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Abstract: Friction occurs in the processes of transport and storage of granular plant materials used in
the energy (RES—Renewable Energy Sources) and food sectors. This paper presents the results of
a study on the impact of the moisture content of the material and the number of its contact points
with a smooth surface (a steel sheet) on the process of friction in grains of wheat and buckwheat.
The friction process was studied for four different levels of moisture (9.5%, 13.5%, 17.5% and 21.5%)
and three different average numbers of contact points. To measure the force of friction, an universal
testing machine with appropriate instrumentation was used. To determine the number of contact
points, computer imaging analysis was conducted. An increase in static and kinetic friction was
observed along with the increase in moisture level and the increase in the number of contact points.
Correlation and regression analysis was performed for the data obtained.
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1. Introduction

Friction is a complex of physical phenomena which occurs in cases of contact between
two bodies. It causes grinding of surface asperities, and in order to overcome it, energy
must be exerted [1]. Friction is a complicated process, and its exact course is still being
studied by many researchers.

The most well-known relationship in friction is the one developed by Guillaume
Amontons

T = µ·P (1)

where: T—force of friction, µ—coefficient of proportionality, later renamed as the coefficient
of friction, and P—normal force.

However, for a more precise understanding of this process it is necessary to analyze
additional factors. For this reason, over the years there have been numerous theories of
friction, which can be in the most general terms divided into three groups: mechanical
theories, molecular theories, and mechanical-molecular theories. The mechanical theories
assume that friction results from the mechanical action of surfaces rubbing against one
another. This group of theories includes the Amonton-Coulomb theory and Euler’s theory.
The second group of theories, molecular theories, assumes that the phenomenon of friction
is caused by the molecular action of surfaces rubbing against one another. This group
includes such theories as Tomlinson’s model and Derjaguin’s theory. The Kragielski model
attempts to combine the groups of mechanical and molecular theories [2–4].

Materials and objects with a granular form are a particular type of material. Granular
materials are defined as a system of macroscopic particles in which the space between
particles is filled with a liquid or a gas [5]. They are characterized by the ability to flow and
to take on the shape of the container in which they reside. Some researchers believe that
they represent a separate state of matter [6]. These materials occur in many branches of
industry, mainly in the food industry, but also in construction, ceramics, pharmaceuticals,
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gardening, and the chemical and energy sectors. Plant granular materials are additionally
characterized by the low repeatability of the particles and relatively high susceptibility to
the action of environmental factors, mainly atmospheric moisture, as in the case of plant
fuel materials such as wood pellets, sawdust, or woodchips. Both granular products and
plant fuel products are subjected to numerous technological processes such as transport,
storage, and warehousing, as well as collection, cleaning, and sorting.

In order to correctly design technical means to process, transport, and store these
materials, it is necessary to understand their physical properties [7–9]. One of the most
relevant physical properties of these materials which impacts the course of these technical
processes is the external friction of the materials [10–14]. External friction in these types
of materials means the friction which occurs between the construction material and the
granular material [4]. In this case, the construction material is understood to be the
material of the machine components that are in contact with the granular material. This
phenomenon continues to hold the interest of contemporary researchers, as it is determined
by many mutually related factors [15]. Many researchers have attempted to describe the
phenomenon of friction of granular materials but have only taken into account individual
factors from among the entire set of factors which influence this phenomenon. The main
factor which has been studied up to this point has been the water content of the materials.
The impact of moisture on the value of the force of friction in plant granular materials has
been studied by numerous researchers [10–13,16–20]. All of these studies have indicated an
increase in static and kinetic friction along with an increase in moisture for plant granular
materials. Many authors have taken into account the type of construction material as a
factor influencing the value of the force of friction in their works [10,12,16,17,19,21–24]. A
further factor whose influence on force of friction has been studied is the speed of motion
across a surface. Researchers have observed an increase in the force of static and kinetic
friction along with an increase in speed [25,26]. An analysis of the literature conducted by
the authors of this paper did not reveal information on studies which take into account the
number of contact points of the granular material with the construction surface as a factor
influencing the value of the force of friction. Thus, this study was intended to research the
impact of this factor in relation to the moisture of the material.

2. Materials and Methods

The study material comprised grains of two plants, wheat and buckwheat. Both are
highly popular and commonly encountered in the food industry. The grains of wheat have
a roughly ellipsoid shape while the grains of buckwheat are roughly triangular in shape.
Figure 1 presents individual particles (grains) of each of the studied materials.
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Figure 1. Individual particles of material: (a) wheat, (b) buckwheat.

