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Abstract

Market uncertainties motivate the development of flexible polygeneration
systems that are able to adjust operating conditions to favor production of
the most profitable product portfolio. However, this operational flexibility
comes at the cost of higher capital expenditure. A scenario-based two-stage
stochastic nonconvex Mixed-Integer Nonlinear Programming (MINLP) ap-
proach lends itself naturally to optimizing these trade-offs. This work studies
the optimal design and operation under uncertainty of a hybrid feedstock flex-
ible polygeneration system producing electricity, methanol, dimethyl ether,
olefins or liquefied (synthetic) natural gas. The recently developed GOSSIP
software framework is used for modeling the optimization problem as well
as its efficient solution using the Nonconvex Generalized Benders Decompo-
sition (NGBD) algorithm. Two different cases are studied: The first uses
estimates of the means and variances of the uncertain parameters from his-
torical data, whereas the second assesses the impact of increased uncertain
parameter volatility. The value of implementing flexible designs character-
ized by the value of the stochastic solution (VSS) is in the range of 260 - 405
M$ for a scale of approximately 893 MW of thermal input. Increased price
volatility around the same mean results in higher expected net present value



and VSS as operational flexibility allows for asymmetric exploitation of price
peaks.

Keywords: Polygeneration system, Waste-to-Energy, Stochastic
Programming, Decomposition Algorithm, Waste Tire, Optimization under
uncertainty

1. Introduction

Polygeneration involves the production of multiple products such as a
mix of electricity, fuels (gasoline, diesel, synthetic natural gas, hydrogen)
and chemicals (methanol, dimethyl ether, olefins, acetic acid) in the same
location. One pertinent strategy is to also use multiple complementary feed-
stocks in order to exploit certain synergies, for instance, by generating syngas
of different qualities that can be blended to provide the correct H2/CO ratio
for downstream synthesis, sharing of upstream equipment or heat integration
of exothermic and endothermic processing units [1, 2]. In addition, including
an alternative feedstock such as waste tire [3, 4], plastics, municipal solid
waste [5] or petcoke [6, 7] may allow energy companies to lower their overall
environmental impact while also mitigating energy security concerns. The
use of wastes is particularly important because increased population growth
is expected to create larger waste quantities that require appropriate man-
agement. For instance, in the developed world, approximately 1 waste tire
per person per year is produced resulting in approximately 1 billion discarded
tires annually [8]. In addition, there are currently an estimated 4 billion waste
tires in landfills and stockpiles worldwide. In this paper, we study the use of
waste tires because they are a particularly suitable feedstock for conversion
to high-value products through gasification as a result of their homogeneous
nature, high energy density (Lower Heating Value of ∼ 33.96 MJ/kg, higher
than coal), high volatile matter content (∼ 67%) and low ash content (∼ 7%)
[9].

A further development to the polygeneration concept is to implement a
flexible design which involves oversizing process equipment so as to allow
adjustment of the production rates (and thus the product portfolio) in order
to exploit market volatility. Thus, the flexible design problem involves opti-
mizing the trade-offs between the increased capital costs associated with the
larger equipment capacities and the expected increase in profit due to opera-
tional flexibility. This optimization problem can be formulated as a scenario-
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based two-stage stochastic Mixed-Integer Nonlinear Program (MINLP) as
explained in Section 2.1. The choice of equipment sizes is modeled using
discrete first-stage variables (fixed before the realization of uncertainty) and
the operating conditions are modeled using continuous second-stage variables
(adjusted in response to realization of uncertainty). This optimization prob-
lem is typically nonconvex as a result of the nonlinear equations necessary
to describe mixing, splitting and chemical reaction processes.

Such two-stage stochastic programs with recourse exhibit a special struc-
ture that makes them amenable to solution using duality-based decompo-
sition approaches. For instance, the Benders decomposition (or L-shaped
method) provides an efficient approach for solution of two-stage stochastic
Mixed-Integer Linear Programs (MILPs) [10]. This strategy was extended
to give the Generalized Benders Decomposition (GBD) algorithm that can
solve two-stage stochastic Mixed-Integer Convex Programs (MICPs) [11].
However, nonconvex optimization problems generally do not satisfy strong
duality, thus convergence cannot be guaranteed with GBD. This motivated Li
et al. [12, 13] to develop the Nonconvex Generalized Benders Decomposition
(NGBD) algorithm used in this paper which is summarized in Section 2.2.
The NGBD algorithm is guaranteed to solve two-stage stochastic nonconvex
MINLPs with discrete first-stage variables to global optimality. Furthermore,
we use the GOSSIP software (recently developed by Kannan and Barton) that
provides a versatile framework for modeling two-stage stochastic nonconvex
MINLPs as well as their efficient solution using the NGBD algorithm [14].

Previous work on flexible polygeneration was done by Meerman et al.
who studied the conversion of coal, biomass and oil residues to hydrogen,
Fischer-Tropsch liquids, methanol, urea and electricity [15, 16]. The eco-
nomic value of implementing various levels of flexibility was determined and
an analysis on the favored feedstocks and products for each price scenario
was presented. However, an optimization of the system design and operating
conditions was not carried out. Farhat and Reichelstein presented a first-
principles analysis on the economic performance of flexible polygeneration
using a simplified case study of a coal to electricity and fertilizers process
[17]. They derived a series of propositions to quantify the “value of flexible
polygeneration” which could be subdivided into the “value of diversification”
and “value of flexibility”. While these propositions provide useful intuition,
they only hold for flow sheets without interconnections (where the flow sheet
could be represented as a tree) and no detailed process design or optimization
was done. Chen et al. studied the optimal design and operation of a pro-
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cess in which coal and biomass are co-gasified to produce a mix of naphtha,
diesel, methanol or electricity [18]. The optimization problem was formulated
first as a two-stage stochastic nonconvex Nonlinear Program (NLP) with a
concave objective function and solved with BARON. In order to satisfy the
requirement of having only discrete first-stage variables, the optimization
problem was reformulated as an MINLP and solved using the NGBD algo-
rithm enhanced with additional dual information [19]. Both feedstocks were
converted in a single gasification unit, thus the option of generating multiple
syngas streams followed by subsequent blending was not studied.

While the studies presented above highlight the value of implementing
a flexible design for polygeneration processes, further research is necessary
on the co-utilization of waste tires and natural gas. These feedstocks are
converted into separate syngas streams of different qualities that can then be
blended in appropriate ratios so as to exploit available synergies. Further-
more, this work studies the influence of the degree of market volatility on
the expected profitability of the flexible polygeneration process. Thus, the
objective of this paper is to study the optimal design and operation under
uncertainty of such a hybrid feedstock flexible polygeneration system with a
product portfolio consisting of electricity, methanol, dimethyl ether, olefins
or liquefied (synthetic) natural gas.

This paper is organized as follows: Section 2 provides a brief overview of
the two-stage stochastic programming approach for optimization under un-
certainty, the GOSSIP software framework and the NGBD algorithm; Section
3 details the approach for process modeling and formulation of the optimiza-
tion under uncertainty problem; Section 4 presents the results and a discus-
sion of the computational performance of the NGBD algorithm versus the
state-of-the-art ANTIGONE solver. We present our conclusions in Section
5.

2. Optimization under uncertainty

2.1. General structure of two-stage stochastic nonconvex MINLPs

Designing a flexible polygeneration process involves determining the op-
timal trade-offs between the increased capital costs as a result of over-sizing
the process equipment and the increased net profit as a result of operational
flexibility to exploit price peaks. In this work, we use the two-stage stochas-
tic programming approach [20] to place these two trade-offs on a level basis.
Two-stage stochastic programming divides the decision variables into two
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categories: First-stage or design decision variables that are made before the
realization of uncertainty and cannot be altered after plant construction and
second-stage or operational variables that can be adjusted after the realiza-
tion of uncertainty during the plant life time. Thus, first-stage variables
correspond to the choice of equipment sizes while second-stage variables cor-
respond to operating conditions (such as flow rates, split fractions etc.) for
each scenario of uncertain parameters. A recent review of stochastic pro-
gramming approaches for optimization of process systems under uncertainty
is presented by Li and Grossmann [21].

In particular, the flexible design problem is formulated as a two-stage
stochastic MINLP with a structure presented in Problem (SP), where y de-
notes the first-stage design decision variables; xh, ph, ωh denote the second-
stage operational decision variables, probability of occurrence and realization
of the uncertain parameter vector in scenario h respectively; c denotes a vec-
tor corresponding to capital cost data and fh is the objective function of
the second-stage (recourse) problem indexed by scenario h (corresponding
to the operating profit in that scenario); data matrix A and vector b define
constraints on the first-stage variables; data matrix B and the functions gh
are used to represent scenario-dependent constraints; Y and Xh correspond
to the bounds on y and xh respectively. We note that the uncertain param-
eters are modeled using a random vector with finite support i.e., the vector
of uncertainty parameters can take on one of a finite number of scenarios s,
where h ∈ {1,...,s} indexes the scenario set. Thus Problem (SP) corresponds
to the deterministic equivalent problem.

max
y,x1,...,xs

cTy +
s∑

h=1

phfh(xh,ωh)

s.t. Ay ≤ b,

By + gh(xh,ωh) ≤ 0, ∀h ∈ {1, ..., s},
y ∈ Y ,
xh ∈Xh, ∀h ∈ {1, ..., s}

(SP)

We note that the flexible design problem (SP) satisfies the following as-
sumptions (although the NGBD algorithm is more generally applicable [13]):

1. All first-stage variables are bounded and discrete and thus can be re-
formulated using binary variables and additional linear constraints i.e.,
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y ∈ {0, 1}ny , where ny denotes the number of first-stage variables.
This requirement needs to be satisfied for guaranteed convergence of
the NGBD algorithm.

2. All second-stage variables xh are continuous.

3. All participating functions are assumed to be factorable (i.e., they can
be expressed as a finite recursive composition of certain univariate and
bivariate functions as detailed in [22])

4. All participating functions are assumed to be separable in the (first-
stage) binary and (second-stage) continuous variables. In addition, the
capital cost data are not subject to uncertainty and all participating
functions are assumed to be affine in y.

The objectives, process model and constraints of the flexible design problem
are translated into the form of Problem (SP) as described in Section 3.

2.2. Overview of the NGBD algorithm and the GOSSIP software framework

Two-stage stochastic programs exhibit a special structure: The first-stage
variables of Problem (SP) are complicating variables in the sense that fixing
them allows the original optimization problem to be separated into a number
of smaller independent subproblems. This suggests a solution approach that
involves iterating between searching the space of first-stage variables followed
by the space of second-stage variables. Geoffrion outlines a two-step con-
ceptual framework for the synthesis of efficient mathematical programming
algorithms based on this intuition: First, the original problem is manipu-
lated (using techniques such as projection, dualization, inner linearization
and outer linearization) to derive an equivalent “Master Problem” that is
easier to solve, and second, solution strategies (such as piecewise, relaxation
and restriction) are employed to reduce the master problem to a sequence of
subproblems that ideally can be solved using efficient specialized solvers [23].
Duality-based decomposition approaches are an illustration of this strategy:
For instance, the GBD algorithm can be viewed as a procedure of applying
projection and dualization followed by relaxation and restriction [11, 24].

The NGBD algorithm is a generalization of the GBD algorithm to the
class of problems containing participating functions that are nonconvex in
the second-stage variables. The general principle is to iteratively solve a se-
ries of lower bounding and upper bounding problems until convergence to a
globally optimal solution (within a specified tolerance). The lower bound-
ing problem is formulated by convexifying the original problem (SP). The
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current implementation employs the Auxiliary Variable Method detailed in
[25] although alternative approaches based on McCormick relaxations [22]
(or the differentiable variant [26]) could also be implemented. The GBD al-
gorithm is used to solve the lower bounding problem. Once GBD converges
with a solution to the lower bounding problem, an upper bounding problem
is constructed by fixing the y variables to this lower bounding solution. This
yields a nonconvex NLP that is also fully decomposable by scenario. Affine
inequalities are added to the lower bounding problem to exclude previously
visited solutions y and the procedure is iterated until convergence [27].

In order to provide a versatile framework for the formulation of two-stage
stochastic nonconvex MINLPs and their efficient solution using the NGBD
algorithm, the GOSSIP software was recently developed as detailed in [14].
A native C++-based modeling language is provided for the user to formu-
late an optimization problem which can be of the form of Problem (SP).
Subroutines for parsing the user-defined model as well as pre-processing are
implemented. In addition, subroutines for automatic construction of all the
necessary subproblems for the NGBD algorithm as well as links to state-of-
the-art optimization solvers for their solution are implemented. A link to
ANTIGONE is also implemented to solve the deterministic equivalent prob-
lem without using a decomposition strategy [28].
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variables are indicated in red and presented in Table 2
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Unit Parameters Reference
Tire Feedstock Ultimate (wt%): C: 77.3, H: 6.2, N: 0.6, S: 1.8, O: 7.3, Ash: 6.8 [3]

Proximate (wt%): VM: 67.7, FC: 25.5, Ash: 6.8
Natural Gas (NG) Feedstock T = 30 °C, P = 30 bar [29]

Composition (mol%): CH4: 93.9, N2: 0.008, CO2: 0.01, C2H6: 0.032, C3H8: 0.007, C4
+: 0.004

Waste Tire Converter
Waste tire preparation Crumb size = 0.18 mm [30]
Gasification Entrained Flow gasification. 29.11 wt% water/70.88 wt% waste tire, P = 56 bar [31]

Oxygen to Tire ratio: 0.91, Ash melting energy: (1.0 kJ/kgash) [32]
COS hydrolysis T = 200 °C, P = 54 bar
H2S removal Solvent composition: 62.3 mol% DEPG: 37.7 mol% H2O [33]

T = 40 °C, 53.5 bar, Removal: 92.7 % of H2S
Claus process Two-stage sulfur conversion, Furnace: T = 950 °C [34]

Natural Gas Converter
NG pre-heater & pre-reformer Pre-heater outlet T = 550 °C, Pre-reformer: T = 550 °C, P = 29.8 bar, Steam to NG ratio: 0.2 [1]
NG reformer Autothermal reformer, Steam to NG ratio: 0.75, Oxygen to NG ratio: 0.95, Raw syngas cooled, dried & compressed to 55 bar [1]

Air Separation Unit (ASU) Oxygen purity: 99.5 mol%, Recovery pressure P = 10 bar [6, 35]
Water Gas Shift (WGS) High temperature WGS: T = 420 °C, P = 54 bar [1, 6]
CO2 removal Solvent composition: 63.9 mol% DEPG: 36.1 mol% H2O [33]

T = 20 °C, P = 53.5 bar, Removal: 96.9 % of CO2

Methanation Four-stage conversion, Inlet T = 300 °C, Inlet P = 53.6 bar. [36]
Adiabatic reactors. Total ∆P = 3 bar (across 4 stages), Recycle ratio = 75 %

SNG compression & purification Outlet pressure = 55 bar [34, 3]
SNG liquefaction SNG flow rate = 9.7 kg/s, P = 55 bar, Inlet T = 22 °C, Outlet T = -157 °C [29]

MSHE UAmax = 25.0 MW/K, Pressure ratio = 6.5
Refrigerant mole composition: N2: 8.3, CH4: 24.0, C2H6: 36.9, n-C4H10: 30.8
Low P = 2.8 bar, high P = 18.0 bar, ∆Tmin = 0.95 K, Flow rate = 58.5 kg/s

