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Abstract: The conventional seed-mediated preparation of multi-branched gold nanoparticles uses
either cetyltrimethylammonium bromide or sodium dodecyl sulfate. However, both surfactants
are toxic to cells so they have to be removed before the multi-branched gold nanoparticles can be
used in biomedical applications. This study describes a green and facile method for the preparation
of multi-branched gold nanoparticles using hydroquinone as a reducing agent and chitosan as a
stabilizer, through ultrasound irradiation to improve the multi-branched shape and stability. The
influence of pH, mass concentration of chitosan, hydroquinone concentration, as well as sonication
conditions such as amplitude and time of US on the growth of multi-branched gold nanoparticles,
were also investigated. The spectra showed a broad band from 500 to over 1100 nm, an indication of
the effects of both aggregation and contribution of multi-branches to the surface plasmon resonance
signal. Transmission electron microscopy measurements of GNS under optimum conditions showed
an average core diameter of 64.85 ± 6.79 nm and 76.11 ± 14.23 nm of the branches of multi-branched
particles. Fourier Transfer Infrared Spectroscopy was employed to characterize the interaction
between colloidal gold nanoparticles and chitosan, and the results showed the presence of the
latter on the surface of the GNS. The cytotoxicity of chitosan capped GNS was tested on normal
rat fibroblast NIH/3T3 and normal human fibroblast BJ-5ta using MTT assay concentrations from
50–125 µg/mL, with no adverse effect on cell viability.

Keywords: green synthesis; multi-branched gold nanoparticles; ultrasound; hydroquinone; chitosan

1. Introduction

Anisotropic gold nanoparticles are of interest in physics, chemistry, and optics, due to
their unique chemical and physical properties [1–5]. In addition, they are biocompatible
and less toxic [6–9]. Recently, multi-branched gold nanoparticles (GNS) attracted much
attention because of their absorption in the NIR region of the electromagnetic spectrum [10].
These applications are based on the LSPR phenomenon, caused by excitation with elec-
tromagnetic radiation of the NPs [11]. The characteristics of the LSPR band, including
the width, peak position, and intensity, are directly related to particles size, morphology,
and properties of capping agents [12]. Depending on the nature of the GNS, the absorp-
tion spectrum is composed of a weak band at 520–550 nm and a broad band between
700–1100 nm [10]. The band at the shorter wavelengths is attributed to the transverse
plasmon resonance, whereas the longitudinal component is at the longer wavelengths.
Due to the shape of the anisotropic particles, there are contributions to the plasmon reso-
nance spectrum from both the transverse and longitudinal directions, with the latter being

Processes 2021, 9, 112. https://doi.org/10.3390/pr9010112 https://www.mdpi.com/journal/processes



Processes 2021, 9, 112 2 of 16

predominant, as the core size decreased and the length of the arms increased. However,
in circumstances where the core diameters of the particles are longer than the arms, the
band broadening could be due to particle aggregation, where the neighbor core plasmon
resonance interact. Highly branched gold nanoparticles with small cores are character-
ized by broad and red-shifted LSPR maximum, with very weak or absent bands between
520–550 nm.

Multi-branched gold nanoparticles or gold nanostars are usually synthesized by the
seed-mediated method, in the presence of anionic or cationic surfactants [13,14]. They take
the role of shape-directing and capping agents to drive structural growth and prevent the
aggregation of gold nanoparticles. The presence of surfactants result in cellular toxicity
and they are also difficult to remove before the particles are used [15,16]. Many reports of
surfactants-free GNS in recent years [17,18] are mainly based on seed-mediated protocols.
The use of sodium borohydride, hydrazine, or trisodium citrate in seed-mediated synthesis
of GNS, results in cytotoxicity and they are harmful to the environment.

Recently, green chemistry has become a popular trend in a variety of fields, as it
offers a number of advantages, including safety, energy efficiency, and the production of
less toxic waste [19–21]. In green synthesis of nanoparticles, people evaluate and select
new nontoxic reductants, protecting agents, innocuous solvents from nature (leaf extract,
microorganism, or nature polymer) to replace toxic materials [22,23], and develop advanced
and energy-efficient techniques such as microwave and sonochemical methods [24,25].

