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Abstract: Due to the complexity of materials and energy cycles, the distillation system has numerous
working conditions difficult to troubleshoot in time. To address the problem, a novel DMA-SDG fault
identification method that combines dynamic mechanism analysis based on process simulation and
signed directed graph is proposed for the distillation process. Firstly, dynamic simulation is employed
to build a mechanism model to provide the potential relationships between variables. Secondly,
sensitivity analysis and dynamic mechanism analysis in process simulation are introduced to the SDG
model to improve the completeness of this model based on expert knowledge. Finally, a quantitative
analysis based on complex network theory is used to select the most important nodes in SDG model
for identifying the severe malfunctions. The application of DMA-SDG method in a benzene-toluene-
xylene (BTX) hydrogenation prefractionation system shows sound fault identification performance.

Keywords: distillation process; mechanism analysis; SDG model; fault identification

1. Introduction

Distillation is one of the most important parts of chemical production. Doubtlessly, its
smooth operation is crucial to the safety of the entire chemical plant. Due to strong coupling
of process variables, high sensitivity, complex operation, and difficulty in direct control of
key variables such as temperature and pressure, distillation is more prone to failure than
other unit operations. A slight deviation of the complex separation system variable can be a
trigger to a chain reaction in the system, resulting in the loss of efficiency and reliability [1].
Once the system is out of control, extremely high pressure and flammable materials may
cause material loss and human casualties, even an explosion in the distillation column [2].
Therefore, how to accurately identify the faults in the distillation system has become a key
issue to ensure safe production in chemical industry.

However, in the actual production process, there are some difficulties in the analysis
and research of faults. Faults that cause serious damage to the distillation system are
the “black swan” incidents, which are not only almost unpredictable, but also serious in
consequences. In addition, it is difficult to detect slight deviations of process variables
and changes in the external environment in the course of operation [3]. To address the
above problems, process simulation is introduced in this paper to provide data and mecha-
nism support for fault analysis. As a multipurpose and maneuverable process simulation
method, dynamic simulation is able to accurately reflect the timely response of chemical
processes by introducing time variables [4]. Dynamic simulation is frequently used as a
substitute for real situation to optimize process system, demonstrate the complex control
system scheme, and observe the dynamic changes of the system when faults occur [5]. For
instance, dynamic simulation made a great contribution to the proposal of an effective con-
trol scheme for the coal pyrolysis wastewater treatment process [6]. A rigorous distillation
model with explicit heat-exchanger dynamics in dynamic simulation was used for safety
analysis under emergency [7]. The SIL (safety integrity level) analysis of a fractionating
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system with the grade of control schemes referenced to the importance rank of process
variables was completed based on dynamic simulation [8]. Dynamic simulation also played
a key role in providing quantitative variable deviations into hazard and operability analysis
(HAZOP) to guide the design of control structure for the whole plant [9]. Variable deviation
scenarios of dynamic simulation for benzene alkylation process were analyzed to explore
the deviation propagation effects and make contribution to the quantitative risk assessment
(QRA) [10]. A robust fault detection method for the distillation column was effectively
verified by setting and analyzing the fault types in dynamic simulation [11]. Dynamic
simulation provided a data set, at normal and faulty states, for the fault classification of
multikernel support vector machines [12]. A quantitative HAZOP method with dynamic
simulation as a deviation reasoning tool was developed to reduce uncertainty in manual
HAZOP analysis [13].

At present, fault detection and identification (FDI) methods mainly include analytical
model-based methods, data-driven methods, and knowledge-based methods [14]. The
application of analytical model-based methods have obvious limitations due to the uncer-
tainty for the complex interrelationship of variables and the mechanism of some reaction
processes. Currently, research on data-driven methods such as a series of supervised ma-
chine learning has also stagnated. Since the recognition effect of supervised deep learning
depends largely on the labeling preprocessing of training dataset, a new type of fault that
has never been learned by the deep learning model is difficult to identify. Compared to
the above two methods, knowledge-based methods not only avoid the establishment of
complex mechanism simulation models, but also provide a reasonable explanation for the
complex variable relationships in the system by empirical knowledge [15]. A case-based
reasoning method combining a case simplification method and a case reuse strategy was
proposed to reduce the time lag and complexity of fault identification and improve the
accuracy of fault diagnosis results [16]. A hybrid safety performance evaluation framework
for offshore oil and gas platforms was built, which uses safety score of system to guide the
selection of fuzzy expert systems [17]. Among the many knowledge-based FDI methods,
the signed directed graph (SDG) is a graphical model that vividly reflects the system
structure and the correlation among variables in the process. An integrated fault diagno-
sis framework combining fuzzy logic-based SDG and reconstruction-based multivariate
contribution analysis (RBMCA) was established to identify the root cause of the detected
fault without historical data of known fault types [18]. An alarm signal screening method
based on the probability SDG was proposed, which effectively reduces the missed alarm
and false alarm probabilities [19]. By integrating multilevel flow modeling (MFM) and
SDG, a functional modeling method of fault diagnosis systems was designed to address
the difficulties regarding the interpretation of results and consistent graph generation [20].
A graphic construction methodology that builds the SDG directly from a bond graph was
proposed to reduce modeling complexity [21]. A new method was presented to improve
the resolution of fault identification, which integrates the completeness feature of SDG with
the good diagnostic resolution feature of qualitative trend analysis (QTA) [22]. The above
references all show that SDG, as a qualitative FDI method, can identify faults without the
need of historical data but reflect the essential mechanism of the process.