Methanol synthesis & purification T = 240 °C, P = 51 bar, Recycle ratio = 85 %, Off-gases to GT, Purity: 99.5 mol% [37, 38]
DME synthesis & purification T = 280 °C, P = 50 bar, Off-gases to GT [38, 39]

DME Purification column, Purity: 99.5 mol%
MTO & purification T = 400 °C, P = 40 bar, Off-gases to GT [40]

CO2 absorption unit. Absorbent: 70.0 wt% DGA: 30.0 wt% H2O, Absorber: 2 bar, Regenerator: 1.5 bar, Purity 99.9 mol%
De-ethanizer, 35 bar Ethane recovery: 99.80 %, Power consumption: 0.35 MWe/MWLHV,Ethane

De-methanizer, 34 bar Methane removal: 99.99 % Power consumption: 1.21 MWe/MWLHV,Methane

C2-splitter, 10 bar, Ethylene recovery: 95.00 %, purity: 99.9 mol%, Power consumption: 0.64 MWe/MWLHV,Ethylene

De-propanizer, 25 bar, Propylene recovery: 98.00 %, purity: 99.2 mol%
Gas Turbine Thermal Efficiency: 46.8 % (Ratio of Net Power out [MW] to Total LHV of input fuel) Simulation
Steam Turbine Thermal Efficiency (High Quality heat): 44.1 %, Thermal Efficiency (Low Quality heat): 15.4 % (Details in Supp. Mat.) [41, 42]
Postcombustion CO2 capture Solvent composition: 72.3 wt% DGA: 27.3 wt% H2O [33, 3]

T = 70 °C, P = 1.0 bar, CO2 Removal = 95.0 %
CO2 compression Multistage compressors, CO2 purity = 99.1 mol%, Outlet T = 25 °C, P = 153 bar [35]
CO2 transportation and sequestration Operating cost: 12.5 $/tonne [1]
Compressors Isentropic efficiency = 80 %, maximum pressure ratio = 5 [1]
Pumps Efficiency = 80 % [1]

Table 1: Operating parameters and specifications used for the rigorous process simulation
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3. Optimization Problem Formulation

3.1. Process Simulation and Surrogate Model

3.1.1. General description

Figure 1 presents a superstructure of the hybrid natural gas and solid
waste tire feedstock polygeneration process that produces the following prod-
uct portfolio: Electricity, liquefied (synthetic or well) natural gas, methanol,
dimethyl ether, ethylene and propylene. Rigorous mass and energy balance
models for the various sections of the superstructure are developed using ei-
ther Aspen HYSYS v10 (for Selexol units) or Aspen Plus v10 (for all other
units); an overview of the operating conditions used is presented in Table 1.
A detailed presentation of the process modeling and simulation strategy is
available in our previous work ([4] and [43]) where global optimization was
performed without consideration of uncertainty. However, certain simplifica-
tions are made in the current work in order to keep the optimization problem
computationally tractable when uncertainty is considered. An overview of
the process model and changes made is presented next.

Operational decision variables for each scenario (xh) are presented in red
in Figure 1 and described in Table 2. The total thermal input of the entire
plant in each scenario h is determined by two (extensive) decision variables:
The mass flow rates of waste tire (mtire,h) and natural gas (mNG,h). This
plantwide thermal input is constrained to be less than 893 MW so as to
provide a fair comparison with both our previous work ([3, 4, 43]) as well
as a benchmark paper by Larson et al. [44]. All other operational decision
variables are intensive.

3.1.2. Waste Tire train

In Figure 1, we define a nonstandard block termed “Aggregate Waste Tire
Converter” that encompasses four sub-blocks. The first is a tire feedstock
and slurry preparation unit in which rubber is separated out, ground into
crumbs and mixed with water. The crumb tire slurry and oxygen from an
air separation unit (ASU) are fed into the second sub-block consisting of an
entrained flow gasifier (housed together with the radiant syngas cooling and
quench system) that generates raw syngas. The third sub-block performs
syngas cleaning and consists of a scrubber (for removal of particulates, sul-
fides and chlorides), COS hydrolysis (to H2S) unit, syngas cooler and sour
water knockout drum, a Selexol-based H2S removal unit and a Claus unit
(for conversion of captured H2S to elemental sulfur). Slag flows down the
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walls of the gasifier and falls down into the quench where it solidifies. The
solids and ash are removed and treated in the fourth sub-block.

Compared to our previous work, two simplifications are made: The ra-
tio of the oxygen to tire mass flow rate is fixed and the option for sulfur
removal is implemented immediately after the gasifier. Since all other rele-
vant operating conditions are fixed, these two simplifications imply that the
surrogate mass balance model takes the form of a linear function (Equation
12) relating the clean syngas mole flow rate in scenario h (fTDsweet gas,i,h) to
mtire,h. All the constants such as the mole fraction of component i belong-
ing to the component set I (xTDsweet gas,i), molecular weight (MWTDsweet gas)
and syngas yield (RST - the ratio of the mass flow rates of clean syngas to
tire) of the clean syngas stream are determined directly from the Aspen Plus
simulation. The H2/CO mole ratio of the clean tire-derived syngas stream
is ∼ 0.7. We note that making the first simplification eliminates the need
to implement a highly nonlinear (and thus nonconvex) surrogate model to
represent the complex gasification process as was done in [43]; we found that
performing optimization under uncertainty with such a model was computa-
tionally intractable even for a small number of scenarios because convexifying
these constraints yields only weak lower bounds which in turn implies that
the set of feasible candidate solutions of the first-stage binary variables does
not shrink sufficiently quickly. An analogous argument holds for develop-
ing the surrogate energy balance model. Similarly, implementing the sulfur
removal system immediately after the gasifier eliminates the (nonconvex) bi-
linear terms associated with an additional stream splitter. In addition, for
the case of flexible polygeneration, we expect it to be cheaper to implement
a single high-throughput sulfur removal system prior to the stream splitter
that operates in a large number of scenarios than to implement multiple sul-
fur removal systems in the methanation and methanol synthesis trains (as
done in [43]) that each operate in a smaller number of scenarios even though
the latter option eliminates the need for a dedicated COS hydrolysis reactor.

fTDsweet gas,i,h =
xTDsweet gas,i ·RST ·mtire,h

MWTDsweet gas

, ∀i ∈ I,∀h ∈ {1, ..., s} (1)

The clean tire-derived syngas stream is then split into three branches heading
to the methanation, gas turbine and methanol synthesis sections with the
corresponding stream split fractions in scenario h denoted by STSNG,h, STGT,h
and STMeOH,h respectively. The mass balance constraints are presented in
Equation 14, where fTMETH feed,i,h, fTGT feed,i,h and fTMEOH feed,i,h denote
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the molar flow rates of component i in the tire-derived syngas stream heading
to the methanation, gas turbine and methanol synthesis sections in scenario
h respectively. We note that the bilinear terms in Equation 14 introduce
nonconvexities; the reformulation-linearization technique (RLT) is used to
generate a set of auxiliary mass balance constraints for the splitter that yield
tighter convex relaxations for the lower bounding problem as presented in
Section 3.1.6.

fTMETH feed,i,h = fTDsweet gas,i,h · STSNG,h, ∀i ∈ I,∀h ∈ {1, ..., s}
fTGT feed,i,h = fTDsweet gas,i,h · STGT,h, ∀i ∈ I,∀h ∈ {1, ..., s}

fTMEOH feed,i,h = fTDsweet gas,i,h · STMeOH,h, ∀i ∈ I,∀h ∈ {1, ..., s}
STSNG,h + STGT,h + STMeOH,h = 1.0,∀h ∈ {1, ..., s}

(2)

3.1.3. Natural gas train

An analogous modeling approach is followed for the natural gas train:
The natural gas feedstock is split into three streams that head to the lique-
faction, gas turbine and methanol synthesis sections with the corresponding
split fractions given by SNGLiq,h, SNGGT,h and SNGRef,h respectively. Mass
balance constraints of a similar form to Equation 14 together with auxil-
iary RLT constraints are implemented. For the natural gas stream head-
ing to the methanol synthesis section, a block termed “Aggregate Natural
Gas Converter” is defined that encompasses the natural gas pre-heater and
pre-reformer, the reformer, scrubber and compressor for natural gas-derived
syngas. Similar to the waste tire train, in this work we implement simpler
linear surrogate mass and energy balance models for the natural gas con-
version section by fixing the ratios of the converted natural gas stream and
the steam and oxygen flow rates fed to the reformer. This yields a natural
gas-derived syngas stream with a H2/CO mole ratio of ∼ 3.0.

3.1.4. Product synthesis trains

Tire-derived syngas heading to the methanation or methanol synthesis
sections can be upgraded using a water gas shift (WGS) reactor; the overall
conversion of CO in scenario h is an operational decision variable denoted
by cSNGWGS,h and cMeOHWGS,h respectively. Prior to methanation, CO2 is
removed in a Selexol-based process. The H2/CO mole ratio of the stream
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heading to the first methanation reactor is constrained to be ∼ 3.0. The
produced synthetic natural gas stream is combined with the relevant natu-
ral gas branch prior to liquefaction to produce liquified natural gas (LNG).
Conversely, in the methanol synthesis train, the natural gas-derived syngas
stream is blended with the (upgraded) tire-derived syngas stream first before
heading to the CO2 removal and methanol synthesis sections. The H2/CO
mole ratio of the stream heading to the methanol synthesis reactor is con-
strained to be ∼ 2.0. Thus this correct ratio can be attained either by using
the appropriate tire and natural gas flow rates (and thereby exploiting syner-
gies between the two feedstocks) or by employing the WGS reactor. For each
scenario h, the produced methanol stream either heads to the DME synthe-
sis section, the MTO section or is directly sold as the final product with the
corresponding split fractions denoted by SDME,h, SMTO,h and SMeOHProd,h

respectively. This methanol splitter is modeled using a mass balance model
similar to Equation 14 together with auxiliary RLT constraints. We note
that with the exception of the stream splitter model, all other mass and en-
ergy balance constraints in the methanation and methanol synthesis trains
are linear.

3.1.5. Power generation and CO2 capture trains

For the gas turbine section, energy balance constraints are implemented
by assuming a constant gas turbine efficiency such that the net work gen-
erated in each scenario is a linear function of the total thermal input (on
a LHV basis) of the relevant natural gas and tire-derived syngas streams.
A similar approach is used to determine the additional electricity generated
in the steam turbine utilizing waste heat from the flue gas. The flue gas
stream is either emitted or heads to a DGA-based postcombustion CO2 cap-
ture unit with corresponding split fractions given by SPostEm,h or SPostCCS,h
respectively. Similarly, the captured CO2 streams from the Selexol units are
either emitted or head to the CO2 compression and liquefaction system with
corresponding split fractions given by SPreEm,h and SPreCCS,h respectively.
Both these splitters result in nonconvex mass balance constraints similar to
Equation 14 in addition to RLT constraints.

3.1.6. Auxiliary Reformulation-Linearization Technique (RLT) constraints

The nonconvex bilinear terms introduced in Equation 14 potentially yield
weak convex relaxations when constructing the lower bounding problem.
This may result in slow convergence of the NGBD algorithm. Thus, it is
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essential to augment the optimization model with relevant reformulation-
linearization technique (RLT) constraints as detailed in [25] and [45]. These
are a set of constraints that are redundant for the original Problem (SP) but
are not redundant for its convex relaxation thereby yielding a tighter lower
bounding problem. For the specific case of bilinear terms, the RLT con-
straints derived by Quesada and Grossmann are implemented which take the
form of Equation 67 (corresponding to the constraints of Equation 14) [46].
Similar RLT constraints are implemented for the other equations involving
bilinear terms. We note that Equation 67 has a physical interpretation as
an alternative formulation of the splitter mass balance constraints although
this is not always the case for other kinds of nonconvexities.

fTDsweet gas,i,h = fTMETH feed,i,h + fTGT feed,i,h + fTMEOH feed,i,h,

∀i ∈ I,∀h ∈ {1, ..., s}
(3)

3.2. Economic Model

3.2.1. Uncertainty Characterization

Table 3 presents the vector of uncertain parameters considered in this
work which consists of the following components: The market prices of the
six products, the waste tire tipping fees and the prevailing CO2 tax rate. The
uncertain parameter vector is assumed to be a random vector belonging to a
normal distribution with the means and standard deviations listed in Table
3. The values for the means and standard deviations are determined from
historical data obtained from the sources listed. The uncertain parameter
vector (ωh) is assumed to take on one of a finite number of scenarios s
sampled from the normal distribution according to the approach presented
by Li et al. [12]. Two different values of s are studied: 256 (2 scenarios for
each of the 8 uncertain parameters) and 864 (3 scenarios for PElec,h, PMeOH,h,
PT ire,h and only 2 scenarios for the other uncertain parameters so as solve
the problem in reasonable computation times). Furthermore, two cases are
studied in this work. Case 1 investigates the optimization under uncertainty
problem using the historical mean and standard deviation values presented
in Table 3. However, in the interest of investigating the influence of higher
volatility in market conditions, we also study an additional case (Case 2) in
which the uncertain parameters have the same mean values as Case 1 but
have higher standard deviations by 25%.
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3.2.2. Expected Net Present Value (NPV) calculation

The objective of the optimization problem is to maximize the expected
NPV of the flexible polygeneration plant as presented in Problem (FP). NPV
is calculated using the Discounted Cash Flow Rate of Return approach with
the assumptions made in [18] where Rtax, r, tdp and tlf denote the income tax
rate, annual discount rate, depreciation time and project lifetime respectively.

Cap denotes the total capital cost. The polygeneration plant consists of
20 process sections (collected into a set U) and each section u can take on one
size out of a discrete set of section sizes as presented in Equation 57, where
Su,j is the jth choice for size of the section, SLBDu and SUBDu are the lower
and upper bounds on the section size, and d is the number of equipment sizes
available (i.e., the cardinality of the discrete set of sizes) which is fixed to be
10 to keep the problem tractable.

Su,j = SLBDu +
j − 1

d− 1
· (SUBDu − SLBDu ), ∀u ∈ U, ∀j ∈ {1, ..., d} (4)

The capital cost associated with each section size Su,j (denoted Capu,j) is
given by Equation 58, where Capu,0, Su,0 and sfu denote the base cost, base
capacity and scaling factor of section u.

Capu,j = Capu,0 ·
(Su,j
Su,0

)sfu
, ∀u ∈ U, ∀j ∈ {1, ..., d} (5)

For each section u, the binary first-stage decision variables yu,j represents
the choice of the jth size, with y denoting a vector of these variables. Thus,
the designed section size (Su) and the corresponding capital cost (Capu) are
presented in Equations 60 and 61 respectively, with Equation 59 representing
the constraint that only one size can be chosen and Equation 62 giving the
total capital costs (whereKL andKWC are factors representing the additional
costs associated with purchasing land and working capital).

Su =
d∑
j=1

Su,j · yu,j, ∀u ∈ U (6)

Capu =
d∑
j=1

Capu,j · yu,j, ∀u ∈ U (7)
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d∑
j=1

yu,j = 1, ∀u ∈ U (8)

Cap = (KL +KWC) ·
∑
u∈U

Capu (9)

The linking (complicating) constraints are presented in Equation 63,
where the throughput for each section in scenario h (Fu,h) is constrained
to be lower than the section’s capacity.