Sonochemical effects are caused by acoustic cavitation in liquids with the creation and
collapse of bubbles. The collapse of the cavitation bubbles is more rapid than thermal trans-
port and generates “localized hot spots”, which have a temperature of 5000 K, pressures of
about 2000 atm and cooling rates of more than 109 K/s [26]. The advantages of using the
sonochemical approach include the production of high purity, uniform shape, high yields,
and cost effective synthesis of nanoparticles.

Several one-pot synthesis techniques of multi-branched gold nanoparticles were stud-
ied [27–29]. The advantages of these procedures are facile and free-surfactant synthesis but
just short-branches gold nanostars were formed (less than 10 nm branches). Sonochem-
ical synthesis is a popular method for spherical nanoparticles [30]. However, it is rarely
studied using ultrasound assist to synthesize gold nanostars, except reports of Badilescu
et al. [31]. In this work, we introduce a rapid and green preparation of multi-branched
gold nanoparticles using surfactant-free and seedless combined ultrasound (US) assisted
protocol. Chitosan (CS) was used as a stabilizer while hydroquinone (HQ) was used as the
reducing agent. CS is a polysaccharide derived from shrimps, crabs, and other crustaceans.
Due to its many advantageous properties such as biocompatibility, nontoxicity, low-cost,
biodegradability, and antimicrobial agent, CS has a number of commercial and biomedical
uses. Additionally, HQ has a variety of uses as a reducing agent that is soluble in water.
Furthermore, HA was used to replace a traditional reducing agent, ascorbic acid, which
could tune the adsorption of anisotropic gold nanoparticles towards the far NIR region [32].
Additionally, sonochemical or ultrasound assistance was applied to control the size and
shape, and enhance the stability of GNS.

2. Materials and Methods
2.1. Materials

Chloroauric acid (HAuCl4xH2O, ~52% Au basis), sodium hydroxide 97%; chitosan
(low molecular weight), hydroquinone 99%, phosphate buffer saline (tablet, pH 7.2–7.6),
acid acetic 99% were purchased from Sigma-Aldrich, St. Louis, Missouri, US. The materials
for cytotoxicity include Dulbecco’s Modified Eagle Medium (DMEM), Fetal Bovine Serum
(FBS), Bovine Calf Serum (BCS) were supplied by Sigma-Aldrich, Darmstadt Germany.
Thiazolyl blue tetrazolium bromide (MTT), and antibiotic solution (penicillin-streptomycin)
were supplied by Sigma-Aldrich, St. Louis, Missouri, US. Lysis buffer solution was pur-
chased from Biobasic, Markham, Ontario, Canada. Normal mouse fibroblast (NIH/3T3,
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CRL-1658) and normal human fibroblast (BJ-5ta, CRL-4001) were ordered from ATCC, Man-
assas, Virgina, US. Deionized (DI) water 17.8 MΩ was used throughout the experiments.

2.2. Methods
2.2.1. Surfactant-Free Preparation of Multi-Branched Gold Nanoparticles (GNS) by the
One-Step Method

First, 2 g chitosan (CS) powder was homogenized into a 98 g acid acetic 1% solution
to make CS 2% solution. Next, 1 mL of HAuCl4 2 × 10−2 M solution was added to 9 mL
chitosan solution, under stirring. This mixture was pH-adjusted by acetic acid. Finally,
hydroquinone (HQ) 0.1 M was mixed immediately into this mixture. The reaction solution
was kept constant for 30 min at room temperature. Throughout the period of reaction, the
color of the solution changed from colorless to cobalt blue, indicating that multi-branched
particles had formed. The influences of conditions including pH, mass concentration of CS,
hydroquinone concentration, and morphology of GNS were studied.