This paper proposes a fault identification method for the distillation process, com-
bining dynamic mechanism analysis with an SDG model (DMA-SDG). The DMA-SDG
method establishes a dynamic model to offer the mechanism analysis for the process, and
then characterizes fault feature by deviation propagation paths. The outline of this paper
is organized as follows. In Section 2, the framework of the DMA-SDG method is intro-
duced in detail, followed by the principles of process simulation and SDG. The excellent
performance of the DMA-SDG method is proved by a case study in the Section 3. The final
section gives the conclusions by summarizing the highlights of the proposed method.
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2. Proposed Method

The framework of DMA-SDG method is shown in Figure 1. The specific innovations
are as follows:

1. A steady-state simulation is established based on the data parameters of the distilla-
tion process. The dynamic simulation with effective control schemes is built according
to the steady-state simulation. Dynamic mechanism analysis is applied by combining
quantitative dynamic response with expert knowledge. SDG models are constructed
by connecting process variables with positive and negative feedback relationships.

2. The SDG model is connected to the distributed control system (DCS) for process
monitoring. For abnormal process data, the SDG model can accurately describe the
fault feature as the consistent path by bidirectional inference. Then, the fault type
marked with the feature is outputted and displayed to the operators.

3. The nodes in the SDG model are ranked in importance using the entropy weighting
(EW)-VIKOR method, a method to evaluate node importance in complex network [23]
by UCINET6.6. Faults related to important nodes that have a severe harm to the
distillation system are marked and analyzed.
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SDG) method.

2.1. Dynamic Mechanism Analysis Based on Process Simulation

A steady-state simulation is a quantitative calculation of the characteristic equations
in a chemical process. The data of the chemical process involved in the simulation includes
the temperature, pressure, flow rate, composition of the feed, relevant process operating
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conditions, process regulations, and equipment parameters. However, there is no time vari-
able in steady-state simulation, which is not consistent with the actual process system. In
order to solve this defect, dynamic simulation is introduced to study dynamic phenomena
of complex chemical process.

The remarkable feature of dynamic simulation is the ability to use proportion integral
differential (PID) for process variable control and optimization of system operation. The
structure of a typical PID controller based on feedback control is shown in Figure 2.
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A PID controller consists of proportional control, integral control, and differential
control. The proportional control, which is denoted as err(t), reflects the error signal of the
control system proportionally and generates an immediate control action to reduce the de-
viation once it occurs. The integral control, which is denoted as

∫
err(t)dt, mainly eliminates

static errors to improve the indiscrimination degree of the system. The differential control,
which is denoted as derr(t)/dt, reflects the trend of the errors and responds early before the
errors become too large, thus speeding up the system action.

The PID controller based on feedback control is introduced as follows. The process
variable is measured and compared with its set point, and then the obtained error is fed
back to the controller. The controller determines the output value according to the error
and the control algorithm. The control valve is executed under the guidance of the output
value to adjust the process variable near the set point. The calculation formula of PID is
given in Equation (1):

U(t) = kp(err(t) +
1
TI

∫
err(t)dt+TD

derr(t)
dt

) (1)

where U(t) is the output value of controller, err is the gap between the setpoint and the
process variable, err(t) is the part of proportional control,

∫
err(t)dt is the part of pro-

portional control, derr(t)/dt is the part of proportional control, and kp, 1/TI, TD are the
corresponding coefficients.