Fu,h ≤ Su, ∀u ∈ U, ∀h ∈ {1, ..., s} (10)

Pronet,h denotes the annual net profit in scenario h which is the difference
between the annual revenues (from product sales and tipping fees) and the
annual operating costs (consisting of variable operating costs such as feed-
stock costs, CO2 taxes, utility, solvent, catalyst and waste disposal costs,
and fixed operating costs including labor costs, operating overhead, property
taxes and insurance). Details on the data and sources used for the economic
model are presented in the Supplementary Material.

3.3. Summary of Optimization under Uncertainty Problem

Problem (FP) summarizes the flexible polygeneration problem which takes
the form of a two-stage stochastic nonconvex MINLP. Problem (FP) has 200
binary first-stage decision variables, 435s continuous second-stage variables,
20 first-stage equality constraints, 412s second-stage equality constraints
and 32s second-stage inequality constraints. We note that Problem (FP)
has more than 100,000 variables and constraints (for s = 256) and close to
400,000 variables and constraints (for s = 864). The complete formulation
of the optimization problem is presented in the Supplementary Material.
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Operational decision variable (xh) Description (for each scenario h ∈ {1, ..., s}) Units LBD UBD
Waste tire train
mtire,h Mass flow rate of waste tire kg/s 0.0 26.3
STSNG,h Split fraction of tire-derived syngas sent to methanation 0.0 1.0
STMeOH,h Split fraction of tire-derived syngas sent to methanol synthesis 0.0 1.0
STGT,h Split fraction of tire-derived syngas sent to the gas turbine 0.0 1.0

Natural gas train
mNG,h Mass flow rate of natural gas kg/s 0.0 18.7
SNGRef,h Split fraction of natural gas sent to reformer 0.0 1.0
SNGGT,h Split fraction of natural gas sent to gas turbine 0.0 1.0
SNGLiq,h Split fraction of natural gas sent for liquefaction 0.0 1.0

Downstream product trains
cSNGWGS,h Overall conversion of CO in the WGS reactor prior to methanation 0.0 0.8
cMeOHWGS,h Overall conversion of CO in the WGS reactor prior to methanol synthesis 0.0 0.8
SMeOHProd,h Split fraction of methanol sold as product 0.0 1.0
SDME,h Split fraction of methanol sent to DME synthesis 0.0 1.0
SMTO,h Split fraction of methanol sent to MTO synthesis 0.0 1.0

CO2 capture train
SPostCCS,h Split fraction of flue gas sent to the DGA-based postcombustion CCS 0.0 1.0
SPreCCS,h Split fraction of CO2 removed in other plant sections sent to sequestration 0.0 1.0
SPostEm,h Split fraction of flue gas sent to stack/emitted 0.0 1.0
SPreEm,h Split fraction of CO2 removed in other plant sections sent to stack/emitted 0.0 1.0

Table 2: List of the 17 operating decision variables for the optimization problem
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Uncertain parameter vector (ωh) Description Units Mean Standard deviation Source
PNG,h

1 Natural gas price $/MMBtu 5.5 3.0 [47]
PElec,h Hourly electricity price $/MWh 96.1 22.1 [48]
PMeOH,h Methanol price $/tonne 500 200 [49]
PDME,h DME price $/tonne 800 200 [50]
PEthylene,h Ethylene price $/tonne 1050 360 [51]
PPropylene,h Propylene price $/tonne 1000 400 [52]
PT ire,h Waste tire tipping fee $/tonne 50 25 Assumed
PCO2,h CO2 tax rate $/tonne 50 25 Assumed

Table 3: Prices and CO2 tax rate parameters for the scenarios. 1A fixed premium of 65% is assumed for the price of LNG
over the price of natural gas based on data from [47]
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max
y,x1,...,xs

Eω[NPV] = Cap(y) ·
[
− 1 +

Rtax

r · tdp
·
(

1− 1

(1 + r)tdp

)]
+

s∑
h=1

ph · Pronet,h(xh,ωh) ·
[1

r
·
(

1− 1

(1 + r)tlf

)]
s.t. First-stage constraints: Capital cost model,

Second-stage constraints: Mass and energy balance model, ∀h ∈ {1, ..., s},
Annual net profit model, Scale constraints, ∀h ∈ {1, ..., s},

Linking constraints: Throughputh ≤ Equipment Capacity, ∀h ∈ {1, ..., s},
(FP)

4. Results and Discussion

4.1. Case 1: Using historical means and standard deviations

Table 4 presents the capital costs and expected operational characteristics
of two proposed flexible polygeneration processes corresponding to the two
characterizations of uncertainty studied (i.e., with 256 and 864 scenarios).
For comparison, the results of the nominal design in which all uncertain
parameters are assumed to take on their mean values are also presented. In
the nominal (inflexible) design, methanol is favored as a primary product
together with a small amount of electricity produced from combustion of off-
gases and waste heat recovery. Both waste tire and natural gas are utilized
as a feedstock with the syngas upgraded using a water gas shift reactor. We
note that this outcome of production of only a single primary product by an
inflexible design is consistent with previous empirical results [2, 4, 43, 18] as
well as Proposition 1 of Farhat and Reichelstein [17].

In Flexible design 1, four products are produced in changing quantities
over the plant life time: Liquified (S)NG, electricity, methanol and dimethyl
ether. Thus, the operating conditions of the plant are adjusted in response
to market conditions in order to produce the most profitable product port-
folio at a given time. Higher capital investments are made at the design
stage in order to provide this operational flexibility. In order to provide a
fair comparison between the flexible and nominal design, the value of the
stochastic solution (VSS as detailed in [20]) is calculated using Equation 11,
where Eω[NPVFlexible] denotes the expected NPV of the flexible design and
Eω[NPVEV P ] denotes the expected NPV of the expected value problem (also
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termed the expectation of the expected value problem). The expected value
problem is formulated by fixing the first-stage design variables to those ob-
tained with the nominal design; the stochastic program is then run with the
same uncertainty characterization as the flexible design. Thus, the expecta-
tion of the expected value problem gives the NPV that would be obtained
if the nominal design faces uncertainty belonging to the same distribution
as that faced by the flexible design. Table 4 shows that implementing flex-
ible designs gives a substantial VSS highlighting the importance of taking
uncertainty into account.

VSS = Eω[NPVFlexible]− Eω[NPVEV P ] (11)

The expected product portfolio and operational characteristics are also
presented which corresponds to the weighted average (by probability) over all
scenarios of the values of the given operational variable. For each product,
the terms in parenthesis denote the percentage of scenarios (weighted by
probability) in which the product is produced. For instance, for Flexible
design 1, this implies that electricity is produced in all scenarios, liquified
(S)NG is produced in only 12.5 % of scenarios while methanol and DME are
produced in half of all scenarios. We note that this implies that there exist
certain scenarios in which liquified (S)NG is produced together with one of
methanol or DME. Such a product portfolio may be attained in a scenario
that primarily favors methanol (or DME) which is produced using most of the
feedstock (by thermal input). However, given the discrete set of equipment
sizes, a small amount of natural gas (corresponding to the difference between
the maximum allowable thermal input and the thermal input used to produce
methanol or DME) may head to the relatively cheap liquefaction section.

4.2. Case 2: Assuming 25 % higher standard deviations

Table 5 presents the corresponding results for the case with higher as-
sumed variances (i.e., higher volatility) for all uncertain parameters. We
note that the mean values of the uncertain parameters are unchanged thus
the nominal design is identical to Case 1.

For Flexible design 1, the same design as in Case 1 is proposed but the
plant attains a higher expected NPV. This can be explained as follows: For
a scenario in which one product experiences an unusually high price, that
product is favored. However, if that product experiences an unusually low
price, operating conditions are adjusted to favor a different product in the
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portfolio. For Flexible design 2, the solution favors implementing a larger
aggregate waste tire converter to provide additional operational flexibility.
This results in a higher expected production of electricity relative to Case 1.
In Case 2, Flexible designs 1 and 2 result in a higher expected NPV compared
to the corresponding flexible designs in Case 1. We note that this result of
attaining a higher expected NPV with increasing price volatility (around the
same mean) is consistent with Proposition 2a of Farhat and Reichelstein [17].
The VSS also increases compared to Case 1.
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Case 1 Nominal design Flexible design 1 Flexible design 2
Number of scenarios s 1 256 864
Capital costs
Aggregate Waste Tire Converter M$ 198.2 198.2 198.2
Aggregate Natural Gas Converter M$ 60.0 60.0 60.0
Liquified (Synthetic) Natural Gas train

Water Gas Shift 1 M$ 0.0 0.0 0.0
CO2 removal M$ 0.0 0.0 0.0
Methanation M$ 0.0 0.0 0.0
Liquefaction M$ 0.0 24.9 0.0

Methanol train
Water Gas Shift 2 M$ 9.7 9.7 9.7
CO2 removal M$ 13.7 13.7 13.7
Methanol synthesis M$ 81.2 81.2 81.2
Dimethyl Ether (DME) synthesis M$ 0.0 100.5 100.5
Methanol-To-Olefins (MTO) process M$ 0.0 0.0 0.0

Power system 1 M$ 110.2 110.2 110.2
Post-combustion CO2 capture M$ 0.0 0.0 0.0
CO2 compression & sequestration M$ 4.6 4.6 4.6
Air Separation Unit M$ 164.6 164.6 164.6
Water systems M$ 63.2 77.4 77.4
Miscellaneous 2 M$ 52.6 52.6 52.6
Total capital costs (Cap) M$ 758.0 897.5 872.6
Expected product portfolio3

Liquefied (S)NG kg/s 0.0 1.4 (12.5 %) 0.0
Electricity MW 14.2 (100 %) 4 20.4 (100.0 %) 17.8 (100.0 %)
Methanol kg/s 28.2 (100 %) 14.2 (50.0 %) 14.2 (50.0 %
Dimethyl Ether kg/s 0.0 7.0 (50.0 %) 8.2 (50.0 %)
Ethylene kg/s 0.0 0.0 0.0
Propylene kg/s 0.0 0.0 0.0

Expected process operation
Waste tire used kg/s 10.0 9.2 9.1
Natural gas used kg/s 11.6 12.1 11.8
Direct CO2 emissions kg/s 5.1 11.9 10.7
CO2 sequestered kg/s 13.8 6.2 7.3
Annual Net Profit M$/year 155.4 231.8 214.4

Net Present Value (NPV) M$ 485.6 931.5 824.4
Expectation of expected value problem M$ - 613.4 564.2
Value of the Stochastic Solution (VSS) M$ - 318.1 260.2
Total wall time (NGBD) s 155.2 3033.7 3219.6
Total wall time (ANTIGONE) s 1.5 5 5

Table 4: Capital costs and expected operational characteristics of the two proposed flexible polygeneration processes compared
with the nominal design for uncertainty characterized using historical means and standard deviations. 1 Includes the Gas
Turbine, HRSG, Steam Turbine and Electricity accessory costs. 2 Miscellaneous includes Instrumentation & Control, Site
preparation & improvement and Building & Structures. 3 The expected operational characteristic corresponds to the weighted
average (by probability) over all scenarios of the values of the given operational variable. 4 The terms in parenthesis denote
the percentage of scenarios (weighted by probability) in which the corresponding product is produced. 5 ANTIGONE was
unable to provide a solution in 15,000 s.
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Case 2 Nominal design 6 Flexible design 1 Flexible design 2
Number of scenarios s 1 256 864
Capital costs
Aggregate Waste Tire Converter M$ 198.2 198.2 322.0
Aggregate Natural Gas Converter M$ 60.0 60.0 60.0
Liquified (Synthetic) Natural Gas train

Water Gas Shift 1 M$ 0.0 0.0 0.0
CO2 removal M$ 0.0 0.0 0.0
Methanation M$ 0.0 0.0 0.0
Liquefaction M$ 0.0 24.9 0.0

Methanol train
Water Gas Shift 2 M$ 9.7 9.7 9.7
CO2 removal M$ 13.7 13.7 22.3
Methanol synthesis M$ 81.2 81.2 81.2
Dimethyl Ether (DME) synthesis M$ 0.0 100.5 100.5
Methanol-To-Olefins (MTO) process M$ 0.0 0.0 0.0

Power system 1 M$ 110.2 110.2 110.2
Post-combustion CO2 capture M$ 0.0 0.0 0.0
CO2 compression & sequestration M$ 4.6 4.6 5.8
Air Separation Unit M$ 164.6 164.6 164.6
Water systems M$ 63.2 77.4 77.4
Miscellaneous 2 M$ 52.6 52.6 52.6
Total capital costs (Cap) M$ 758.0 897.5 1006.2
Expected product portfolio3

Liquefied (S)NG kg/s 0.0 1.5 (12.5 %) 0.0
Electricity MW 14.2 (100 %) 4 20.8 (100 %) 22.6 (100 %)
Methanol kg/s 28.2 (100 %) 14.2 (50.0 %) 13.3 (50.0 %
Dimethyl Ether kg/s 0.0 6.9 (50.0 %) 7.9 (50.0 %)
Ethylene kg/s 0.0 0.0 0.0
Propylene kg/s 0.0 0.0 0.0

Expected process operation
Waste tire used kg/s 10.0 9.1 14.0
Natural gas used kg/s 11.6 12.2 8.5
Direct CO2 emissions kg/s 5.1 11.9 15.0
CO2 sequestered kg/s 13.8 6.0 9.4
Annual Net Profit M$/year 155.4 254.9 248.3

Net Present Value (NPV) M$ 485.6 1,104.6 958.2
Expectation of expected value problem M$ - 699.7 627.3
Value of the Stochastic Solution (VSS) M$ - 404.9 330.9
Total wall time (NGBD) s 155.2 2277.2 2955.4
Total wall time (ANTIGONE) s 1.5 5 5

Table 5: Capital costs and expected operational characteristics of the two proposed flexible polygeneration processes compared
with the nominal design for uncertainty characterized using historical means but with standard deviations assumed to be 25
% higher than average. 1 Includes the Gas Turbine, HRSG, Steam Turbine and Electricity accessory costs. 2 Miscellaneous
includes Instrumentation & Control, Site preparation & improvement and Building & Structures. 3 The expected operational
characteristics correspond to the weighted average (by probability) over all scenarios of the values of the given operational
variable. 4 The terms in parenthesis denote the percentage of scenarios (weighted by probability) in which the corresponding
product is produced. 5 ANTIGONE was unable to provide a solution in 15,000 s. 6 The nominal design is identical to that of
Case 1.

22



0 100 200 300 400 500 600 700 800 9001,000
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Number of scenarios, s

T
ot
al

w
al
l
ti
m
e
(s
)

ANTIGONE
NGBD

Figure 2: Scaling of solution times of NGBD and ANTIGONE with the number of scenarios

4.3. Computational Performance

Figure 2 presents the scaling of solution times of NGBD and ANTIGONE
with number of scenarios. The procedure to generate these scenarios is pre-
sented in the Supplementary Material. When more than 128 scenarios are
considered, ANTIGONE is unable to locate the global optimum within 15,000
s. Thus, NGBD scales favorably compared to ANTIGONE as the optimiza-
tion under uncertainty problem becomes larger. However, NGBD performs
worse than ANTIGONE for a smaller number of scenarios as the set of fea-
sible candidate solutions of the first-stage binary variables does not shrink
sufficiently quickly. We note that implementing RLT constraints was essen-
tial for convergence of NGBD in reasonable time.

5. Conclusions

The optimal design and operation under uncertainty of a hybrid feed-
stock flexible polygeneration system with a product portfolio consisting of
electricity, methanol, dimethyl ether, olefins or liquefied (synthetic) natural
gas is studied. The optimization problem is formulated as a recourse-based
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two-stage stochastic nonconvex MINLP with first-stage variables correspond-
ing to design decisions and second-stage variables to operational decisions.
The recently developed GOSSIP software framework is used to model and
efficiently solve the resulting formulations using the NGBD algorithm.

