method is based on the joint probability density function, the distribution in two-dimension
should be compared; however, the conditional probability distributions are validated for
easier comparison. The probability of deck slamming occurrence is related to ηR; thus, it
is verified by comparing the wave crest distribution of ηR. Moreover, the deck slamming
pressure is related to

.
ηR, and thus it is verified by comparing the conditional probability

distribution of
.
ηR and the upward passing velocity distribution.

First, as mentioned earlier, the validation of ηR is conducted by comparing the derived
wave crest distribution with the sampled data. The sampled data are extracted from the
9-h time series of ηR, expressed as Equation (2), and these data are compared with the
crest distribution of ηR calculated from Equation (19). This analysis was conducted at the
analysis point P4, where the nonlinear component is expected to be larger.

Figure 6 shows examples of time signals of the linear, second-order difference-frequency
and sum-frequency components, as well as the total elevation of vertical motion and the
relative wave elevation at P4. All these signals are from the time conversion of frequency-
domain solutions obtained by using the WADAM program.
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Figure 6. Components of platform motion and relative wave elevation signals at P4. (a) is vertical platform motion signals,
and (b) is relative wave elevation signals.

It is clear that the sum-frequency component is the major contributor to the second-
order effect. Figure 7 shows the exceedance probability distribution of crest of ηR at P4.
Because ηR contains nonlinear components up to the second order, it has non-normal
properties. Therefore, the Rayleigh distribution, which represents the peak distribution
of linear signals, is insufficient for a nonlinear wave elevation. As Figure 7 indicates, the
present nonlinear scheme achieves a much better correspondence with the sampled peak
distribution from the actual time signal. For a quantitative comparison, the statistical mo-
ments of the sampled data and the derived probability distribution of ηR are summarized
in Table 3. It is confirmed that the statistical results of the present analytical method show
a very reasonable agreement with the results obtained from the sampled data.

Figure 7. Exceedance probability distribution of crest of ηR: P4 location, sampling results are from
9-h signal.
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Table 3. Statistical moments of probability distribution of ηR: P4 location, sampling results are from
9-h signal.

Parameter Sampled from
Signal (S)

Present Analytic
Method (A)

Ratio
(A/S)

Mean 0.19 0.20 1.05
Standard deviation 4.05 4.08 1.01

Skewness 0.48 0.52 1.08
Kurtosis 3.47 3.96 1.14

Figure 8 shows the probability distribution of
.
ηR at P4, based on a total of 1000 h of

time series data of ηR. In this case, the relative wave velocities are for the cases when ηR is
more than 5 and 10 m, considering up to the second-order component. Figure 9 also shows
the probability distribution of

.
ηR at P4. These cases are conditional probabilities for the

upward passing velocity value of ηR at 5 and 10 m. That is, the values of
.
ηR are considered

when ηR is over the specified value, which aims to consider the condition of a slamming
occurrence, where ηR is higher than the freeboard of the deck. Values of 5 and 10 m were
chosen in this study for validation purposes. As Figures 8 and 9 show, it is obvious that the
probability model from the present method is not perfect but expresses well the conditional
probability of

.
ηR. It is clear that the present statistical method predicts higher upward

passing values. This difference may be mostly due to the limit of the present analytic
method, particularly in mapping the non-Gaussian process to the standard normal process
u(t) by using a Hermite-polynomial expansion. The slight differences in the mean and
skewness in Figure 8 cause the difference in the up-crossing statistics in Figure 9. However,
it must be noted that the present method is purely analytic, and no full simulation or
time-signal generation is needed. Therefore, this present method can be accepted as an
extremely good approximation without a heavy simulation.

Figure 8. Conditional probability distribution of
.
ηR: P4. (a) is the case when ηR is more than 5 m, and (b) is the case when

ηR is more than 10 m.
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Figure 9. Conditional probability distribution of
.
ηR: P4. (a) is the case when ηR at 5 m, and (b) is the case when ηR at 10 m.

In the case of linear theory, the relative wave elevation and velocity are statistically
independent. However, in the case of nonlinear problems, such an assumption is invalid.
Figure 10 shows the cumulative probability distribution of

.
ηR for ηR at P4 with and without

second-order components. In the case of the linear component of ηR, it can be seen that
the distribution of

.
ηR is almost the same regardless of the condition of ηR. This result

corresponds with the linear theory, in which the wave elevation and wave velocity are
statistically independent. The methodology of Ochi and Motter [11] is based on this theory,
and in this case, the slamming impact pressure distribution is also the same regardless of
ηR. However, considering up to the second-order component of ηR, the distribution of

.
ηR

is changed for each condition of ηR. This means that if nonlinear components are included,
ηR and

.
ηR are not statistically independent, and the second-order components of ηR can

affect the probability distribution of the deck slamming pressure.

Figure 10. Cumulative probability distribution of
.
ηR for ηR depending on the presence of 2nd-order components: P4. (a) is

the case only considering the linear component, and (b) is the case considering the linear and 2nd-order component.