Due to the immense amount of operating parameters in the chemical processes, a
qualitative and static analysis alone cannot meet the requirements of a process-specific
analysis. To better incorporate mechanism knowledge and refine the SDG modeling,
dynamic mechanism analysis based on dynamic simulation is proposed in this paper.
In this method, deviations sufficient to cause the system faults are given by changing
parameters in dynamic simulation. By dynamic simulation with the PIDs, the initial
variable deviations are dynamically responded by the automatic control of the controllers
based on the material and energy flow within the devices. The propagation paths of the
deviations are quantitatively depicted in the dynamic simulations, in which the expert
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knowledge is added to provide a mechanistic explanation of the deviation relationships
among variables.

2.2. Signed Directed Graph
2.2.1. SDG Model

SDG is a qualitative analysis graph that expresses the mutual influence among process
variables. It reflects the characteristics of the devices involved and the overall topology
of the system. The determination of the directed arcs between nodes is conducive to
fully reveal the fault propagation relationship among process variables. Based on the
bidirectional inference method and the principle of information compatibility, SDG can be
employed to reveal the internal causality of complex systems and explain the occurrence
and spread of accidents.

A SDG model is a network diagram consisting of nodes and directed arcs connecting
them. A simple example of a SDG model is shown in Figure 3. Nodes in the SDG model
can be the physical variables such as pressure and temperature in the system, or operating
variables such as valves and controllers. The states of the node are “+”, “0” or “−”, which
represent greater than the upper threshold, normal state and less than the lower threshold
respectively. The nodes are connected by directed arcs, indicating the influence relationship
between them. The situation that the trend of two nodes is the same, which means an
increase in the former node leading to an increase in the latter node, is generally represented
by a solid arrow connecting the two nodes. Conversely, when two nodes are trending
in opposite directions, that is, an increase in the previous node leads to a decrease in the
following node, dashed arrows are placed to connect the two nodes. In Figure 3, the states
of A, B and C are “+”, “+”and “−” respectively. The relationship between A and B is
denoted by a solid arrow, and the one between B and C is denoted by a dashed arrow. This
means that an increase in A leads to an increase in B, and then leads to a decrease in C.
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Moreover, SDG can be described mathematically in a rigorous way [24]. The SDG
model γ is a combination of the set of directed graphs G and the set of functions ϕ, which
can be denoted as Equation (2). The set of directed graphs G, given as Equation (3), consists
of three parts, the set of nodes V = {vi}, the set of arcs E = {ek} and the adjacent associates
δ+: E→V and δ−: V→E, where the adjacency associates δ+: E→V and δ−: V→E are the
origin nodes δ+ek and end nodes δ−ek of the arc ek, respectively. The arc ek is noted as
Equation (4), meaning the directed arc from vi to vj. And the set of functions ϕ is denoted
as Equation (5), indicating that ϕ is the sign of arc ek and is taken the values “+” or “−”:

γ = (G, ϕ) (2)

G = (V, E, δ+, δ−) (3)

ek =
(
vi, vj

)
∈ E (4)

E→ {+,−} , ϕ(ek) = ϕ
(
vi, vj

)
(5)

The sample of the SDG model γ corresponds to a function ψ of the node state values,
as given in Equation (6). The symbol for node vi is noted as ψ(vi), which has three values,
as shown in Equations (7)–(9):

ψ : V → {+, 0,−} (6)

ψ(vi = +)
(
Xvi − Xvi ≥ εvi

)
(7)
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ψ(vi = 0)
(∣∣Xvi − Xvi

∣∣ ≤ εvi
)

(8)

ψ(vi = −)
(
Xvi − Xvi ≤ εvi

)
(9)

where Xvi is the measured value of node vi, Xvi is the value of node vi in the steady state
of the system, and εvi is the threshold value of node vi in the normal state. For ease of
representation, the upper and lower thresholds of the node are both denoted by εvi, and in
practice they are set on a case-by-case basis.

When fault identification is performed by the SDG model, the arc ek whose state
satisfies Equation (10) is called the consistent arc. The set of all consistent arcs are called
the consistent path which represents the pathway propagated within the SDG model:

ψ(δ+ek)ϕ(ek)ψ(δ
−ek) = + (10)

2.2.2. Fault Identification Based on SDG Model

An efficient fault inference algorithm is the basis for the efficient operation of the fault
identification method based on SDG. Inverse inference is the traditional inference method
for the SDG model, which main contents are illustrated as follows. When an alarm occurs,
the instantaneous statuses of all nodes in SDG model are determined by comparing them
with a predefined threshold value. Then, from the node where the first abnormal state
appears, inverse search is performed in the direction opposite to the arcs until the nodes
that cause the alarm is found. When the search proceeds on current node, the consistency
of the arc to it should be fulfilled, as shown in Equation (10). If Equation (10) is confirmed
in this search arc, the current node is marked as a cause node, and the search arc becomes
the consistent arc. The search is repeated until all abnormal nodes are found and all the
identified consistent arcs are combined into the consistent path.