Two different characterizations of uncertainty are studied: In the first
case study, the uncertain parameters are assumed to belong to independent
normal distributions with means and standard deviations estimated using
historical data. In the second case study, the standard deviations of the un-
certain parameters are increased by 25 % in order to evaluate the impact of
higher volatility. For each of these two cases, two flexible designs are devel-
oped based on a different number of scenarios. Implementing flexible designs
is shown to result in an increase of expected net present value (compared to
a nominal inflexible design) as well as a value of the stochastic solution in the
range of 260 - 405 M$ for a scale of approximately 893 MW of thermal energy
input. Price volatility around the same mean is shown to result in higher
expected net present value and value of the stochastic solution as operational
flexibility allows for asymmetric exploitation of price peaks.

Acknowledgements

A.S. gratefully acknowledges the financial support from NTNU’s Depart-
ment of Energy and Process Engineering and from NTNU Energy. R.K.
gratefully acknowledges the support of the U.S. Department of Energy through
the LANL/LDRD Program and the Center for Nonlinear Studies. This pub-
lication has been funded by HighEFF - Centre for an Energy-Efficient and
Competitive Industry for the Future. The authors gratefully acknowledge the
financial support from the Research Council of Norway and user partners of
HighEFF, an 8-years Research Centre under the FME-scheme (Centre for
Environment-friendly Energy Research, 257632).

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. A. Adams II, P. I. Barton, Combining coal gasification and natural
gas reforming for efficient polygeneration, Fuel Processing Technology
92 (2011) 639–655.

24



[2] T. A. Adams II, J. H. Ghouse, Polygeneration of fuels and chemicals,
Current Opinion in Chemical Engineering 10 (2015) 87–93.

[3] A. S. R. Subramanian, T. Gundersen, T. A. Adams II, Technoeconomic
analysis of a waste tire to liquefied synthetic natural gas (SNG) energy
system, Energy (2020) 117830.

[4] A. S. R. Subramanian, T. Gundersen, T. A. Adams II, Optimal design
and operation of a waste tire feedstock polygeneration system, Energy
(2021) 11990.

[5] A. M. Niziolek, O. Onel, M. F. Hasan, C. A. Floudas, Municipal solid
waste to liquid transportation fuels–Part II: Process synthesis and global
optimization strategies, Computers & Chemical Engineering 74 (2015)
184–203.

[6] I. J. Okeke, T. A. Adams II, Combining petroleum coke and natural gas
for efficient liquid fuels production, Energy 163 (2018) 426–442.

[7] Y. K. Salkuyeh, T. A. Adams II, Integrated petroleum coke and natural
gas polygeneration process with zero carbon emissions, Energy 91 (2015)
479–490.

[8] J. D. Martınez, N. Puy, R. Murillo, T. Garcıa, M. V. Navarro, A. M.
Mastral, Waste tyre pyrolysis: A review, Renewable and Sustainable
Energy Reviews 23 (2013) 179–213.

[9] V. Belgiorno, G. De Feo, C. Della Rocca, R. Napoli, Energy from gasi-
fication of solid wastes, Waste management 23 (2003) 1–15.

[10] J. F. Benders, Partitioning procedures for solving mixed-variables pro-
gramming problems, Numerische mathematik 4 (1962) 238–252.

[11] A. M. Geoffrion, Generalized Benders decomposition, Journal of Opti-
mization Theory and Applications 10 (1972) 237–260.

[12] X. Li, A. Tomasgard, P. I. Barton, Nonconvex Generalized Benders De-
composition for stochastic separable mixed-integer nonlinear programs,
Journal of Optimization Theory and Applications 151 (2011) 425.

25



[13] X. Li, A. Sundaramoorthy, P. I. Barton, Nonconvex Generalized Benders
Decomposition, in: Optimization in Science and Engineering, Springer,
2014, pp. 307–331.

[14] R. Kannan, Algorithms, analysis and software for the global optimiza-
tion of two-stage stochastic programs, Ph.D. thesis, Massachusetts In-
stitute of Technology, 2017.

[15] J. Meerman, A. Ramırez, W. Turkenburg, A. Faaij, Performance of
simulated flexible integrated gasification polygeneration facilities. Part
A: A technical-energetic assessment, Renewable and Sustainable Energy
Reviews 15 (2011) 2563–2587.

[16] J. Meerman, A. Ramırez, W. Turkenburg, A. Faaij, Performance of
simulated flexible integrated gasification polygeneration facilities, Part
B: Economic evaluation, Renewable and Sustainable Energy Reviews
16 (2012) 6083–6102.

[17] K. Farhat, S. Reichelstein, Economic value of flexible hydrogen-based
polygeneration energy systems, Applied Energy 164 (2016) 857–870.

[18] Y. Chen, T. A. Adams II, P. I. Barton, Optimal design and opera-
tion of flexible energy polygeneration systems, Industrial & Engineering
Chemistry Research 50 (2011) 4553–4566.

[19] Y. Chen, X. Li, T. A. Adams II, P. I. Barton, Decomposition strategy
for the global optimization of flexible energy polygeneration systems,
AIChE Journal 58 (2012) 3080–3095.

[20] J. R. Birge, F. Louveaux, Introduction to stochastic programming,
Springer Science & Business Media, 2011.

[21] C. Li, I. E. Grossmann, A Review of Stochastic Programming Methods
for Optimization of Process Systems under Uncertainty, Frontiers in
Chemical Engineering 2 (2020) 34.

[22] A. Mitsos, B. Chachuat, P. I. Barton, McCormick-based relaxations of
algorithms, SIAM Journal on Optimization 20 (2009) 573–601.

[23] A. M. Geoffrion, Elements of large-scale mathematical programming
Part I: Concepts, Management Science 16 (1970) 652–675.

26



[24] A. M. Geoffrion, Elements of large scale mathematical programming
part II: Synthesis of algorithms and bibliography, Management Science
16 (1970) 676–691.

[25] M. Tawarmalani, N. V. Sahinidis, Convexification and global optimiza-
tion in continuous and mixed-integer nonlinear programming: theory,
algorithms, software, and applications, volume 65, Springer Science &
Business Media, 2013.

[26] K. A. Khan, H. A. Watson, P. I. Barton, Differentiable McCormick
relaxations, Journal of Global Optimization 67 (2017) 687–729.

[27] E. Balas, R. Jeroslow, Canonical cuts on the unit hypercube, SIAM
Journal on Applied Mathematics 23 (1972) 61–69.

[28] R. Misener, C. A. Floudas, ANTIGONE: Algorithms for Continu-
ous/Integer Global Optimization of Nonlinear Equations, Journal of
Global Optimization 59 (2014) 503–526.

[29] H. A. Watson, M. Vikse, T. Gundersen, P. I. Barton, Optimization of
single mixed-refrigerant natural gas liquefaction processes described by
nondifferentiable models, Energy 150 (2018) 860–876.

[30] N. Sunthonpagasit, M. R. Duffey, Scrap tires to crumb rubber: fea-
sibility analysis for processing facilities, Resources, Conservation and
recycling 40 (2004) 281–299.

[31] M. C. Woods, P. Capicotto, J. L. Haslbeck, N. J. Kuehn, M. Ma-
tuszewski, L. L. Pinkerton, M. D. Rutkowski, R. L. Schoff, V. Vaysman,
Cost and performance baseline for fossil energy plants, National Energy
Technology Laboratory (2007).

[32] C. Kunze, H. Spliethoff, Modelling, comparison and operation experi-
ences of entrained flow gasifier, Energy Conversion and Management 52
(2011) 2135–2141.

[33] T. A. Adams II, Y. K. Salkuyeh, J. Nease, Processes and simulations for
solvent-based CO2 capture and syngas cleanup, in: Reactor and process
design in sustainable energy technology, Elsevier, 2014, pp. 163–231.

27



[34] R. Brasington, J. Haslbeck, N. Kuehn, E. Lewis, L. Pinkerton,
M. Turner, E. Varghese, M. Woods, Cost and Performance Baseline
for Fossil Energy Plants — Volume 2: Coal to Synthetic Natural Gas
and Ammonia, Technical Report, DOE/NETL-2010/1402, 2011.

[35] J. Klara, M. Woods, P. Capicotto, J. Haslbeck, N. Kuehn, M. Ma-
tuszewski, L. Pinkerton, M. Rutkowski, R. Schoff, V. Vaysman, Cost
and performance baseline for fossil energy plants volume 1: Bituminous
coal and natural gas to electricity. National Energy Technology Labora-
tory, Research and Development Solutions, LLC (RDS) (2007).

[36] N. Kezibri, C. Bouallou, Conceptual design and modelling of an in-
dustrial scale power to gas-oxy-combustion power plant, International
Journal of Hydrogen Energy 42 (2017) 19411–19419.
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Supplementary Material 1: Benders Decomposition Algorithm for
Two-Stage Stochastic Programming

This section provides an intuitive explanation of the Nonconvex Gener-
alized Benders Decomposition Algorithm.

The size of Problem SP increases with the total number of scenarios con-
sidered. State-of-the-art solvers for nonconvex MINLPs such as BARON
[53], ANTIGONE [28], COUENNE [54] and SCIP [55] implement algorithms
for which the solution time increases exponentially with problem size. Thus,
solving Problem SP with these general-purpose solvers quickly becomes com-
putationally intractable as the number of scenarios is increased. However,
Problem SP is not a general nonconvex MINLP but instead possesses a special
structure that can be exploited to develop more efficient solution algorithms.
First, we illustrate this special structure visually for the subclass of two-stage
stochastic MILPs (presented in Problem SMILP-DEP) and then describe it
for the two-stage stochastic MINLP of Problem SP. The data vectors dh
and eh, and matrix h depend on the realization of the uncertain parameter
in scenario h.

min
y,x1,...,xs

cTy +
s∑

h=1

phdh
Txh

s.t. Ay ≤ b,

Bhy +h xh ≤ eh, ∀h ∈ {1, . . . , s},
y ∈ Y ,
xh ∈Xh, ∀h ∈ {1, . . . , s}

(SMILP-DEP)

In particular, we illustrate the structure of the constraints

Bhy +h xh ≤ eh,∀h ∈ {1, . . . , s}

with Figure 3.
We observe the following:

• Problem SMILP-DEP has an “almost block-diagonal” structure in the
sense that if the vector of variables y is fixed (i.e., the blue portions of
Figure 3 are fixed), then it becomes fully decomposable into a set of
linear programming (LP) problems (one for each h ∈ {1, . . . , s}) . In
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Figure 3: Illustration of special structure of two-stage stochastic MILPs

other words, to partition Problem SMILP-DEP, we begin by writing
out an equivalent optimization problem (Problem SMILP-PART which
only searches the space of the first-stage y variables). The objective
function of Problem SMILP-PART is defined implicitly in terms of the
solutions to the embedded Problems LPh(y) for all h ∈ {1, . . . , s}.

• The set V contains all the feasible values of y for which all the em-
bedded Problems LPh(y) have at least one feasible point. We note
that constructing the set V algorithmically is challenging as it would
require testing all the Problems LPh(y) for feasibility for each can-
didate member y. This challenge is addressed in Section 5 where a
duality theory-based reformulation is used to derive an equivalent set
of “Benders Feasibility cuts” that characterizes set V .

• Problems LPh(y) are parameterized by the particular value of the com-
plicating variables y. Thus, the Problems LPh(y) are constructed with
y appearing on the right-hand side of the constraints (i.e., y is not a
decision variable of Problems LPh(y)).
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• The key point is that the size of each of the Problems LPh(y) is inde-
pendent of the number of scenarios. In addition, the problem size is
smaller allowing for more efficient solution.

• Problems SMILP-DEP and SMILP-PART have the same optimal ob-
jective function value.

• The problems LPh(y) can be solved in parallel using a multi-core ar-
chitecture (although this is not implemented in this work).

min
y

cTy +
s∑

h=1

vh(y)

s.t. y ∈ V ≡
{

y ∈ Y : Ay ≤ b and ∃xh ∈Xh :h xh ≤ eh −Bhy,∀h ∈ {1, . . . , s}
}
⊂ Y

(SMILP-PART)

vh(y) = min
xh

phdh
Txh

s.t. hxh ≤ eh −Bhy,

xh ∈Xh,
(LPh(y))

This strategy of fixing the complicating first-stage y variables to par-
ticular values and then decomposing the problem into a number of smaller
independent subproblems can also be applied to Problem SP. The solution
strategy involves iterating between searching the space of first-stage y vari-
ables followed by the space of second-stage xh variables.

This intuition is used to derive efficient mathematical programming algo-
rithms for two-stage stochastic programs:

• The earliest algorithm termed Benders Decomposition (BD) [10] or
the L-shaped method [56] is applicable to two-stage stochastic LPs or
MILPs.

• Next, the Generalized Benders Decomposition algorithm (GBD) [11]
was developed and is applicable to two-stage stochastic MICPs.

• Recently. the Nonconvex Generalized Benders Decomposition algo-
rithm (NGBD) [12, 13] was developed and is applicable to two-stage
stochastic nonconvex MINLPs.
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Figure 4: Overview of the Nonconvex Generalized Benders Decomposition (NGBD) algorithm. Reprinted from [12] with
permission from Springer Nature. Only (sub)problems with solid outlines are solved.



Nonconvex Generalized Benders Decomposition (NGBD)

This section presents the NGBD algorithm which reduces to the GBD
or BD algorithms for the corresponding problem classes. Emphasis is on
describing the key concepts intuitively with a more rigorous presentation
available in [12, 13, 14]. An overview of the NGBD algorithm is presented in
Figure 4. The general principle is to iteratively solve a series of lower bound-
ing and upper bounding problems until convergence to a globally optimum
solution (within a specified tolerance).

The Lower Bounding Problem (LBP)

Problem SP is convexified using the Auxiliary Variables and Constraints
Method to give Problem LBP where f cvh and gcvh are convex functions. Thus,
Problem LBP is usually of a higher dimension than Problem SP since addi-
tional variables qh are introduced together with corresponding constraints.

min
y,x1,...,xs,q1,...,qs

cTy +
s∑

h=1

phf
cv
h (xh,qh;ωh)

s.t. Ay ≤ b,

Bhy + gcvh (xh,qh;ωh) ≤ 0, ∀h ∈ {1, . . . , s},
y ∈ Y ,
(xh,qh) ∈Dh, ∀h ∈ {1, . . . , s}

(LBP)

Problem LBP is a two-stage stochastic MICP thus GBD can be applied
with the corresponding subproblems termed the the Master Problem (MP),
the Primal Bounding Problem (PBP) and PBP subproblems, the Feasibility
Problem (FP) and FP subproblems, the Relaxed Master Problem (RMP)
and the Feasibility Relaxed Master Problem (FRMP) as presented next.