The force of static (Fsta) and kinetic (Fkin) friction was studied for four levels of moisture
(Mc 9.5%, 13.5%, 17.5% and 21.5%). Obtaining the specified (assumed) moisture content
was based on three steps: 1—determining the initial moisture content, using a laboratory
dryer and a balance; 2—progressive wetting of the material with a specified (calculated)
amount of water. The material in a hermetic container was constantly mixed and left to
stabilize; 3—after this time (min 24 h) the sample of moistened material was weighed, then
dried and weighed again. In this way, the actual moisture content of the material used in
the tests was determined. To measure the force of friction, an universal testing machine was
used (Figure 2). This machine was equipped with an attachment for measuring the friction
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of granular materials consisting of a table on which construction material (steel sheet)
and a bottomless box with dimensions of 150 × 200 mm were placed. Additionally, the
bottomless box was outfitted with two testing enclosures allowing for the measurement of
force of friction on different surfaces with the dimensions of 105 × 105 mm and 65 × 65 mm
(Figure 3). The bottomless box was attached to the head with a non-elastic cable.
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Figure 3. Instrumentation for measurement of force of friction on various surfaces: (a) bottomless
box, (b) enclosure with dimensions of 105 × 105 mm, (c) enclosure with dimensions of 65 × 65 mm.

The universal testing machine used provides stable measuring conditions. The sliding
velocity of the sample for all tests was 60 [mm/min]. The accuracy of the sample movement
velocity was ±0.03 mm/min. The measuring distance was 23 mm and the position accuracy
was 0.01 mm. In measurements of friction force, a load cell was used with a measurement
range up to 25 N. The friction force was recorded at a frequency of 500 Hz, in continuous
mode for motion of the sample. For all surfaces the load was 36.6 N.

In all studied cases, the curve showing the force of friction was as in Figure 4, with
a clearly visible maximum force (start of sample—force of static friction, Fsta) and a sec-
ond phase in which the force of friction had a lower value (stabilizing—force of kinetic
friction, Fkin).
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In order to determine of the number of contact points (Ncp) of the material with the
smooth surface, a contact image of the material was made for each of the surfaces. After
pouring the granular material into the bottomless box and loading it, a picture was taken.
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To determine the number of contact points, digital image analysis involving was performed.
The algorithm of the performed analysis is presented in Figure 5.
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Figure 5. Algorithm of used digital image analysis for a sample image.

In the first step of the analysis, edge sharpening and background blurring were
performed. This allowed individual grains to be more visible against the black background.
Because the grains are lighter than the background, the operation of multiplying the pixels
by a certain constant value caused the grains to take on a white color. After smoothing
the image (replacing each pixel by the mean value from neighboring pixels), thresholding,
separating objects from the background, was performed. The black pixels of the objects
(grains) were then converted to grayscale, such that its intensity depended on its distance
to the nearest background pixel. This operation made it easy to find local maxima and
contact points.

3. Results and Analysis

The following results were obtained in the studies conducted. Table 1 presents the
number of contact points for wheat and buckwheat along with standard deviations for
particular surfaces.
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Table 1. Number of contact points (Ncp) for wheat and buckwheat on three surfaces.

Surfaces [mm]
Wheat Buckwheat

Mean Ncp Standard Deviation Mean Ncp Standard Deviation

150 × 200 2194 184.203 1624 46.476
105 × 105 757 53.035 777 58.731
65 × 65 253 22.298 276 23.373

The results obtained, both for wheat and for buckwheat, demonstrate the impact of
moisture level on the value of force of friction for all numbers of contact points studied.

Figure 6 presents charts showing the relationship of force of static and kinetic friction
to the moisture level of the material for wheat for particular surfaces.
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Figure 6. A chart showing the relationship of force of friction to the moisture level of wheat: (a) static
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Figure 7 presents charts showing the relationship of force of static and kinetic friction
to the moisture level of the material for buckwheat for particular surfaces.

Figures 8 and 9 present charts showing the relationship of force of static and kinetic
friction for wheat and buckwheat respectively.
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Figure 9. A chart showing the relationship of force of friction to the number of contact points for
buckwheat, (a) static friction, (b) kinetic friction.

The first stage of analysis comprised an examination of the correlation between de-
pendent variables (force of static and kinetic friction) and independent variables (moisture
level and number of contact points). For determination of the correlation between data, the
r-Pearson coefficient was applied. A matrix of correlation for the results obtained can be
seen in Table 2.

Table 2. Correlation matrixes for both materials (R2).

Wheat Buckwheat

Mc Ncp Fsta Fkin Mc Ncp Fsta Fkin

Mc 1 0.000 0.958 0.915 1 0.000 0.854 0.768
Ncp 0.000 1 0.163 0.136 0.000 1 0.254 0.344
Fsta 0.958 0.163 1 0.946 0.854 0.254 1 0.924
Fkin 0.915 0.136 0.946 1 0.768 0.344 0.924 1

In Table 2, a strong correlation can be seen between the forces of static and kinetic
fiction and level of moisture, while the correlation between force of friction and the number
of contact points is slight, which may lead to the conclusion that no such relationship
exists. For this reason, a next step in analysis was undertaken, namely an analysis of the
correlation between force of static and kinetic friction and the number of contact points
for particular levels of moisture. The coefficients of correlation between static and kinetic
friction and the number of contact points are presented in Table 3.
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Table 3. Correlation factors (R2) of the force of static and kinetic friction with the number of contact
points for particular levels of moisture.