Due to the multitude of assumptions made in the modeling process, inverse inference
is often carried out to reason many cause nodes under complex systems. The resolution
and operational speed of fault identification method are thus severely impaired by a large
volume of nodes. In this paper, a more effective bidirectional inference algorithm is adopted
to ensure the validity of the fault identification results. Bidirectional inference integrates
inverse inference based on inductive method and forward inference based on deductive
method. Primarily, all possible fault cause nodes are searched using inverse inference
mentioned above, and then forward inference is performed for each of them in turn to
verify the veracity. The detailed steps of bidirectional inference are shown in Figure 4.
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To illustrate the principle of SDG more clearly, a liquid level control system and its
SDG model are shown in Figure 5 as an example. In Figure 5, the level control system
consists of two tanks and a centrifugal pump primarily, which entirely relies on a level
controller to alleviate external disturbances. The inlet and outlet flow rates of the whole
process F1 and F3 are controlled by the valves V1 and V3 respectively. The liquid in Tank 1
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is transported by gravity to Tank 2 where a level controller LIC is installed to stabilize its
level by regulating F2, the outlet flow rate of Tank 1. The liquid in Tank 2 is transported
out of this system by a centrifugal pump K, and the pressure of this stream is monitored by
a pressure monitor P. L and V2 are the level of Tank 1 and the valves controlled by the LIC
on stream F2.
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Assuming that the overopening of V3 results an alarm of node L, the bidirectional
inference method is carried out. First, the state of L is detected to be below the thresh-
old value. By inverse inference the consistent path is obtained as L(−)←F2(+)←V2(+)
←LIC(−) ←F3(+) ←P(−) ←V3(+).Then, forward inference from the cause node V3 is
performed with consistent path. The final two inference results are consistent, and this
discovered pathway is the correct consistent path. In this fault situation, the consistent
path in the SDG model is shown in Figure 6. The cause node, a rectangle with the letter
“R”, is introduced into the SDG model, meaning that the fault causes an offset in node V3
and further affects the system.
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3. Case Study

To verify the performance of the DMA-SDG method, it was applied to the BTX
aromatics of a hydrogenation prefractionation system. This system is a very important part
of the petrochemical system, which involves many flammable and explosive chemicals
as the front part of the entire aromatics hydrogenation production process. Once a fault
occurs, there may be overtemperature and overpressure destruction of the equipment.
Dangerous materials may leak from the equipment to the outside environment, causing fire
and severe explosion. Therefore, the fault identification of hydrogenation prefractionation
system is particularly necessary.

In order to ensure the accuracy of the process simulation, all equipment parameters
including equipment size, tray number, tray pressure drop and all operating parameters
including reflux ratio, feed flow, tower top temperature and pressure are offered by a
petrochemical enterprise. The reference documents obtained include a piping and instru-
ment diagram (PI&D), a process flow diagram (PFD), DCS screenshots with operating
parameters, operating manuals, etc.

3.1. Process Simulation

The flow chart of hydrogenation prefractionation is shown in Figure 7. The purpose
of this process is to separate the C5 and C9 components in the BTX aromatics feed with two
steps and then the remaining purified BTX component (benzene, toluene, xylene, etc.) is
fed to the reactor for hydrogenation.
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3.1.1. Steady-State Simulation

The steady-state simulation is established based on Figure 7. The simulation mainly
uses FSplit, Heater, HeatX, Flash2 and RadFrac modules to refine the BTX aromatic com-
ponents. The simulation results of major streams are listed in Table 1. In addition, the
temperature profiles of the two columns are shown in Figure 8.
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Table 1. Actual data and simulation result of hydrogenation prefractionation system.