The Master Problem (MP), Primal Bounding Problem (PBP) and PBP sub-
problems

From Problem LBP, a similar partitioning approach to that presented in
Section 5 is implemented. Analogously to Problem SMILP-PART, we define
Problem LBP-PART which only searches over the space of y variables and
whose objective function is defined implicitly in terms of the optimal values
of embedded optimization problems PBPh(y) for all h ∈ {1, . . . , s}. The
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NLP subproblems PBPh(y) (analogous to problems LPh(y)) are termed the
PBP subproblems where the Primal Bounding Problem (PBP) collects their
optimal objective function values as presented in Equation PBP(y) (defined
on feasible y values).

min
y

cTy +
s∑

h=1

vh(y)

s.t. y ∈ V ≡
{

y ∈ Y : Ay ≤ b and

∃(xh,qh) ∈Dh : gcvh (xh,qh;ωh) ≤ −Bhy, ∀h ∈ {1, . . . , s}
}
⊂ Y

(LBP-PART)

vh(y) = min
xh,qh

phf
cv
h (xh,qh;ωh)

s.t. gcvh (xh,qh;ωh) ≤ −Bhy,

(xh,qh) ∈Dh,
(PBPh(y))

v(y) = cTy +
s∑

h=1

vh(y)
(PBP(y))

Remarks and Reformulations:

1. The Problems PBPh(y) are convex NLPs. The size of each problem is
independent of the number of scenarios. We assume that these convex
programs can either be solved to global optimality with a standard
NLP solver for a given value of y or are infeasible. If an optimal
solution (x̂h, q̂h) is found, we assume that the NLP solver also provides
the associated duality multiplier (λ̂h) which is known to exist since
each of the problems is convex. If any of the Problems PBPh(y) are
infeasible, a related Feasibility Problem can be constructed and solved
as discussed in the next section.

2. Problems LBP-PART and LBP have the same objective function. How-
ever, Problem LBP-PART is a substantially smaller problem since it
only searches over the space of the y variables.
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3. The trade-off is that the objective function of Problem LBP-PART is
defined implicitly and, for each candidate value y, requires the solu-
tions of all the NLP problems PBPh(y) parameterized by that y. This
is computationally intractable. Instead, a duality theory-based refor-
mulation is used as explained next:

• First, since Problems PBPh(y) are all convex, strong duality holds
thus we can rewrite:

vh(y) = sup
λh≥0

inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + λh

T(gcvh (xh,qh;ωh) + Bhy)
}

• We can then re-write the Primal Bounding Problem (Equation
PBP(y)):

v(y) = cTy +
s∑

h=1

sup
λh≥0

inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + λh

T(gcvh (xh,qh;ωh) + Bhy)
}

• Using the definition of the supremum, the above expression can be
translated into the following form which gives an infinite number
of constraints:

v(y) ≥ cTy +
s∑

h=1

inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + λh

T(gcvh (xh,qh;ωh) + Bhy)
}
,

∀(λ1, . . . ,λs) ∈ Rmcv
h ×s

+

where mcv
h is the number of second-stage constraints in each sce-

nario for Problem LBP.

• In the equation above, every possible vector (λ1, . . . ,λs) belong-

ing to the infinite set Rmcv
h ×s

+ gives rise to a new constraint. Thus,
each vector of values (λ1, . . . ,λs) can be used as an index for

the constraint set, and we define a function
(
y, (λ1, . . . ,λs)

)
to

represent a single one of these constraints (termed a “Benders
Optimality cut”) i.e.,(

y, (λ1, . . . ,λs)
)
≡ cTy +

s∑
h=1

inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + λh

T(gcvh (xh,qh;ωh) + Bhy)
}
,
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4. Another issue with Problem LBP-PART is that testing the second
membership condition of each y in the feasible set V is also com-
putationally expensive. Thus, a similar reformulation is implemented
to replace this condition with an (infinite) number of constraints that
would exclude infeasible y values. Duality theory once again provides a
useful result presented in Theorem 5 that allows for this reformulation.
We note that similar to Dual Problem, Theorem 5 also has a geometric
interpretation obtained by formulating the image space representation
of the constraint functions gcvh as presented in [57, 58]. Each function(
y, (µ1, . . . ,µs)

)
also defines a single constraint (termed a “Benders

Feasibility cut”) and the vector (µ1, . . . ,µs) provides an index for the
constraint set.

5. The last reformulation of Problem LBP-PART is for convenience: The
objective function is defined in terms of a dummy decision variable
η ∈ R. Since Problem LBP-PART is a minimization problem, the
constraint below becomes active at the optimum.

η ≥ cTy +
s∑

h=1

vh(y)

[Dual representation of second membership condition of set V ] Consider a
point y ∈ Y . The set Dh is convex and functions gcvh are convex on Dh (as
constructed).

If there exists (xh,qh) ∈Dh : gcvh (xh,qh;ωh) ≤ −Bhy, ∀h ∈ {1, . . . , s}

⇐⇒

y satisfies the set of inequalities:
(
y, (µ1, . . . ,µs)

)
≤ 0, ∀(µ1, . . . ,µs) ∈M
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where:(
y, (µ1, . . . ,µs)

)
≡

s∑
h=1

inf
(xh,qh)∈Dh

{
µh

T(gcvh (xh,qh;ωh) + Bhy)
}
,

M ≡

(µ1, . . . ,µs) ∈ Rmcv
h ×s

+ : µ1, . . . ,µs ≥ 0,
s∑

h=1

mcv
h∑

i=1

µh,i = 1

 .

With the above reformulations, Problem LBP-PART can be rewritten as
Problem MP which is termed the Master Problem:

min
η,y

η

s.t. Ay ≤ b,

η ≥
(
y, (λ1, . . . ,λs)

)
, ∀(λ1, . . . ,λs) ∈ Rmcv

h ×s
+

0 ≥
(
y, (µ1, . . . ,µs)

)
, ∀(µ1, . . . ,µs) ∈M

y ∈ Y , η ∈ R

(MP)

The Feasibility Problem (FP) and FP subproblems

If any of the PBP subproblems is infeasible, a related Feasibility Prob-
lem FP(y) is solved which in turn decomposes to solving an FP subproblem
FPh(y) for each scenario h. In each of these subproblems, a slack variable
vector zh is introduced and the objective is to minimize the violation of
the constraints (according to an appropriate norm). We note that problems
FPh(y) are convex programs since any norm function is convex. Thus, we
assume they can be solved to global optimality using an NLP solver that
also provides an associated duality multiplier (denoted µ̂h). The set of du-
ality multipliers from all the FP subproblems provides useful information as
discussed in the next section on the Relaxed Master Problem.

r(y) =
s∑

h=1

rh(y)
(FP(y))
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rh(y) = min
xh,qh,zh

ph‖zh‖

s.t. gcvh (xh,qh;ωh) + Bhy ≤ zh,

(xh,qh) ∈Dh, zh ∈ Zh

(FPh(y))

The Relaxed Master Problem (RMP)

Problem MP is still computationally challenging to solve as it is a semi-
infinite problem since it has an infinite number of constraints. This motivates
the construction of a Relaxed Master Problem (Problem RMP) where only
a finite subset of these constraints is iteratively added.

The following features of Problem RMP are presented:

• The finite index sets T and S are introduced: Each element j of T
indexes a single Benders Optimality cut while each element i of S
indexes a single Benders Feasibility cut . Thus, the elements j and s
correspond to the sets of vectors (λ1, . . . ,λs) and (µ1, . . . ,µs) respec-
tively. At the start of the NGBD algorithm, the sets T and S are empty
and one constraint is added to one of the sets at each iteration.

• Since Problem RMP is a relaxation of Problem MP (which is in turn a
relaxation of Problem SP), its optimal objective function value provides
a rigorous lower bound (LBD) for the two-stage stochastic program by
the Lower Bounding Principle. We also note that since Problem RMP
gets more constrained as more cuts are added at each iteration, this
LBD is guaranteed to increase or remain the same.

• The overall strategy is to repeatedly solve Problem RMP with an in-
creasing number of constraints. After each iteration, suppose (η̂, ŷ) is
the optimal solution of Problem RMP, the next step is to test if any
of the constraints left out from Problem MP are violated by this opti-
mal solution. One crucial feature of the NGBD algorithm is that this
test can be performed cheaply by solving subproblems PBPh(y) with
y fixed to be ŷ. If the optimal solutions for all the PBP subproblems
are found and η̂ < v(ŷ), then it can be shown that (at least) one of
the constraints of Problem MP has been violated. The intuition for the
above test is as follows: If (η̂, ŷ) did not violate any constraints of Prob-
lem MP, then as a result of strong duality, v(ŷ) should be equal to η̂.
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Thus, failure of this test implies that a Benders Optimality cut should
be added to Problem RMP. Advantageously, the derivation of this cut
can also be done efficiently if the NLP solver for subproblems PBPh(y)
provides duality multipliers (λ̂h) (which exist for convex programs):
Applying the definition of a duality multiplier, we can write:

vh(ŷ) = inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + (λ̂h)

T
(gcvh (xh,qh;ωh) + Bhŷ)

}
Thus:

v(ŷ) = cTŷ +
s∑

h=1

inf
(xh,qh)∈Dh

{
phf

cv
h (xh,qh;ωh) + (λ̂h)

T
(gcvh (xh,qh;ωh) + Bhŷ)

}
We can then re-write the Benders Optimality cut indexed by the set of
duality multipliers (λ̂1, . . . , λ̂s) as:(

y, (λ̂1, . . . , λ̂s)
)
≡ v(ŷ) + cT(y − ŷ) +

s∑
h=1

(λ̂h)
T
Bh(y − ŷ)

A more rigorous argument for using the above set of duality multipliers
is provided in [12].

• Conversely, if any of Problems PBPh(y) (with y fixed to be ŷ) is in-
feasible, then ŷ violates one of the Benders Feasibility cuts of Problem
MP. Without proof, we mention that the set of duality multipliers ob-
tained from solution of problems FPh(y) (with y fixed to be ŷ) denoted
(µ̂1, . . . , µ̂s) provides an index for one violated Benders Feasibility cut.
A similar derivation as above gives the following constraint which is
guaranteed to make the current solution ŷ infeasible in the next itera-
tion of Problem RMP:(

y, (µ̂1, . . . , µ̂s)
)
≡ r(ŷ) +

s∑
h=1

(µ̂h)
TBh(y − ŷ)

• In summary, at each iteration either a Benders Optimality or Feasibility
cut is added to Problem RMP by appending a set of duality multipliers
to either set T or S obtained from the PBP or the FP.
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• The last set of integer cuts (also termed “Balas cuts” as detailed in
[27]) is required for guaranteed convergence of the NGBD algorithm
but not for the GBD or BD algorithms. The point of these cuts is to
explicitly prevent the NGBD algorithm from cycling back to previously
visited y values in prior iterations of Problem RMP. The sets Ot and
Zt are defined as follows: Ot ≡ {l ∈ {1, · · · , ny} : ytl = 1}, Zt ≡ {l ∈
{1, · · · , ny} : ytl = 0}.

min
η,y

η

s.t. Ay ≤ b,

η ≥ v(ŷj) + cT(y − ŷj) +
s∑

h=1

(λ̂jh)
T
Bh(y − ŷj), ∀j ∈ T,

0 ≥ r(ŷi) +
s∑

h=1

(µ̂ih)
T
Bh(y − ŷi), ∀i ∈ S,

|Ot| − 1 ≥
∑
l∈Ot

yl −
∑
l∈Zt

yl, ∀t ∈ T ∪ S,

y ∈ Y , η ∈ R

(RMP)

The Feasibility Relaxed Master Problem (FRMP)

For early iterations of the NGBD algorithm, the set T may be empty.
In this case, it may be necessary to solve an auxiliary problem termed the
Feasibility Relaxed Master Problem (Problem FRMP) to obtain a feasible
value of y:

min
y
‖y‖

s.t. Ay ≤ b,

0 ≥ r(ŷi) +
s∑

h=1

(µ̂ih)
T
Bh(y − ŷi), ∀i ∈ S,

|Ot| − 1 ≥
∑
l∈Ot

yl −
∑
l∈Zt

yl, ∀t ∈ S,

y ∈ Y

(FRMP)
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Upper Bounding with the Primal Problem (PP) and PP subproblems

The procedure to generate upper bounds (UBD) for Problem SP involves
solving a Primal Problem (Problem PP(ŷ)) formulated by restricting the y
variables to the optimal solution values ŷ obtained from solving Problem
RMP at each iteration. This problem naturally decomposes into solving s
PP subproblems PPh(ŷ):

u(ŷ) = cTŷ +
s∑

h=1

uh(ŷ)
(PP(ŷ))

uh(ŷ) = min
xh

phfh(xh;ωh)

s.t. gh(xh;ωh) ≤ −Bhŷ,

xh ∈Xh,
(PPh(ŷ))

We note that even though the PP subproblems are of a lower dimension
than the PBP subproblems, their solution is typically the most expensive part
of the NGBD algorithm because they are nonconvex NLPs. Thus, global
optimization strategies such as spatial branch-and-bound are relevant for
these nonconvex programs. To improve the performance of the algorithm,
the following options can also be considered:

1. Instead of solving Problems PPh(ŷ) immediately after a candidate ŷ
vector is available, the lower bounding loop (consisting of Problems
RMP and PBPh(y)/FPh(y)) can first be converged to give an optimal
solution to Problem LBP. After this, Problem PPh(ŷ) can be solved
with this candidate vector ŷ that is optimal for Problem LBP. This
strategy minimizes the number of Problems PPh(ŷ) solved.

2. It may also be more efficient to to accept a good local optimum or
even a feasible solution for Problem PP(ŷ) as both of these provides
rigorous UBDs. The trade-off is that the UBD attained is higher than
that attained with a global optimum. In addition, with this strategy,
there are no guarantees that the algorithm converges to a global optimal
solution of Problem SP (although the algorithm still converges because
of the inclusion of Balas cuts).

3. Problems PPh(ŷ) may also be solved in parallel on a multi-core com-
puter.
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Algorithm Summary and Remarks

After convexifying the original stochastic MINLP, the lower bounding
loop of the NGBD algorithm first begins with solving a decomposable Primal
Bounding Problem with an initial guess for the y variables. If this problem
is feasible, an upper bound for the lower bounding problem is updated and
the duality multipliers attained are used to generate Benders Optimality
cuts for the Relaxed Master Problem. If any of the decomposed problems is
infeasible, a Feasibility Problem is solved and the duality multipliers attained
are used to generate Benders Feasibility cuts for the Relaxed Master Problem.
The Relaxed Master Problem is derived by relaxing the constraints of the
Master Problem. This Master Problem in turn is derived by partitioning
(projection) of the convexified problem onto the space of the y variables,
and replacing the embedded optimization problem (in the x space) with an
infinite number of constraints by leveraging its dual representation. Similarly,
a dual representation is utilized to define the set of feasible y values. The
Relaxed Master Problem provides a lower bound and its solution gives the y
value used for the next iteration of the Primal Bounding Problems. Once the
lower bounding loop has converged, a decomposable Primal Problem is solved
by fixing the y values to the optimal values attained from the Relaxed Master
Problem. A feasible or optimal solution of the Primal Problem provides an
upper bound. Affine inequalities are added to the Relaxed Master Problem
to exclude previously visited solutions y and the procedure is iterated until
convergence.

The NGBD algorithm scales favorably with respect to one dimension of
problem size: the total number of scenarios. The reasoning for this property
is as follows:

• The partitioning and dualizing procedures imply that the sizes of all of
the problems solved are independent of the number of scenarios. Thus,
solving several smaller problems is computationally advantageous over
solving fewer large problems.

• It is empirically observed that when the convex relaxations are tight,
the NGBD algorithm only takes a few iterations to converge. Addi-
tionally, the number of Primal Problems solved is usually much smaller
than the number of Relaxed Master Problems solved.
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Supplementary Material 2:

Complete optimization under uncertainty model

Key decision variables

The key design (denoted by vector y) and operational decision variables
in scenario h (denoted by vector xh) are presented in the main text.