2.2.2. Surfactant-Free Preparation of GNS Combined Ultrasound

The procedure of preparation for the combined ultrasound (US) was similar to the
process above, except that the reaction solution was sonicated instead of being kept at
room temperature without stirring. Sonication was carried out using the Q2000 sonicator—
Qsonica, Newtown, Connecticut, US (power 1.375 watts, frequency 20 kHz). Chitosan-
coated GNS was synthesized at a constant frequency of 20 kHz and six different levels of
amplitude (0, 20, 40, 60, 80, and 100 µm) and six time-periods (0, 2, 4, 6, 8, and 10 min), in
order to investigate the effect of amplitude and sonication time on size, shape, and stability
of GNS.

2.2.3. Characterization

UV–Vis spectrophotometer Dynamica Halo RB-10 (Dynamica, Livingston, UK) was
used to record the surface plasmon resonance (SPR) of GNS in the wavelength range
of 400–1100 nm, at a scanning rate of 200 nm/min. The interaction between GNS and
CS was shown by FT-IR analysis (Bruker Tensor 27, Bruker Optics, Ettlingen, Germany).
All FT-IR results were obtained from the powder samples and smoothing or correction
baseline was not applied. The crystal structure of GNS was determined by employing
X-ray diffraction (XRD). Scanning was carried out in the 2 theta range of 20–100◦, using
the X-ray diffractometer Bruker D5005 (Bruker AXS, Karlsruhe, Germany). Transmission
electron microscope (TEM) analysis was examined by JEM1010-JEOL (Jeol, Tokyo, Japan).
The J-Image software (NIH Image) was used to calculate the average length of branches
as well as diameter of cores of GNS, based on thirty particles of each three sample from
the TEM images. All analyses including UV-Vis, FT-IR, XRD, and TEM, as well as the
cytotoxicity test below were carried out through separation from the same sample. The
GNS solutions were sonicated before examinations and measurements.

2.2.4. Cytotoxicity of Chitosan-Capped GNS

NIH/3T3 were cultured in DMEM (Dulbecco’s Modified Eagle Medium) supple-
mented with 1% penicillin–streptomycin (Pen–Strep) and 10% bovine calf serum (BCS),
while the BJ-5ta cells were in DMEM with 1% Pen–Strep and 10% FBS (Fetal Bovine Serum.
Both cell lines were grown in a humidified incubator with 5% CO2. The cell lines were
detached from the culture flasks using a trypsin (0.25%)—EDTA (0.53 mM) solution. Cell
viability was evaluated using thiazolyl blue tetrazolium bromide (MTT). Both cell lines
were seeded onto 96 well plates at 104 cells/well. CS-coated GNS was added to each well so
that the final concentration samples were 50, 75, 100 and 125 µg/mL. The negative control
subject was Lysis buffer. Cells were incubated for 24 h in an incubator (37 ◦C and 5% CO2).
Then, MTT solution (0.5 mg/mL) was added to each well. The plates were incubated at
37 ◦C for 4 h to form MTT formazan. Lysis buffer (4 mM HCl) was added to each well to
dissolve the crystallized MTT formazan.
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The plate absorbance (OD) was read at wavelength λ = 570 nm, using a Microreader.
Cell viability could be calculated and compared to the control samples, as follows:

% cell viability =
OD o f sample

OD o f negative control
× 100% (1)

3. Results and Discussion
3.1. One-Step Surfactant-Free Preparation of GNS
3.1.1. Effect of Mass Concentration of CS

Figure 1 shows that the UV–Vis result of GNS prepared in different mass concentration
of CS. According to previous reports, the absorption spectrum was a plasmon resonance
peak (SPR) ranging from 500 to over 1100 nm, indicating multi-branched particle presence.
The SPR absorbance of GNS shifted, depending on the size and shape [33]. An increase in
length of branches led to SPR shift toward the NIR region [34], while SPR absorbance moved
to blue shift, due to the short branched formations [35]. On the other hand, broadening and
increasing the maximum absorbance wavelength of SPR toward the NIR region suggested
a form of aggregation, due to the interaction of the spherical core of the particles with each
other [36]. It was clear that the intensity of SPR increased when the mass concentration of
CS was increased from the beginning, evaluating the concentration to 1%. However, the
SPR absorbance moved to the blue shift and the intensity of SPR decreased when mass
concentration increased to 2%. This could be related to an increase in the size of the core
particles. Table 1 describes the influence of % CS to SPR and intensity of SPR of GNS. At the
beginning, 0.25% CS both of the SPR and the intensity of SPR rose from 845 nm and 0.15,
to 875 nm and 0.18, respectively. With the increasing % CS, although the SPR increased
slightly to 878, the intensity of SPR reached the highest value at 0.33. However, both SPR
dropped to 667 nm and 877 nm, when % CS increased to 2. TEM images of GNS are shown
in Figure 2. The prepared GNS at 1% CS (Figure 2a) had an average core of 57.33 ± 5.91 nm,
and long, sharp branches with an average length of 44.32 ± 9.27 nm. Meanwhile at 1.5%
CS, the average length of the branches decreased to 20.71 ± 8.57 nm (Table 2).
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Table 1. The influence of mass concentration of chitosan to surface plasmon resonance and intensity
absorbance.