Stream
Pressure (MPa) Temperature (◦C) Mass Flows (kg/h)

Simulation
Value

Real
Value

Relative
Error %

Simulation
Value

Real
Value

Relative
Error %

Simulation
Value

Real
Value

Relative
Error %

Feed 0.2340 0.2340 0 40.08 40.1 −0.05 12,220.0 12,220.0 0.00
Feed2 0.0372 0.0372 0 115.33 115.33 0.00 9388.7 9359.6 0.31

C5 0.2093 0.2093 0 50.51 51.28 0.44 2831.3 2860.4 −1.01
BTX 0.0353 0.0353 0 46.95 47.00 −0.11 7272.9 7312.1 −0.54
C9 0.0644 0.0644 0 50.01 50.10 −0.18 2115.8 2076.6 1.89
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It can be seen from Table 1 that the results of the steady-state simulation are very
close to the actual process data offered by the petrochemical enterprise. Figure 8a is the
temperature profile for T-100, a depentanizer with a total of 32 stages and Figure 8b is the
temperature profile for T-101, a distillation column with a total of 48 stages with a total of
48 stages. The temperature control stages in the actual process are stage 29 in T-100 and
stage 12 and stage 35 in T-101. According to the selection method of the temperature control
stages [25], the temperature control stages are selected as stage 31 in T-100 and stage 14
and stage 34 in T-101 by the slope criterion and the minimum product fluctuation criterion,
which are basically same as the actual process. In addition, the tower top temperature
control loop in T-100 is designed to regulate the vapor phase outlet temperature to control
the return flow rate by PID. Therefore, a design consistent with the actual situation was
used in the simulation. This accurate steady-state simulation lays a very solid foundation
for the successful establishment of the subsequent dynamic simulation.

3.1.2. Dynamic Simulation

In this section, the controllers are installed in the dynamic simulation. The flowsheet
of dynamic simulation is shown in Figure 9. This simulation system is fitted with 13 con-
trollers, including pressure controllers, temperature controllers and liquid level controllers.
These controllers are set up with reference to the control loops that have been set up in the
actual process. Then they are activated to enhance the robustness of the dynamic model
when external disturbances are added. In this paper, their another role is to cooperate with
the device module to simulate various fault types.
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The main variables in the process are listed in Table 2, which can be monitored and
displayed by the actual DCS system. There is a total of 54 variables including measured
variables and operating variables.

Table 2. The main variables in a hydrogenation prefractionation system.

Variables Symbol Description Variables Symbol Description

F1 Feed1 flow TC3 The 14th tray temperature in T-101
F2 T-100 top reflux flow TC4 The 34th tray temperature in T-101
F3 V-100 vapor outlet flow L1 V-102 level
F4 C5 outlet flow LC1 V-100 level
F5 Feed2 flow LC2 T-100 level
F6 E-100 steam feed flow LC3 V-101 level
F7 T-101 top outlet flow LC4 T-101 level
F8 T-101 top reflux flow LC5 V-103 level
F9 BTX output flow P1 T-100 bottom pressure
F10 E-103 steam feed flow P2 T-101 bottom pressure
F11 E-102 hot stream outlet flow PC1 T-100 top pressure
F12 T-101 bottom reflux flow PC2 V-100 pressure
F13 C9 outlet flow PC3 T-101 top pressure
T1 Feed1 temperature PC4 V-101 pressure
T2 The eighth tray temperature of T-100 V1 T-100 top reflux flow valve opening
T3 E-101 outlet temperature V2 V-100 outlet gas flow valve opening
T4 T-100 bottom reflux temperature V3 Nitrogen flow valve opening
T5 Feed2 temperature V4 fixed gas flow valve opening
T6 T-101 top outlet temperature V5 C5 output flow valve opening
T7 E-102 outlet temperature V6 E-100 condensate flow valve opening
T8 P-104 inlet temperature V7 Feed2 flow valve opening
T9 The 60th tray temperature in T-101 V8 T-101 top output flow valve opening

T10 T-101 bottom outlet temperature V9 T-101 top reflux flow valve opening
T11 C9 outlet temperature V10 BTX output flow valve opening
T12 T-101 bottom reflux temperature V11 E-103 hot stream flow valve opening
TC1 T-100 top outlet temperature V12 C9 output flow valve opening
TC2 The 31th tray temperature in T-100 V13 V-103 condensate flow valve opening



Processes 2021, 9, 229 11 of 17

3.2. Establishment of SDG Model

The SDG model built based on expert knowledge [26] is tidy and streamlined for good
performance for fault identification. When applying this method to build a SDG model, the
determination of nodes and arcs can be conducive to the impact of the faults on the devices
accurately and the paths of fault propagation. However, the performance of the model
based on expert knowledge is deeply subject to the ability of the modeler. To mitigate
the human impact, process simulation is introduced into the modeling process of SDG.
The internal mechanism and explicit process data in process simulation are employed to
analyze the relationship among process variables. The sensitivity analysis module in Aspen
Plus is a useful tool to examine how manipulated variables and sampled variables affect
process simulation. In this paper, this module is used to check the influence relationships
among process variables. But, the application of sensitivity analysis in SDG is limited
because the definition of operating variables makes it difficult for the process to converge.
The sensitivity analysis in steady-state simulation is incapable of embodying the dynamic
changes of variables. For a more comprehensive analysis of the relationship among process
variables, external disturbances are therefore added to observe the dynamic response in
the hydrogenation pre-fractionation system with controllers in the dynamic simulation.