List of Process Sections

The flexible polygeneration system studied consists of 20 process sec-
tions. Let U denote the set of all process sections consisting of elements u
(as presented in Table 6). Each process section is associated with a represen-
tative extensive variable termed the “characteristic throughput” in scenario
h (Fu,h).
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Process Section, u Abbreviation Characteristic throughput (Fu,h) Stream Units
Waste Tire Train

1. Aggregate Waste Tire converter TAGG Mass flow of tire mtire,h kg/s tire
2. Air Separation Unit ASU Mass flow of O2 mASU,O2,h kg/s O2

Product train - (Synthetic) Natural gas
3. SNG train - Water Gas Shift 1 WGS1 Extent of conversion of CO ξMETHWGS,h kmol/s CO
4. SNG train - Selexol 1 CO2 removal SEL1 Mole flow of CO2 in fWGS1 prod,i,h kmol/s CO2

5. Methanation METH Mass flow of feed in mMETH in,h kg/s tire-derived syngas
6. (Synthetic or well) NG Liquefaction LIQ Mass flow of (S)NG mLNG,h kg/s LNG
7. Aggregate Natural gas converter NGAGG Mass flow of natural gas to reformer mNGRef,h kg/s natural gas

Product train - Methanol, DME and olefins
8. MeOH train -Water Gas Shift 2 WGS2 Extent of conversion of CO ξMEOHWGS,h kmol/s CO
9. MeOH train - Selexol 2 CO2 removal SEL2 Mole flow of CO2 in fMEOH Blended,CO2,h kmol/s CO2

10. Methanol synthesis & purification MEOH Mass flow of feed in mMEOH in,h kg/s syngas
11. DME synthesis DME Mass flow of MeOH in mMeOH ToDME,h kg/s MeOH
12. Methanol to Olefins MTO Mass flow of MeOH in mMeOH ToMTO,h kg/s MeOH

Product train - Power generation
13. Gas Turbine GT Work output WGT,h MW
14. HRSG HRSG Heat recovered QHQ HRSG,h MW
15. Steam Turbine ST Work output WST,h MW
16. Electric Plant Accessories EACC Total work output WGT,h + WST,h MW

CO2 capture and miscellaneous
17. DGA CO2 removal DGA Mass flow of CO2 in mDGA,CO2,h kg/s CO2

18. CO2 compression, liquefaction & se-
questration

SEQ Mass flow of CO2 sequestered mCCS,CO2,h kg/s CO2

19. Miscellaneous 1 MISC Total thermal input TILHV,h MW LHV
20. Water systems 2 H2O Total cooling duty QCW net,h MW

Table 6: Process sections included in polygeneration system. 1 Miscellaneous includes Instrumentation & control, Site prepa-
ration & improvement and Building & structures. 2 Water systems include cooling water systems, feed water and BOP water
systems. We note that where relevant the mole flow rates listed above denote the mole flows of the relevant component only
without including impurities.
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Feedstock characterization

Waste Tire

The waste tire feedstock has a composition and lower heating value (LHVtire)
presented in Table 7.

Ultimate Analysis (Ult) wt % Proximate Analysis wt %
C 77.3 Volatile Matter (VM) 67.7
H 6.2 Fixed Carbon (FC) 25.5
N 0.6 Ash 6.8
S 1.8
O 7.3
Ash 6.8
LHVtire [MJ/kg] 33.96

Table 7: Characterization of waste tire

Natural Gas

The composition and feedstock specification for natural gas are presented
in Table 8.

Composition (mol %) Conditions
CH4 93.9 Pressure 30 bar
CO2 0.01 Temperature 30 °C
C2H6 0.032
C3H8 0.007
C4

+ 0.004
N2 0.008
LHVNG [MJ/kg] 47.84

Table 8: Characterization of Natural Gas [29]

Mass balance model

Let I denote the set of components relevant to the surrogate mass balance
model. The components i ∈ I are presented in Table 9, where MWi denotes
the molecular weight of component i (obtained from Aspen Plus data banks).
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Component, i MWi [kg/kmol] Component type
1. CO 28.010 Conventional
2. CO2 44.010 Conventional
3. H2 2.016 Conventional
4. CH4 16.043 Conventional
5. H2O 18.015 Conventional
6. N2 28.013 Conventional
7. O2 31.999 Conventional
8. NH3 17.031 Conventional
9. H2S 34.082 Conventional
10. COS 60.076 Conventional
11. Cl2 70.905 Conventional
12. HCl 36.461 Conventional
13. NO 30.006 Conventional
14. NO2 46.006 Conventional
15. SO2 64.065 Conventional
16. SO3 80.064 Conventional
17. CH3OH 32.042 Conventional
18. C 12.011 Solid
19. S 32.066 Solid

Table 9: Components involved in the surrogate mass balance model. The settings used
for the components in Aspen Plus are presented as well.

We note that there are several additional components not listed here which
are included in the Aspen Plus simulation. In the following sections, we
present the mass balance surrogate models implemented. We note that for
any stream in the surrogate model, any molar flow rates for components i
not defined explicitly can be taken to be 0.000 [kmols/s].

Aggregate Waste tire gasifier

The aggregate waste tire gasifier encompasses the following units: Tire
feedstock and slurry preparation unit, entrained flow gasifier, syngas clean-
ing (scrubber, COS hydrolysis, syngas cooler, sour water knockout drum,
Selexol-based H2S removal unit, Claus unit) and the ash handling system.
Detailed descriptions of these units and the simulation strategy are presented
in our previous work [3, 4, 43]. The clean tire-derived syngas mole flow rate
in scenario h (fTDsweet gas,i,h) is a linear function of feed flow rate of tire
mtire,h. The mole fraction of component i belonging to the component set I
(xTDsweet gas,i) is regressed from the Aspen Plus simulation with the coeffi-
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Component, i xTDsweet gas,i
CO 0.542
CO2 0.071
H2 0.381
CH4 0.006

Table 10: The mole fractions of each relevant component i in tire-derived syngas obtained
from the rigorous Aspen Plus simulation

cients presented in Table 10. The term RST

MWTDsweet gas
(where MWTDsweet gas

is the molecular weight of syngas and RST is the ratio of the mass flow rates
of clean syngas to tire) is also determined from the simulation to be 0.103
[kmols−1TDsweet gas/kgs−1tire].

fTDsweet gas,i,h =
xTDsweet gas,i ·RST ·mtire,h

MWTDsweet gas

, ∀i ∈ I,∀h ∈ {1, ..., s} (12)

The mass of sulfur product from the Claus process mCLAUS,S,h [kg/s] is
also regressed from the simulation with the corresponding coefficient RSulfur

determined to be 0.016 [kgsulfur/kgtire] :

mCLAUS,S,h = RSulfur ·mtire,h,∀h ∈ {1, ..., s},
(13)

Tire-derived syngas splitter

The tire-derived syngas is preheated and then heads to one of three down-
stream synthesis sections: Methanation, methanol synthesis or the gas tur-
bine section. The corresponding split fraction of tire-derived syngas to each of
these three sections (denoted STSNG,h, STMeOH,h and STGT,h respectively) is a
decision variable, thus the molar flow rates of the corresponding streams are
given by Equation 14, where fTMETH feed,i,h, fTMEOH feed,i,h and fTGT feed,i,h

[kmol/s] denote the molar flow rates of component i in the tire-derived syn-
gas streams heading to the methanation, methanol synthesis and gas turbine
sections respectively in scenario h.
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fTMETH feed,i,h = fTDsweet gas,i,h · STSNG,h, ∀i ∈ I,∀h ∈ {1, ..., s}
fTGT feed,i,h = fTDsweet gas,i,h · STGT,h, ∀i ∈ I,∀h ∈ {1, ..., s}

fTMEOH feed,i,h = fTDsweet gas,i,h · STMeOH,h, ∀i ∈ I,∀h ∈ {1, ..., s}
STSNG,h + STGT,h + STMeOH,h = 1.0,∀h ∈ {1, ..., s}

(14)

Natural gas feedstock splitter

The natural gas feedstock of mass mNG,h [kg/s] is split into three branches
heading to the natural gas reforming, gas turbine and liquefaction sections
according to split fractions SNGRef,h, SNGGT,h, SNGLiq,h respectively. The
material balance constraints for the natural gas splitter are given by Equation
15 where mNGRef,h, mNGGT,h and mNGLiq,h [kg/s] denote the mass flow rates
of natural gas heading to the reforming, gas turbine and liquefaction sections
respectively in scenario h.

mNGRef,h = mNG,h · SNGRef,h,∀h ∈ {1, ..., s}
mNGGT,h = mNG,h · SNGGT,h,∀h ∈ {1, ..., s}
mNGLiq,h = mNG,h · SNGLiq,h,∀h ∈ {1, ..., s}

SNGRef,h + SNGGT,h + SNGLiq,h = 1.0,∀h ∈ {1, ..., s}
(15)

Liquified (S)NG train - Water Gas Shift 1

Tire-derived syngas heading to the methanation section can be upgraded
by diverting a portion of the stream to a WGS reactor. The overall conversion
in scenario h (cSNGWGS,h) is a decision variable . The water gas shift reaction
is presented in Equation 16, with the corresponding stoichiometric coefficient
of component i is denoted by νi,WGS.

CO + H2O −−⇀↽−− H2 + CO2 (16)

We assume that a stoichiometric amount of steam is used. Thus, the
molar flow rate of the steam stream (fWGS1 steam,H2O,h) is equal to the extent
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of the WGS reaction (ξMETHWGS,h [kmol/s]) as shown in Equation 17. The
term fWGS1 feed,i,h [kmol/s] denotes the molar flow rates of component i in
the feed streams to the WGS 1 reactor in scenario h. For the methanation
train, the extent of the WGS 1 reaction can be calculated using Equation 18.

fWGS1 steam,H2O,h = ξMETHWGS,h,∀h ∈ {1, ..., s}
fWGS1 feed,i,h = fTMETH feed,i,h + fWGS1 steam,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(17)

ξMETHWGS,h =
fWGS1 feed,CO,h · cSNGWGS,h

νCO,WGS

,∀h ∈ {1, ..., s} (18)

Mass balance constraints of the form of Equation 19 are then implemented
for the WGS 1 reactor where fWGS1 prod,i,h [kmol/s] denotes the molar flow
rates of component i in the product streams from the WGS 1 reactor in
scenario h.

fWGS1 prod,i,h = fWGS1 feed,i,h + νi,WGS · ξMETHWGS,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(19)

Syngas exiting the WGS 1 reactor then passes through a syngas cooler
before heading to the CO2 removal section.

Liquified (S)NG train - Selexol-based CO2 removal

The cooled syngas stream heads to the Selexol 1 unit for CO2 removal.
The coefficients of separation for each relevant component i (βSEL,i) are re-
gressed from data generated from the Aspen HYSYS simulation presented
in Table 11. Thus mass balances are implemented using Equation 20 with
the clean tire-derived syngas sent to the downstream synthesis section. The
terms fMETH in,i,h and fCO2 rich1,i,h [kmol/s] denote the molar flow rates of
component i in the streams heading to the methanation reactor and the CO2

rich stream from the Selexol 1 absorber respectively in scenario h.
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Component, i βSEL,i
CO 6.970 E-4
CO2 0.969
H2 8.440 E-4
CH4 8.200 E-5
H2O 0.998
CH3OH 5.026 E-3

Table 11: The coefficients of separation for each relevant component i in the CO2 removal
section.

fMETH in,i,h = (1.0− βSEL,i) · fWGS1 prod,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}
fCO2 rich1,i,h = βSEL,i · fWGS1 prod,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(20)

Liquified (S)NG train - Methanation

The clean tire-derived syngas stream heads to a TREMP methanation
process. Details of the process and the modeling strategy used are presented
in our previous work ([3]) and in [36]. A constraint (Equation 21) is imple-
mented to ensure that the tire-derived syngas composition heading to the
methanation reactor has a feed gas module Mh equal to 3.0 in order to max-
imize methane production [59].

Mh =
fMETH in,H2,h − fMETH in,CO2,h

fMETH in,CO,h + fMETH in,CO2,h

= 3.0,∀h ∈ {1, ..., s} (21)

The feed tire-derived syngas composition as well as all methanation op-
erating conditions are fixed, thus the overall conversion is constant. For this
reason, the production rate of methane (on a mass basis) in scenario h de-
noted by mSNG,h [kg/s] is implemented as a linear function (Equation 22) of
the molar flow rate of relevant components in the syngas feed stream. The
value of the coefficient βMETH is estimated from the Aspen Plus simulation
to be 0.488.

mSNG,h = βMETH ·(fMETH in,CO,h·MWCO+fMETH in,H2,h·MWH2 ,∀h ∈ {1, ..., s})
(22)
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Liquified (S)NG train - Blending and Liquefaction

The SNG product derived from methanation of tire-derived syngas is
first mixed with the corresponding (well) natural gas branch according to
Equation 23, where mToLNG,h is the mass of the mixed stream heading to the
liquefaction unit in scenario h.

mToLNG,h = mSNG,h +mNGLiq,h,∀h ∈ {1, ..., s} (23)

The mixed natural gas stream is then passed through a molecular sieve in
order to remove any remaining water to sub-ppm levels and 98.5 vol% of CO2.
Molecular sieves are designed to separate molecules based on differences in
polarity and molecular size as detailed in Ref. [60]. The stream is then
compressed to 55 bar in order to satisfy specifications for the natural gas
liquefaction process [34]. Mass balance is trivially satisified (Equation 24),
where mLNG is the mass of liquefied (synthetic or well) natural gas [kg/s].

mLNG,h = mToLNG,h, ∀h ∈ {1, ..., s} (24)

Methanol Train - Natural Gas Reforming

One of the three branches from the natural gas feed stream (of mass
in scenario h of mNGRef,h) heads to a methanol train. First, the natural
gas stream heads to a block termed the “Aggregate Natural Gas Converter”
which encompasses a preheater, pre-reformer, reformer, syngas scrubber and
compressor. Detailed descriptions of these units and the simulation strat-
egy are presented in our previous work [3, 4, 43]. The natural gas-derived
syngas mole flow rate in scenario h (fNGRefprod dry,i,h) is a linear function of
mNGRef,h (Equation 25). The mole fraction of component i belonging to the
component set I (xNGRefprod dry,i) is regressed from the Aspen Plus simulation
with the coefficients presented in Table 12. The term RS NG

MWNGRefprod dry
(where

MWNGRefprod dry is the molecular weight of natural gas-derived syngas and
RS NG is the ratio of the mass flow rates of clean natural gas derived-syngas
to the mass flow rate of the relevant natural gas branch) is also determined
from the simulation to be 0.196 [kmols−1NGRefprod dry/kgs−1NG].

fNGRefprod dry,i,h =
xNGRefprod dry,i ·RS NG ·mNGRef,h

MWNGRefprod dry

, ∀i ∈ I,∀h ∈ {1, ..., s}

(25)
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Component, i xNGRefprod dry,i
CO 0.228
CO2 0.082
H2 0.684

Table 12: The mole fractions of each relevant component i in natural gas-derived syngas
obtained from the rigorous Aspen Plus simulation

Methanol Train - Water Gas Shift 2

Following the corresponding branch from the tire-derived syngas, the
mass balance equations for the methanol train are similar to the correspond-
ing units in the methanation train. For completeness, the corresponding
equations are presented below but a description is not provided.