% CS (w/v) SPR (nm) Int. of SPR

0.25 845 0.15
0.50 875 0.18
1.00 880 0.33
1.50 667 1.04
2.00 877 0.21
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Table 2. The influence of mass concentration of chitosan on the morphology, average core and
branches of GNS.

% CS (w/v) Morphology Core (nm) Branches (nm)

1.00 Long multi-branches 57.33 ± 5.91 44.32 ± 9.27
1.50 Short multi-branches 51.38 ± 9.14 20.71 ± 8.57

3.1.2. Effect of pH

The role of pH on the formation of GNS was illustrated by UV–Vis absorption spectra
(Figure 3) and TEM images (Figure 4). There was a rise of SPR absorbance and intensity of
SPR, as pH 1.0 was adjusted to pH 1.5 and reached the highest value, 865 nm of absorbance
and 0.49 of intensity. The SPR and intensity of SPR significantly declined when pH was
adjusted to 2.0, 2.5, and finally 3.0. The SPR dropped to the lowest peak 833 nm, while
intensity went down to 0.04, following pH adjustment (Table 3). As per the UV–Vis spectra
and TEM examinations, the effect of both size of core and branches of multi-branched
particles on SPR absorbance was shown. Adjusting pH from 1.0 to 2.0, the SPR absorbance
spectra shifted to the NIR region and SPR intensity declined from 0.54 to 0.16. These
were contributed by an increase of size of core and prolongated branches (Table 4). At
pH 1.0, the GNS formed were short, multi-branch particles with 53.44 ± 8.30 nm average
core and 36.23 ± 8.84 nm branches (Figure 4a). At pH adjusted to 1.5, the prepared GNS
particles had elongated branches of 45.23 ± 10.03 nm (Figure 4a) and a core diameter
of 59.32 ± 8.08 nm. Meanwhile, when the pH increased to 2.0, and the branches of
GNS were short and unsharp (Figure 4b). At pH 3.0, a just, non-star shape were formed
(few branches particles) and aggregation of the core of nanoparticles was observed from
Figure 4c. Both TEM images and decrease in SPR intensity indicated that there was a
greater contribution to the adsorption spectrum because of the core aggregation than
the surface plasmon resonance from multibranches, at basic pH. The influence of pH to
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formation mechanism of gold nanoparticles could be explained by the relation between
pH and HQ, as a reducing agent [37]. HQ can reduce Au3+ ions to Au0 atoms by electrons
produced in the oxidation/reduction process. Oxidation/reduction is a reversible process
at equilibrium. At high acidic conditions (pH below 1.0), HQ could not reduce Au3+ to
Au atoms, in the absence of gold seeds, because there were not any produced electrons.
Adjusted to pH 1.5, few gold seeds appeared due to rapid reduced Au3+ ions. Furthermore,
the reversible reaction promoted some electrons that reduced Au3+ to Au+ ions. Under
protection of CS, Au+ attached to the gold seeds, and grew in anisotropic directions to
form multi-branched particles. However, at pH towards basic condition (pH upper 2.0),
the process became irreversible and was driven to the right. This promoted numerous
electrons and uncontrolled gold nanoparticles were synthesized.
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Table 3. The influence of pH to surface plasmon resonance and intensity absorbance.