The change of the column top temperature T6 and column bottom temperature T10
after increasing the feed temperature T5 by 10% at 2 h is shown in Figure 10. It indicates
that at the beginning of the disturbance addition, T6 and T10 are rapidly vibrating. But
their subsequent trends are relatively stable. The increase in feed temperature is essentially
a decrease in the liquefaction fraction of the feed. In the xy phase diagram, the space
between the operation line and the phase equilibrium line becomes smaller, that is, the
separation space in distillation column becomes smaller. Due to the separation performance
degradation of the distillation column, the heavy components in the stream Top-out2 and
the light components in the stream Bot-out2 both increase. The changes of the three key
components in the stream Top-out and Bot-out are shown in Figure 11. It can be seen that
the mole fraction of ortho-xylene which is the light key component in the stream Top-out2
decreases gradually after the occurrence of disturbance. The mole fraction of the heavy key
component para-methyl ethylbenzene in stream Bot-out2 decreases, while the mole fraction
of the light key component ortho-xylene increases. The manifestation of this phenomenon
on temperature changes is that T6 gradually increases and T10 gradually decreases. Based
on the above analysis, the relationship among T5, T6 and T10 is determined, that is, T5 has
a positive effect on T6 and a negative effect on T10.
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Figure 11. Three key components in stream: (a) Top-out2; (b) Bot-out2.

All relationships of node variables in the hydrogenation prefractionation system
are analyzed by mechanism and process data similarly. Moreover, the listed influence
relationships are combined into a complete SDG model. The obtained SDG model of the
hydrogenation prefractionation system is shown in Figure 12. All nodes are connected
by solid arrows or dotted arrows, which mean the positive or negative correlation among
variables. To retain the most accurate features of the faults, the SDG model is appropriately
simplified by reducing unnecessary arcs.
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3.3. Fault Identification

In this section, the nodes importance of SDG are evaluated using the EW-VIKOR
method to mark faults that cause serious damage to the hydrogenation prefractionation
system. To verify the model, a fault case which refers to the evaluation of the importance
of variables is set up in dynamic simulation. Finally, the consistency of the manifestations
of the fault in the two models is explored, and the representation of the fault in SDG model
is output as the fault feature.
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3.3.1. Selection of Key Nodes in SDG Model

It is extremely difficult to list fault types one by one by exhaustive method due to the
strong coupling of complex chemical engineering systems and the large number of process
variables. Therefore, the complex network theory is introduced into the SDG model by the
EW-VIKOR method [23] to find the nodes that are critical to the system. According to the
ranking rule of node importance, the fault type that is greatly harmful to the hydrogenation
prefractionation system and is closely related to important nodes can be found.

The EW-VIKOR method is a combination of entropy weighting method and VIKOR
method to rank the importance of nodes in complex networks. The VIKOR method
is performed to integrate multiscale centrality criteria like DC (degree centrality), BC
(betweenness centrality), CC (closeness centrality), EC (eigenvector centrality), and the
entropy weighting method is employed to attach the weight to the centrality criteria,
reducing the human impact. Before using this method, the centrality criteria of the SDG
model needs to be calculated. The calculation formulas of DC, CC, BC, and EC are defined
in Equations (11)–(14), where ki represents the number of neighbor nodes of node i, n
represents the total number of nodes in SDG, dij represents the length for the shortest path
between nodes i and j, gjk is the total number of all shortest paths between node j and node
k, gjk(i) is the number of shortest paths between node j and node k that go through node
i, n(n − 1)/2 is used as denominator to normalize the BC value, and λ is the maximum
characteristic value of the adjacent matrix A. The graphic data in SDG is then abstracted
into tabular data for UCINET6.6 to calculate the centrality criteria:

DCi =
ki

n− 1
, (11)

CCi = n− 1/
n

∑
j=1

dij, (12)

BCi =
n

∑
j,k 6=i

gjk(i)
gjk

/
n(n− 1)

2
(13)