3.3. Prediction of Deck Slamming Occurrence

To observe the occurrence of deck slamming, the exceedance probability of the relative
wave elevation is predicted using the verified statistical method for the 3-h duration of
the sea states, TR. As analyzed by Nam et al. [5], the wave elevations become largest at P4
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and the smallest at P1. Figure 11 shows the exceedance probability distribution of deck
slamming occurrence according to the deck clearance calculated from Equation (21). In this
study, a specific height is not given as a freeboard height, and the exceedance probability
of ηR for different deck clearances is observed and can thus be helpful for examining the
design of the deck height. Figure 11 compares the probability of deck clearance when
only linear theory is applied, and all linear and second-order components are considered.
Linear theory clearly provides an extreme under-prediction, and thus the second-order
component is important.

Figure 11. Exceedance probability distribution of deck slamming occurrence in 3-h according to deck clearance. (a) is the
case only considering the linear component, and (b) is the case considering the linear and 2nd-order component.

Figure 12 shows an example of the more detailed components at P4. It is well known
that the sum-frequency component plays an important role in the wave run-up around a
body, e.g., [4]. This trend is clearly shown in Figure 12. The sum-frequency component
shares a major contribution with a linear wave run-up. A comparison of the exceedance
probability for different deck clearances at each point is shown in Figure 13. This is the
same result as in Case 2 of Nam et al. [5]. As mentioned, P4 was shown to have the highest
possibility of deck slamming, and P1 has the least. As Nam et al. [5] showed, this tendency
is the same for other sea states.

Figure 12. The detailed component of exceedance probability distribution: P4.
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Figure 13. Comparison of exceedance probability at five locations.

The slamming pressure can be predicted using Equation (28). Figure 14 shows the
predicted maximum slamming pressure over a 3-h duration at P4, where the largest
slamming pressure is highly probable. It should be mentioned that the largest wave
elevation does not guarantee the largest impact pressure. The slamming pressure is
dependent on the magnitude of the relative velocity at the slamming occurrence. For the
same reason, the slamming pressure is different for different deck clearances. Figure 14
shows the range of deck clearance and corresponding pressure at which deck slamming
may occur more than once within a 3-h time period. In particular, this figure compares
the slamming pressure with and without the second-order components. The difference
is extremely clear, and thus the linear solution is insufficient. The same observation
can be found in Figure 15, which shows the slamming pressure for different exceedance
probabilities. In this case, a 15-m deck height is assumed. The difference with and without
the second-order contribution is significant, as indicated in Figure 14.

Figure 14. Comparison of maximum slamming pressure between linear and total solutions: P4, for
different deck clearance.
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Figure 15. Comparison of slamming pressure between linear and total solutions: P4, 15 m deck clearance.

From Figure 14, it can be seen that the slamming pressure does not always increase as
the deck clearance increases. There is a peak in the slamming pressure. In general, a larger
wave elevation has a higher potential for a larger velocity; therefore, a larger slamming
pressure can be assumed for a larger deck clearance. However, this is the case when the
probability of a slamming occurrence is the same. Under actual conditions, a larger deck
clearance provides less possibility of slamming. That is, the value of N in Equation (26)
decreases. An easier interpretation is possible using Figure 16, which shows the pressure
at deck slamming occurrence. Here, the pressure is defined as the value averaged from
one over N time occurrence of deck slamming. In these figures, A, B, C, and D represent
deck clearances of 5, 10, 15, and 20 m, respectively. The pressure at D, that is, a 20-m deck
clearance, is less than that of B and C. Looking at the right-side result in Figure 16, it can
be seen that the exceedance probability value of D is much larger than that of B and C,
meaning that the probability of one over N is larger as slamming occurrence number N
is lower. Thus, the maximum average pressure does not show a monotonic increase or
decrease as the deck clearance increases.

Figure 16. Maximum average pressure and slamming pressure distribution for different deck heights: P4. (a) is the
slamming pressure and (b) is the corresponding probability.
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4. Conclusions

In this study, a nonlinear statistical method is proposed to predict the deck slamming
phenomenon, considering the second-order term of the relative wave elevation. To verify
the proposed method, the probability distribution of the relative wave elevation and the
velocity are compared with the sampled data extracted from the two-term Volterra time
series. The proposed stochastic approach is applied to the TLP model, and the deck
slamming occurrence is predicted for a total of five analysis points. Furthermore, the effect
of second-order components on the probability of deck slamming occurrence and slamming
pressure are investigated. From this study, the following conclusions were drawn:

• Owing to the second-order effect, the probability distribution of the relative wave
elevation shows the non-normality of the statistical properties. The proposed method
represents such characteristics well. The same result is obtained from the crest distri-
bution.

• It can be confirmed that the relative wave velocity is not statistically independent
of the relative wave elevation when considering up to the second-order component.
Thus, the probability distribution of the relative wave velocity changes according to
the conditions of the relative wave elevation, and the proposed method also represents
this dependency well. However, because of the limitation of statistical modeling of
the relative wave velocity, there was some difference in estimating the probability
distribution of upward passing relative wave velocity.

• From the predicted probability of deck slamming occurrence, it can be seen that a
larger probability is shown in the rear part of the offshore platform rather than at the
fore part. The largest probability of deck slamming was observed in the front of the
rear column. This result is due to an increase in the second-order components of the
relative wave elevation at the rear part of the offshore structure.

• It can be seen that the second-order component, particularly the sum-frequency
component, plays a critical role in the slamming pressure. For the predicted maximum
average pressure during the duration of the sea states, the impact pressure increases
as the deck clearance rises to a certain value, and decreases thereafter. The increase
and increase of the slamming pressure are dependent on not only the magnitude of
the relative velocity but also the probability of occurrence.
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