Water Gas Shift:

fWGS2 steam,H2O,h = ξMEOHWGS,h,∀h ∈ {1, ..., s}
fWGS2 feed,i,h = fTMEOH feed,i,h + fWGS2 steam,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(26)

ξMEOHWGS,h =
fWGS2 feed,CO,h · cMeOHWGS,h

νCO,WGS

,∀h ∈ {1, ..., s} (27)

fWGS2 prod,i,h = fWGS2 feed,i,h + νi,WGS · ξMEOHWGS,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(28)

Methanol Train - Syngas blending and Selexol-based CO2 removal

The tire and natural-gas derived syngas streams are blended in the ap-
propriate ratio for methanol synthesis (Equation 29), with fMEOH Blended,i,h

[kmol/s] denoting the molar flow rate of component i in scenario h in the
blended syngas stream heading to the methanol synthesis section.
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fMEOH Blended,i,h = fWGS2 prod,i,h + fNGRefprod dry,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(29)

The blended tire and natural gas-derived syngas stream then heads to a
Selexol unit for CO2 removal.

fMEOH in,i,h = (1.0− βSEL,i) · fMEOH Blended,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}
fCO2 rich2,i,h = βSEL,i · fMEOH Blended,i,h, ∀i ∈ I,∀h ∈ {1, ..., s}

(30)

Methanol Train - Methanol synthesis

The clean blended syngas stream heads to the methanol synthesis section.
The process description and the modeling approach used is presented in
[38, 61]. In order to maximize the production of methanol, a constraint on
the H2/CO ratio of the feed syngas composition is implemented (31).

fMEOH in,H2,h

fMEOH in,CO,h

= 2.0,∀h ∈ {1, ..., s} (31)

By-products consisting of higher alcohols and off-gases are sent to the
gas turbine for combustion and additional electricity generation [1]. The raw
methanol stream is purified to a specification of 99.5%. The feed syngas
composition as well as all methanol synthesis operating conditions are fixed,
thus the overall conversion is constant. For this reason, the production rate
of methanol (on a mass basis) denoted by mMeOH,h [kg/s] is implemented as
a linear function (Equation 32) of the molar flow rate of relevant components
in the syngas feed stream. The value of the coefficient βMEOH is estimated
from the Aspen Plus simulation to be 0.870.

mMeOH,h = βMEOH ·(fMEOH in,CO,h·MWCO+fMEOH in,H2,h·MWH2),∀h ∈ {1, ..., s}
(32)
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The produced methanol product could be further processed to DME,
olefins or sold as final product. The corresponding split fractions to each of
these sections is given by SDME,h, SMTO,h and SMeOHProd,h respectively, thus
the mass balance constraints are presented in Equation 33, wheremMeOH ToDME,h,
mMeOH ToMTO,h and mMeOH prod,h [kg/s] are the mass flow rates of methanol
heading to the DME, MTO and product sections respectively in scenario h.

mMeOH ToDME,h = mMeOH,h · SDME,h,∀h ∈ {1, ..., s}
mMeOH ToMTO,h = mMeOH,h · SMTO,h,∀h ∈ {1, ..., s}
mMeOH prod,h = mMeOH,h · SMeOHProd,h,∀h ∈ {1, ..., s}
SDME,h + SMTO,h + SMeOHProd,h = 1.0,∀h ∈ {1, ..., s}

(33)

DME synthesis

The feed methanol stream is dehydrated to produce DME. The process
description and modeling approach presented in [38, 62] is used and the DME
is purified to a specification of 99.5 mol%. The feed composition as well as
all operating conditions are fixed, thus the overall conversion is constant.
For this reason, the production rate of DME (on a mass basis) denoted by
mDME,h [kg/s] is implemented as a linear function (Equation 34) of the feed
mass flow rate of methanol. The value of the coefficient βDME is estimated
from the Aspen Plus simulation to be 0.615.

mDME,h = βDME ·mMeOH ToDME,h, ∀h ∈ {1, ..., s} (34)

Methanol to Olefins (MTO)

The methanol stream is dehydrated to produce ethylene, propylene and
other hydrocarbons. The process configuration and modeling approach pre-
sented in [40] is used. The olefin product is first sent to a DGA-based CO2

absorber before heading to a de-ethanizer column to remove ethylene, ethane
and other light gases from the propylene and heavier components. The lighter
stream heads to a de-methanizer and finally a C2-splitter to yield pure ethy-
lene with the rest of the off-gases sent to the gas turbine. The heavier com-
ponents are sent to a de-propanizer to yield propylene with the off-gases sent
to the gas turbine. The feed composition as well as all operating condi-
tions of all units in the MTO process are fixed, thus the overall conversion is
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constant. For this reason, the production rates of ethylene (methylene,h) and
propylene (mpropylene,h) [kg/s] are implemented as a linear functions (Equa-
tion 35) of the feed mass flow rate of methanol (mMeOH ToMTO,h). The value
of the coefficients βethylene and βpropylene are estimated from the Aspen Plus
simulation to be 0.070 and 0.062 respectively. Similarly, the mass of CO2

(mMTO CO2,CO2,h) [kg/s] produced in the MTO process scales linearly with
the mass flow rate of the feed methanol stream, with the corresponding co-
efficient βMTO CO2 estimated as 0.0035.

methylene,h = βethylene ·mMeOH ToMTO,h,∀h ∈ {1, ..., s}
mpropylene,h = βpropylene ·mMeOH ToMTO,h,∀h ∈ {1, ..., s}

mMTO CO2,CO2,h = βMTO CO2 ·mMeOH ToMTO,h,∀h ∈ {1, ..., s}
(35)

Gas Turbine

The relevant branches of the waste-tired derived syngas and natural gas
together with off-gases from methanol synthesis and the MTO processes
heads to a gas turbine for electricity generation together with compressed air
and nitrogen from the ASU as a diluent. The mass of CO2 (mFlue,CO2,h) [kg/s]
contained in the flue gas can be calculated by Equation 36, with the coeffi-
cients βNGGT,CO2 , βMETHoff,CO2 , βMTOoff,CO2 given by 2.680 [kgCO2/kgNG GT ]
0.157 [kgCO2/kgMEOH in] and 0.320 [kgCO2/kgMeOH ToMTO] respectively.

mFlue,CO2,h = (fTGT feed,CO,h·MWCO2+fTGT feed,CO2,h·MWCO2+fTGT feed,CH4,h·MWCO2)

+βNGGT,CO2·mNGGT,h+βMETHoff,CO2 ·mMEOH in,h+βMTOoff,CO2·mMeOH ToMTO,h

∀h ∈ {1, ..., s}
(36)

Air separation unit (ASU)

Oxygen of 99.5 mol% purity for the the gasification, reforming and Claus
processes is supplied by an ASU which is modeled according to the approach
detailed in [6]. The total mass of oxygen produced (mASU,O2,h) [kg/s] is given
by Equation 37, mClaus oxy,h denotes the total mass of oxygen fed to the Claus
process. The oxygen to tire ratio ROT and oxygen to natural gas ratio RONG
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which were considered as decision variables in our previous works ([4, 43])
are fixed in this work to be 0.91 and 0.95 respectively).

mASU,O2,h = mtire,h ·ROT +mNGRef,h ·RONG +mClaus oxy,h,

∀h ∈ {1, ..., s} (37)

DGA-based postcombustion CO2 capture

The split fraction of flue gas exiting the HRSG that heads to the DGA
section for postcombustion CO2 capture is given by SPostCCS,h while the split
fraction emitted is given by SPostEm,h. Thus, the mass flow rate of CO2

captured (mDGA,CO2,h [kg/s]) is given by Equation 38, while mGTEmitted,CO2,h

[kg/s] denotes the mass of CO2 in flue gas emitted. A CO2 capture rate cCCS
of 0.90 is assumed.

mDGA,CO2,h = SPostCCS,h ·mFlue,CO2,h · cCCS,∀h ∈ {1, ..., s}
mGTEmitted,CO2,h = SPostEm,h·mFlue,CO2,h+(1.0−cCCS)·SPostCCS,h·mFlue,CO2,h,

∀h ∈ {1, ..., s},
SPostCCS,h + SPostEm,h = 1.0, ∀h ∈ {1, ..., s}

(38)

CO2 compression, liquefaction & sequestration

The mass of CO2 removed in the Selexol 1, Selexol 2 and MTO pro-
cesses in scenario h (mPre,CO2,h [kg/s]) is calculated using Equation 39. The
split fraction of CO2 removed in these three sections sent to sequestration
(SPreCCS,h) determines the mass flow rate of CO2 sequestered (mPreCCS,h)
and emitted (mPreEmitted,h) [kg/s]. The corresponding split fraction emitted
is denoted SPreEm,h.
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mPre,CO2,h = fCO2 rich1,CO2,h·MWCO2+fCO2 rich2,CO2,h·MWCO2+mMTO CO2,CO2,h,

∀h ∈ {1, ..., s},
mPreCCS,h = SPreCCS,h ·mPre,CO2,h,∀h ∈ {1, ..., s}
mPreEmitted,h = SPreEm,h ·mPre,CO2,h, ∀h ∈ {1, ..., s}

SPreCCS,h + SPreEm,h = 1.0, ,∀h ∈ {1, ..., s}
(39)

The total amount of CO2 sequestered (mCCS,CO2,h) and emitted (mEmitted,CO2,h)
[kg/s] is given by Equations 40 and 41 respectively.

mCCS,CO2,h = mPreCCS,h +mDGA,CO2,h,∀h ∈ {1, ..., s} (40)

mEmitted,CO2,h = mGTEmitted,CO2,h +mPreEmitted,h,∀h ∈ {1, ..., s} (41)

Energy balance models

For each section u ∈ U listed in Table 6, the utility requirements in
scenario h are divided into low quality heat (QLQ,u,h), high quality heat
(QHQ,u,h), cooling water (QCW,u,h) and electricity (Wu,h) all in [MW]. Similar
to the approach of Chen et al. [41], heat sources available at temperatures
above 220 °C are considered high quality while all other sources are considered
low quality. QHQ,u,h and QLQ,u,h are positive if the corresponding section
generates net heat and negative if it consumes heat.

Gas Turbine

The total thermal input (on a LHV basis) to the gas turbine in scenario
h denoted QGTin,h [MW] is given by Equation 42, where QGTin,TDsyngas,h,
QGTin,NGGT,h, QGTin,METHoff,h, QGTin,DMEoff,h, QGTin,MTOoff,h denote the
contributions arising from the relevant tire-derived syngas branch, natural
gas branch, methanol synthesis offgases, DME synthesis offgases and MTO
offgases respectively. The values of βMETHoff · LHVMETHoff , βDMEoff ·
LHVDMEoff , and βMTOoff · LHVMTOoff are 2.602 [MJ/kgMEOH in], 0.023
[MJ/kgMeOH ToDME] and 1.854 [MJ/kgMeOH ToMTO] respectively.
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QGTin,TDsyngas,h = fTGT feed,CO,h·MWCO·LHVCO+fTGT feed,H2,h·MWH2·LHVH2

+ fTGT feed,CH4,h ·MWCH4 · LHVCH4 ,∀h ∈ {1, ..., s}
QGTin,NGGT,h = mNGGT,h · LHVNG, ,∀h ∈ {1, ..., s}

QGTin,METHoff,h = βMETHoff ·mMEOH in,h · LHVMETHoff ,∀h ∈ {1, ..., s}
QGTin,DMEoff,h = βDMEoff ·mMeOH ToDME,h · LHVDMEoff ,∀h ∈ {1, ..., s}
QGTin,MTOoff,h = βMTOoff ·mMeOH ToMTO,h · LHVMTOoff ,∀h ∈ {1, ..., s}

QGTin,h = QGTin,TDsyngas,h +QGTin,NGGT,h +QGTin,METHoff,h

+QGTin,DMEoff,h +QGTin,MTOoff,h,∀h ∈ {1, ..., s}
(42)

The electricity generated by the gas turbine in scenario h (WGT,h [MW])
is calculated using Equation 43; the gas turbine efficiency (ηGT ) is given by
0.468 as suggested by Chen et al. [42, 41].

WGT,h = ηGT ·QGTin,h,∀h ∈ {1, ..., s} (43)

The flue gas from the gas turbine then heads to a HRSG system for
additional heat recovery.

Heat Recovery Steam Generator (HRSG)

The amount of high quality heat recovered in the HRSG in scenario h
(QHQ HRSG,h [MW]) from flue gases exiting the gas turbine is expressed as
a linear function of the net work generated in the gas turbine as presented
in Equation 44, where the coefficient βHQ HRSG is estimated from the Aspen
Plus model to be 1.1272 [MWheat,HRSG/MWwork,GT ].

QHQ HRSG,h = βHQ HRSG ·WGT,h,∀h ∈ {1, ..., s} (44)

Other Sections

For all other sections, we assume that the QLQ,u,h, QHQ,u,h, QCW,u,h and
Wu,h values can be approximated by linear function of the characteristic
throughput (Fu,h in Table 6). This is presented in Equations 45, 46, 47 and
48 respectively with the coefficients βHQ,u, βLQ,u, βCW,u and βW,u presented
in Table 13.
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QHQ,u,h = βHQ,u · Fu,h,∀h ∈ {1, ..., s} (45)

QLQ,u,h = βLQ,u · Fu,h,∀h ∈ {1, ..., s} (46)

QCW,u,h = βCW,u · Fu,h,∀h ∈ {1, ..., s} (47)

Wu,h = βW,u · Fu,h,∀h ∈ {1, ..., s} (48)

The total amount of cooling water required in scenario h (QCW net,h)
[MW] is given by Equation 49

QCW net,h =
∑
u∈U

QCW,u,h,∀h ∈ {1, ..., s} (49)

62



Process Section, u βHQ,u βLQ,u βCW,u βW,u
[MW.F−1u,h]

Waste Tire Train
1. Aggregate Waste Tire converter 2.183 -0.438 4.973 -0.074
2. Air Separation Unit 0.0 0.0 0.0 -1.4760

Product train - (Synthetic) Natural gas
3. SNG train - Water Gas Shift 1 -25.6167 -38.9110 0.0 -0.4256
4. SNG train - Selexol 1 CO2 removal 0.0 0.0 4.4668 -4.3947
5. Methanation 6.0058 0.3216 0.9088 0.0
6. (Synthetic or well) NG Liquefaction 0.0 0.0 0.0 -1.0042
7. Aggregate Natural gas converter 1.9190 0.0 5.0035 -2.4156

Product train - Methanol, DME and olefins
8. MeOH train -Water Gas Shift 2 -25.6167 -38.9110 0.0 -0.4256
9. MeOH train - Selexol 2 CO2 removal 0.0 0.0 4.4668 -4.3947
10. Methanol synthesis & purification 0.0 -0.3999 4.0337 -0.0071
11. DME synthesis 0.0 -0.5425 1.7579 -0.0095
12. Methanol to Olefins 0.0 -0.1703 0.9674 -0.0556

Product train - Power generation
13. Gas Turbine 0.0 0.0 0.0 0.0
14. HRSG 0.0 0.0 0.0 0.0
15. Steam Turbine 0.0 0.0 0.0 0.0
16. Electric Plant Accessories 0.0 0.0 0.0 0.0

CO2 capture and miscellaneous
17. DGA CO2 removal 0.0 -6.2315 1.8839 -0.0339
18. CO2 compression, liquefaction & sequestration 0.0 0.0 0.4076 -0.0977
19. Miscellaneous 0.0 0.0 0.0 0.0
20. Water systems 0.0 0.0 0.0 0.0

Table 13: Coefficients for utility consumption calculations for relevant process sections

63



Steam Turbine

The excess high quality (QHQ net,h) and low quality heat (QLQ net,h) in
scenario h [MW] is given by Equations 50 and 51 respectively.