Mc
Wheat Buckwheat

Fsta Fkin Fsta Fkin

9.5% −0.289 0.096 −0.245 −0.377
13.5% 0.293 0.379 0.927 0.325
17.5% 0.970 0.991 0.779 0.972
21.5% 0.980 0.898 0.822 0.991

Based on Table 3, it can be seen that the correlation between the number of contact
points and static and dynamic forces of friction rises along with an increase in moisture
level. This is related to the increase in contact of the grains with the smooth surface [27]
which occurs along with the increase in moisture level. It is probable that the role of
adhesion phenomenon increases. The authors have not performed additional research
on this phenomenon. However, this thesis, in regard to other authors’ studies on plant
materials, seems very probable [18,28–30].

For this reason, an attempt was made to construct a model of multiple regression
for force of static friction and for force of kinetic friction which would take into account
the moisture level of the material and the number of contact points of the contact surface
with each of the materials. For the analysis, Statistica (data analysis software system),
version 12 was used. For both materials, the best fit was obtained for the model in the
form of Equation (2). Table 4 presents the constant values of the model and an analysis of
significance. In one case only was the constant c determined to be not significant.

F(sta/kin) = a·Mc + b·Ncp + c (2)

Table 4. Values of regression parameters for particular model (2).

Parameters of the
Model

Value of the
Parameter p-Value R2

Wheat

Fsta

a 48.7366 0.000000
0.9723b 0.0004 0.000311

c 2.3891 0.000000

Fkin

a 51.7934 0.000000
0.9255b 0.0004 0.045965

c 0.0655 0.918859

Buckwheat

Fsta

a 21.1180 0.000000
0.8915b 0.0005 0.002853

c 4.5606 0.000000

Fkin

a 9.4619 0.000000
0.8420b 0.0003 0.000857

c 4.8367 0.000000
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A geometric interpretation of the obtained models (surfaces) is presented in Figure 10.
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Figure 10. Graphic interpretation of the obtained models (a) force of static friction for wheat (b) force
of kinetic friction for wheat (c) force of static friction for buckwheat (d) force of kinetic friction
for buckwheat.

4. Summary and Conclusions

Two plant granular materials were studied (wheat, buckwheat) while in friction
contact with a steel plate. Based on both statistical analysis and the surface analysis
presented in Figure 10, it can be stated that the number of contact points has an impact
on the observed force of friction. This is considerably more noticeable at higher levels
of moisture (17.5, 21.5%) for the materials studied. The cause of this phenomenon may
be related to the tendency towards greater adhesion of plant materials at higher levels
of moisture.

The impact of the level of moisture on force of friction was also observed. This,
however, is merely a confirmation of a fact which has been observed by many other
researchers. The situation is similar with the high correlation between the forces of static
and kinetic friction (Table 2). This issue is discussed in great depth in another article [7].

For both of the studied materials, the model which describes the relationship of the
level of moisture of the number of contact points to the force of friction is the function
F(sta/kin) = a·Mc + b·Ncp + c. It should also be mentioned that the R2 coefficients of determi-
nation are very high for a plant material, for which generally it is very difficult to achieve
high repeatability of measurement results.
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10. Işik, E. Moisture dependent physical and mechanical properties of organic beans (Phaseolus vulgaris L.). J. Food Agric. Environ.

2015, 11, 215–220.
11. Izli, N. Effect of moisture on the physical properties of three varieties of kenaf seeds. J. Food Sci. Technol. 2015, 52, 3254–3263.

[CrossRef]
12. Markowska, A.; Warechowska, M.; Warechowski, J. Influence of moisture on external friction coefficient and basic physical

properties of Astoria variety wheat grain. Tech. Sci. 2016, 19, 17–26.
13. Mudryk, K.; Hutsol, T.; Wrobel, M.; Jewiarz, M.; Dziedzic, B. Determination of Friction Coefficients of Fast-Growing Tree Biomass.

In Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May
2019; pp. 1568–1573.
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29. Eissa, A.A. Physical and aerodynamic properties of flaxseeds for proper separation by using airstream. J. Food Process Eng. 2011,
34, 983–1012. [CrossRef]

30. Cetin, M. Physical properties of barbunia bean (Phaseolus vulgaris L. cv. ‘Barbunia’) seed. J. Food Eng. 2007, 80, 353–358. [CrossRef]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