ECi = λ−1
n

∑
j=1

aijxj (14)

Four centrality criteria are calculated by Equations (11)–(14) as the initial data of
EW-VIKOR method. The importance of nodes is ranked by EW-VIKOR method through
five steps. Firstly, the decision matrix D is constituted (see Equation (15)) and normalized
(see Equation (16)). And the normalized decision matrix can be obtained as R = (rij)32 ×
4. In Equation (16), the centrality criteria vector is expressed as C = [c1, c2, c3, c4], which
covers DC, CC, BC and EC, the node vector is denoted as V = [v1, v2, . . . , v32]T, and vi(cj)
represents the value of the jth criterion for the ith node:

D =


v1(c1) v1(c2) · · · v1(c4)

v2(c1) v2(c2)
... v2(c4)

...
...

. . .
...

v32(c1) v32(c2) . . . v32(c4)

 (15)

rij = vi(cj)/

√
n

∑
k=1

(vk(cj))
2 (16)

Secondly, the weight of each criterion is calculated by the entropy weighting method.
The information entropy of the jth criterion is first denoted as Equations (17) and (18), and
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then the weight of the jth criterion is calculated as Equation (19). In Equation (18), if r′ij = 0,
then r′ij ln r′ij = 0:

r′ ij =
rij

∑n
k=1 rkj

(17)

Ej = −
1

ln n

n

∑
i=1

r′ ij ln r′ ij (18)

wj =
1− Ej

∑m
k=1 (1− Ek)

(19)

Thirdly, the positive solution r+ and the negative solution r− can be determined based
on the normalized decision matrix R, see Equations (20) and (21), where J and J′ are the sets
of benefit criteria (the higher the criterion, the more important the node is) and cost criteria
(the higher the criterion, the less important the node is), respectively. The four criteria are
all benefit criteria.

r+j =

{
(max

i
rij|j ∈ J )or(min

i
rij
∣∣j ∈ J′ )

}
(20)

r−j =

{
(min

i
rij|j ∈ J )or(max

i
rij
∣∣j ∈ J′ )

}
(21)

Then, the utility measure Si and the regret measure Ri for all nodes are calculated by
Equations (22) and (23).

Si =
m

∑
j=1

wj(r+j − rij)/(r+j − r−j ) (22)

Ri = max
j

[
wj(r+j − rij)/(r+j − r−j )

]
(23)

Finally, according to the utility measure Si and the regret measure Ri, the VIKOR index
for nodes can be calculated as Equation (24), where v and 1 − v are the weight of maximum
group utility and the individual regret, respectively, here v = 0.5. Additionally, S* and R*
are the minimum of Si and Ri, and S−and R− are the maximum of Si and Ri. The lower
a Qi value is, the more important the ith node is. Table 3 lists the calculated Qi and the
ranking result for all nodes.

Qi = v(Si − S∗)/(S− − S∗) + (1− v)(Ri − R∗)/(R− − R∗) (24)

Table 3. The ranking result of all nodes.

Rank Node Qi Rank Node Qi Rank Node Qi

1 TC4 5.62 × 10−16 19 T7 0.757596 37 V12 0.925076
2 T5 0.11938 20 V7 0.765949 38 T11 0.929671
3 F5 0.181683 21 F11 0.768166 39 F6 0.944618
4 F8 0.242207 22 T10 0.77906 40 T8 0.951836
5 PC2 0.242213 23 T4 0.790817 41 P1 0.965024
6 LC3 0.405469 24 LC2 0.803766 42 T3 0.965285
7 LC4 0.415517 25 LC1 0.804402 43 V6 0.968172
8 TC2 0.437325 26 PC1 0.813759 44 F13 0.980322
9 TC3 0.503178 27 PC4 0.821318 45 V1 0.981665
10 F7 0.514134 28 F10 0.822773 46 F9 0.989015
11 T9 0.579063 29 V10 0.851761 47 F4 0.993863
12 T6 0.609504 30 P2 0.872967 48 V5 0.993863
13 V11 0.624336 31 V8 0.878502 49 V3 0.994151
14 F12 0.633763 32 T12 0.881528 50 V4 0.994151
15 F2 0.639496 33 V9 0.884014 51 F1 0.999061
16 TC1 0.678051 34 LC5 0.894367 52 T1 0.999061
17 PC3 0.681567 35 L1 0.904892 53 V13 1
18 T2 0.686053 36 V2 0.907141 54 F3 1.003796
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As can be seen in Table 3, among the 54 variables, the first eight most important nodes
with low Qi values for the network are TC4, T5, F5, F8, PC2, LC3, LC4 and TC2. This
ranking result is consistent with the results of the mechanism and process data analysis.
For example, TC2 and TC4 can represent the key points on the temperature profile in
T-100 and T-101, which are the temperature of sensitive stages (31th tray in T-100 and 34th
tray in T-101). In actual production, the temperature of the sensitive plate TC2 and TC4
should be firmly controlled to correct the deviation of the temperature profile on the whole
column in time. As the backbone of the entire relationship network, they also have a great
impact on the smooth and efficient operation of the whole system, so they both have a high
importance ranking. Therefore, the importance ranking in Table 3 provides a strong basis
for the next selection of the fault types.