QHQ net,h =
∑
u∈U

QHQ,u,h, ∀h ∈ {1, ..., s} (50)

QLQ net,h =
∑
u∈U

QLQ,u,h,∀h ∈ {1, ..., s} (51)

This excess heat is used to generate steam which then produces work in
the steam turbine (WST,h) as presented in Equation 52, with the efficiency
of conversion of high quality (ηST,HQ) and low quality heat (ηST,LQ) given by
0.4407 and 0.1542 respectively as determined in [41].

WST,h = ηST,HQ ·QHQ net,h + ηST,LQ ·QLQ net,h,∀h ∈ {1, ..., s} (52)

The net work in scenario h (Wnet,h [MW]) generated by the polygeneration
system is given by Equation 53.

Wnet,h = WST,h +WGT,h −
∑

u∈U\{GT,ST}

βW,u · Fu,h,∀h ∈ {1, ..., s} (53)

Scale constraint

In order to keep the designed polygeneration system comparable with
previous work ([3, 44]), we constrain the total thermal input in any scenario
h (TILHV,h) to be less than 893 MW as illustrated in Equation 54.

TILHV,h = mtire,h · LHVtire +mNG,h · LHVNG ≤ 893, [MW]

∀h ∈ {1, ..., s}
(54)

Annual Operating Cost model

These can be subdivided into variable and fixed operating cost.

64



Variable Operating Cost

Variable operating costs for the different sections include feedstock costs
(other than waste tire and natural gas), solvent and catalyst costs as well as
waste disposal costs. In this work, we assume that these costs can be approx-
imated by linear functions of the characteristic throughput (Fu,h in Table 6).
Thus, the total variable annual operating cost in scenario h (OPEXvar,h in
[M$2018/yr]) is given by Equation 55, where the coefficients OPEXvar,u are
presented in Table 14 for relevant sections. The parameter PCW denotes the
cost of cooling water estimated to be 1.407E-4 [M$2018 · yr−1 · MW−1] [3].
We note that all costs are scaled to $2018 assuming a yearly inflation rate of
2.75%.

OPEXvar,h = (
∑
u∈U

OPEXvar,u ·Fu,h) +PCW ·QCW net,h,∀h ∈ {1, ..., s} (55)
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Process Section, u Feedstock cost Solvent cost Catalyst cost Waste costs Total (OPEXvar,u) Remarks
[$2018 · yr−1F−1u,h]

Waste Tire Train
1. Aggregate Waste Tire converter 7,125 898 5,229 29,220 42,472.16 Water makeup, Ash handling, sulfur removal, catalyst [43]
2. Air Separation Unit 0 0 0 0 0 -

Product train - (Synthetic) Natural gas
3. SNG train - Water Gas Shift 1 404,892 0 375,683 0 780,575 Catalyst and feed water cost [31]
4. SNG train - Selexol 1 CO2 removal 0 91,074 0 0 91,074 Solvent make up costs [31, 1]
5. Methanation 0 0 18,652 11,422 30,075 Catalyst and waste water treatment [63, 3]
6. (Synthetic or well) NG Liquefaction 0 0 0 0 0 0
7. Aggregate Natural gas converter 1,484 0 88,908 0 90,392 Steam feed and catalyst costs [6]

Product train - Methanol, DME and olefins
8. MeOH train -Water Gas Shift 2 404,892 0 375,683 0 780,575 Catalyst and feed water cost [31]
9. MeOH train - Selexol 2 CO2 removal 0 91,074 0 0 91,074 Solvent make up costs [31, 1]
10. Methanol synthesis & purification 0 0 0 5,279 5,279 Waste water treatment
11. DME synthesis 0 0 0 0 0 -
12. Methanol to Olefins 4,174 0 0 29,236 33,410 Feed and waste water costs [40]

Product train - Power generation
13. Gas Turbine 0 0 0 0 0 0
14. HRSG 0 0 0 0 0 0
15. Steam Turbine 0 0 0 0 0 0
16. Electric Plant Accessories 0 0 0 0 0 0

CO2 capture and miscellaneous
17. DGA CO2 removal 0 5,158 0 0 5,158 Solvent make up costs [3]
18. CO2 compression, liquefaction & sequestration 0 0 0 295,478 295,478 Transportation & sequestration costs [1]
19. Miscellaneous 0 0 0 0 0 0
20. Water systems 0 0 0 0 0 0

Table 14: Variable operating costs for the different sections including feedstock, solvent, catalyst and waste disposal costs.
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Fixed Operating Costs

Fixed operating costs include labor costs (operating and maintenance
labor), operating overhead and property taxes and insurance. We assume
that annual fixed operating costs in scenario h (OPEXfixed,h in [M$2018/yr])
scale linearly with the plants total thermal input (TILHV,h) as presented in
Equation 56, where the coefficient OPEXfixed,0 is estimated from Woods
et al. [31] to be 5,114 $2018·yr−1·MW−1 (scaled to $2018 assuming a yearly
inflation rate of 2.75%).

OPEXfixed,h = OPEXfixed,0 · TILHV,h,∀h ∈ {1, ..., s} (56)

Capital cost model

Each process section/piece of equipment can take on only one size from
a discrete set of equipment sizes. The discrete set of equipment sizes is
generated according to the approach of Chen et al. [19] as presented in
Equation 57, where Su,j is the jth choice of size of equipment u, SLBDu and
SUBDu are the lower and upper bounds on the size of equipment u (presented
in Table 15), and d is the number of equipment sizes available (i.e., the
cardinality of the discrete set of sizes) which is set to be 10 to keep the
problem tractable for global optimization solvers. We note that the lower
bound of capacity (SLBDu ) is taken to 0.0 for all sections.

Su,j = SLBDu +
j − 1

d− 1
· (SUBDu − SLBDu ), ∀u ∈ U, ∀j ∈ {1, ..., d} (57)

The capital cost associated with each Su,j (Capu,j [M$2018]) is given by
Equation 58, where Capu,0, Su,0 and sfu denote the base cost, base capacity
and scaling factor of section u (presented in Table 15). All costs are scaled
to $2018 using the CEPCI index method.

Capu,j = Capu,0 ·
(Su,j
Su,0

)sfu
, ∀u ∈ U, ∀j ∈ {1, ..., d} (58)

For each section u, a binary decision variable yu,j denotes whether the jth

choice for its size is selected or not, and y denotes a vector of these binary
decision variables. Equation 59 represents the constraint that only one size
can be selected.
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d∑
j=1

yu,j = 1, ∀u ∈ U (59)

The actual (designed) equipment size (Su) and corresponding capital cost
of each section (Capu [M$2018]) thus can be expressed as a function of the bi-
nary decision variables as presented in Equations 60 and 61 respectively. The
characteristic throughput value (Fu,h) through each process section in any
scenario h is constrained to be lower than the section’s capacity (Equation
63). We note that these constraints are linking (complicating) constraints as
they link first-stage and second-stage variables.

Su =
d∑
j=1

Su,j · yu,j, ∀u ∈ U (60)

Capu =
d∑
j=1

Capu,j · yu,j, ∀u ∈ U (61)

The total capital cost of the polygeneration system (Cap [M$2018]) is given
by Equation 62, where KL and KWC are factors representing the additional
costs associated with purchasing land and working capital (set at 2.0% and
5.0% respectively of the total equipment cost).

Cap = (KL +KWC) ·
∑
u∈U

Capu (62)

Fu,h ≤ Su, ∀u ∈ U,∀h ∈ {1, ..., s} (63)
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Process Section, u Ref. cost (Capu,0) [M$] Ref. Capacity (Su,0) Max. Capacity (SUBDu ) 1 Units Scaling factor Year Ref
Waste Tire Train

1. Aggregate Waste Tire converter 492.0 61.4 30.0 kg/s tire 0.7 2007 [43]
2. Air Separation Unit 250.8 2 49.4 50.0 kg/s O2 0.7 2007 [31, 64]

Product train - (Synthetic) Natural gas
3. SNG train - Water Gas Shift 1 20.8 2.236 5.0 kmol/s CO 0.7 2007 [31]
4. SNG train - Selexol 1 CO2 removal 61.5 3.241 3.0 kmol/s CO2 0.7 2010 [1, 65, 66]
5. Methanation 93.6 90.9 90.0 kg/s syngas 0.6 2007 [63], APEA
6. (Synthetic or well) NG Liquefaction 20.5 9.7 30.0 kg/s SNG 0.6 2018 [3], APEA
7. Aggregate Natural gas converter 53.7 18.1 25.0 kg/s natural gas 0.6 2017 [6]

Product train - Methanol, DME and olefins
8. MeOH train -Water Gas Shift 2 20.8 2.236 5.0 kmol/s CO 0.7 2007 [31]
9. MeOH train - Selexol 2 CO2 removal 61.5 3.241 3.0 kmol/s CO2 0.7 2010 [1, 65, 66]
10. Methanol synthesis & purification 91.7 90.0 120.0 kg/s syngas 0.65 2003 [67]
11. DME synthesis 34.0 11.0 35.0 kg/s MeOH 0.65 2003 [68]
12. Methanol to Olefins 330.1 62.5 35.0 kg/s MeOH 0.60 2012 [69]

Product train - Power generation
13. Gas Turbine 140.2 464 550.0 MW 0.7 2007 [31]
14. HRSG 57.6 522.9 600.0 MW 0.7 2007 [31]
15. Steam Turbine 63.6 263.5 500.0 MW 0.7 2007 [31]
16. Electric Plant Accessories 89.5 734.0 900.0 MW 0.6 2007 [31]

CO2 capture and miscellaneous
17. DGA CO2 removal 48.2 21.9 80.0 kg/s CO2 0.6 2016 APEA
18. CO2 compression, liquefaction & sequestration 7.8 43.2 80.0 kg/s CO2 0.6 2018 [3]
19. Miscellaneous 58.1 893 893 MW LHV 0.6 2018 [3], APEA
20. Water systems 75.6 419.2 800.0 MW 0.7 2007 [31]

Table 15: Reference capital cost data for the different sections. The reference rate corresponds to the same material or energy
stream as the characteristic throughput Fu,h in Table 6. 1 We note that the maximum capacity (Su,0) is tightened to the scale
of the process studied. 2 An additional 5.0% is added to the reference cost of [31] to account for the higher O2 purity of 99.5%
used [64]. APEA denotes Aspen Process Economic Analyzer.
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Feed and Product Prices & CO2 tax rates

The main text presents the feed and product prices & CO2 tax rates used
in the economic analysis.

Annual Net Profit Calculation

The annual revenues obtained from product sales in scenario h (RevAnnual,h
[M$2018.yr−1]) is given by Equation 64, where kLNG,NG is a factor that ac-
counts for the price premium of liquefied SNG compared to SNG (equal to
1.65) and PSulfur is the price of sulfur (equal to 0.11 [$/kg]), and top is the
annual plant operating time (equal to 7,446 hours, assuming 85% availabil-
ity).

RevAnnual,h =
top

1E6
·(kLNG,NG·PNG,h·mLNG,h+PElec,h·Wnet,h+PMeOH,h·mMeOH,h

+ PDME,h ·mDME,h + PEthylene,h ·methylene,h + PPropylene,h ·mpropylene,h+

PSulfur ·mCLAUS,S,h − PCO2,h ·mEmitted,CO2,h),

∀h ∈ {1, ..., s}
(64)

The annual tire and natural gas feedstock cost in scenario h (FeedAnnual
[M$2018/yr]) is given by Equation 65.

FeedAnnual,h =
top

1E6
· (PT ire,h ·mtire,h + PNG,h ·mNG,h)

∀h ∈ {1, ..., s}
(65)

The annual net profit in scenario h (Pronet,h [M$2018/yr]) is given by
Equation 66, where Rtax denotes the tax rate presented in Table 16.

Pronet,h = (1.0−Rtax)·(RevAnnual,h−FeedAnnual,h−OPEXvar,h−OPEXfixed,h),

∀h ∈ {1, ..., s}
(66)
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Reformulation-Linearization Technique (RLT) constraints

As discussed in the main text, the following RLT equations are imple-
mented to yield tighter convex relaxations for constraints given by Equations
14, 15, 33, 38, 39 respectively.

fTDsweet gas,i,h = fTMETH feed,i,h + fTGT feed,i,h + fTMEOH feed,i,h,

∀i ∈ I,∀h ∈ {1, ..., s}
(67)

mNG,h = mNGRef,h +mNGGT,h +mNGLiq,h,∀h ∈ {1, ..., s}
(68)

mMeOH,h = mMeOH ToDME,h+mMeOH ToMTO,h+mMeOH prod,h,∀h ∈ {1, ..., s}

(69)

mFlue,CO2,h = mDGA,CO2,h +mGTEmitted,CO2,h,∀h ∈ {1, ..., s}
(70)

mPre,CO2,h = mPreCCS,h +mPreEmitted,h,∀h ∈ {1, ..., s}
(71)

Optimization Problem Formulation

The optimal design and operation problem is formulated as a nonconvex
two-stage stochastic MINLP (Equation FP) where the expected Net Present
Value (NPV) is used as the objective function. The annual discount rate (r),
depreciation time (tdp), project lifetime (tlf ) are presented in Table 16.
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max
y,x1,...,xs

Eω[NPV] = Cap(y) ·
[
− 1 +

Rtax

r · tdp
·
(

1− 1

(1 + r)tdp

)]
+

s∑
h=1

ph · Pronet,h(xh,ωh) ·
[1

r
·
(

1− 1

(1 + r)tlf

)]
s.t. First-stage constraints: Capital cost model [Equations 57 - 62],

Second-stage constraints: Mass balance model [Equations 12 - 41]

Energy balance model [Equations 42- 53]

Operating cost model [Equations 55 - 56]

Annual net profit model [Equations 64 - 66]

Scale constraint [Equations 54]

RLT constraints [Equations 67 - 71]

Linking constraints: Throughputh ≤ Equipment Capacity [Equations 63]
(FP)

Parameter Value Ref
Base Year 2018
Plant lifetime (tlf ) 30 yrs [70, 1]
Working capital 5.0 % TPC 1 [71, 6]
Land 2.0 % TPC 1 [6]
Annual discount rate (r) 20 % [72]
Income Tax Rate (Rtax) 40.0 % [70, 1]
Depreciation period (tdp) 10 years [1]
Capacity factor 85% [1]

Table 16: Assumed economic parameters for calculation of NPV.

Scenario generation for computational studies

The number of scenarios considered for each uncertain parameter in the
computational study of Figure 2 in the main text is presented in Table 17.
The approach presented in Li et al. [12] is used to generate the scenario tree.
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s PNG,h PElec,h PMeOH,h PDME,h PEthylene,h PPropylene,h PT ire,h PCO2,h

2 1 2 1 1 1 1 1 1
4 1 2 2 1 1 1 1 1
8 1 2 2 1 1 1 2 1
16 2 2 2 1 1 1 2 1
32 2 2 2 2 1 1 2 1
64 2 2 2 2 1 1 2 2
128 2 2 2 2 2 1 2 2
256 2 2 2 2 2 2 2 2
384 2 3 2 2 2 2 2 2
576 2 3 3 2 2 2 2 2
864 2 3 3 2 2 2 3 2

Table 17: Number of scenarios considered for each uncertain parameter in the computa-
tional study of Figure 2 in the main text
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