3.3.2. Application to Hydrogenation Prefractionation System

By reference to the relevant parts of the employee operation manual, a typical fault
case related to key nodes are set up in the dynamic simulation, that is, loss of steam feed in
reboiler E-100 which causes an alarm of node P1. In dynamic simulation, a flow controller
is installed in the steam stream to execute this operation. In this work, the steam flow rate
is reduced by 10% to simulate the fault scenario.

In the SDG model, bidirectional inference is applied to find the consistent paths and
all possible causes nodes. Firstly, the states of all nodes are detected and the existence
of abnormal nodes that exceed the threshold value is found. The transient states of the
abnormal nodes are shown in Table 4. Then a reverse search is performed from alarm node
P1. Three compatible paths with different cause nodes conforming to Equation (10) are
found. Three consistent paths are listed as follows:

• P1(−)←LC2(+)←R
• P1(−)←T4(−)←F6(−)←R
• P1(−)←T4(−)←TC2(−)←V6(+)←R

Table 4. States of abnormal nodes.

T4 TC2 F6 P1 LC2 V6

− − − − + +

The first path shows that the fault of LC2 directly causes the alarm of P1. However,
the fault of LC2 cannot cause abnormal state in nodes other than P1, which makes the
alarm situation leading to this path much less plausible. The third path goes from TC2
to P1, indicating the effect of a damaged temperature controller TC2 on P1. However,
the mechanism analysis of the control structure composed of TC2, V6 and F6 shows that
TC2 (−) fails to transform F6 into (+) by controlling the opening of V6 (+), which is not
consistent with the expression of Equation (10). The control of V6 by TC2 does not break
down, but the increase in the opening of V6 fails to change the state of F6. In a consequence,
the credibility of the third path is reduced by dynamic mechanistic analysis. In the second
path, the alarm of P1 is caused by the offset of F6, which is in accordance with the inference
principle and mechanism analysis. The offset of F6 can also affect the nodes involved in
the first path and third path. For example, the reduction of F6 causes the state of TC2 to
change to (−), and the TC2 performed to change V6 does not affect well the F6 as the root
cause. The SDG model in the fault situation is shown in Figure 13.

In Figure 13, the key nodes selected by the EW-VIKOR method are marked, which
is filled with orange. In the SDG model, it can be seen that the key nodes T5 and F5 are
downstream of the abnormal nodes and immediately adjacent to them. Once they are
affected by the deviation and transformed into abnormal states, the damage to the whole
system is more serious. Therefore the filtered critical nodes are highlighted in identification
results. The severity of different faults on the system is distinguished by whether they can
affect the critical nodes.
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4. Conclusions

A novel DMA-SDG method is put forward to detect and identify the faults of a
hydrogenation prefractionation system. The steady-state simulation of hydrogenation
pre-fractionation is established based on the data parameters provided by petrochemical
enterprise. The relative errors of pressure, temperature, and flow rate between simulated
values and actual values are less than 2%. Fifty-four variables in this system including flow
rate, temperature, pressure, liquid level and valve opening are controlled through adding
eight controllers and setting accurate operating parameters in dynamic simulation. The
SDG model accurately describes the characteristics of the fault through the information
propagation path between nodes with alarm thresholds. The theory of complex networks
is introduced into SDG and 54 variables are ranked by the EW-VIKOR method. Eight key
variables are finally selected and their importance is elaborated from a practical engineering
perspective. Comparison of the severity of different alarms is performed by key variables.
This method can combine the dynamic simulation results with the SDG model to give a
reasonable explanation for the fault. The conclusion observed in this research suggests
the potential application of DMA-SDG method to more real production systems, such as
catalytic cracking systems and crude oil systems. In the future work, the combination of
SDG and complex network can also be applied to fault classification alarm and evaluation.
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