pH SPR (nm) Int. of SPR

3.0 833 0.04
2.5 834 0.06
2.0 835 0.16
1.5 865 0.49
1.0 746 0.54

Table 4. The influence of pH to morphology, average core and branches of GNS.

pH Morphology Core (nm) Branches (nm)

1.0 Long multi-branches 53.44 ± 8.30 36.23 ± 8.84
1.5 Long multi-branches 59.32 ± 8.08 45.23 ± 10.03
2.0 Short multi-branches 55.66 ± 12.28 19.55 ± 9.60
3.0 Few branches 99.89 ± 16.84 34.83 ±13.22

3.1.3. Effect of Hydroquinone

Different volumes of HQ 0.1 M were adjusted to investigate the effect of HQ for
preparation of GNS. The absorption spectra of GNS prepared in a variety of HQ volume
are displayed in Figure 5. There was an increase of intensity of SPR, from 0.40 to 1.16,
and the SPR absorbance also shifted to 708 nm, as 1.0 to 2.0 mL of HQ volume was added
(Table 5). The intensity of SPR declined rapidly to 0.67 and 611 nm of SPR absorbance,
when amounts of 2.0 mL to 3.0 mL HQ 0.1 M were added, respectively. TEM micrographs
in Figure 6 revealed morphology of three samples of GNS. At low volume of HQ (2.0 mL
or less), GNS exhibited short multi-branched particles of 19.58 ± 5.19 nm, with an average
core of 51.22 ± 6.67 nm. The 2.0 mL HQ volume resulted in long, sharp branches of GNS.
The average branched length was 76.11 ± 14.23 nm and the core was 64.85 ± 6.79 nm.
However, the branches of GNS were shorter when the HQ volume increased to 3.0 mL. This
resulted in 55.15 ± 10.68 nm average core and 49.85 ± 7.42 nm in branched length (Table 6).
Additionally, TEM revealed to the interaction of core particles. The influence of volume of
HQ 0.1 M could be explained as follows. Gold seeds were first formed, then Au3+ ions were
reduced to Au+. Then, the Au+ ions attached to the gold seeds and grew in anisotropic
directions to form multi-branched particles. At low HQ, the electrons produced by the
reversibility of HQ was enough to promote seed-particles, meanwhile small amounts of
Au+ ions appeared. Therefore, the short multi -branched particles were synthesized. At
high HQ, not only seed particles formed but also all Au3+ changed to Au+ ions, resulting
in the formation of long and sharp multi-branched particles. However, if the HQ was too
high, many electrons were promoted, which led to an uncontrolled reaction [38].

Table 5. The influence of HQ to surface plasmon resonance and intensity absorbance.

Volume HQ 0.1 M (mL) SPR (nm) Absorbance

1.0 630 0.40
1.5 746 0.64
2.0 708 1.16
2.5 652 0.77
3.0 611 0.67
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Table 6. The influence of HQ on morphology, average core and branches of GNS.

Volume HQ 0.1 M
(mL) Morphology Core (nm) Branches (nm)

1.0 Short multi-branches 51.22 ± 6.67 19.58 ± 5.19
2.0 Long multi-branches 64.85 ± 6.79 76.11 ± 14.23
3.0 Long multi-branches 49.85 ± 7.42 55.15 ± 10.68

3.2. Ultrasound Combined Surfactant-Free Preparation of GNS
3.2.1. Effect of Sonication Amplitude

UV–Vis results (Figure 7) and TEM analysis (Figure 8) were used to study the effect
of amplitude sonication on the morphology and size of GNS synthesized in permanent
time sonication, for 5 min. It was noticeable that the intensity of SPR of sonicated GNS was
more intent than without the sonication handled sample. The intensity of SPR increased
from 0.26 to 0.53, while the SPR absorbance rose from 831 nm to 877 nm, due to the
changing amplitude from 20 to 60 µm (Table 7). Adjusting the amplitude to 80 µm, the
branches of multi-branched particles shortened dramatically to 27.88 ± 5.83 nm, while
the core diameter increased to 73.10 ± 24.66 nm. In addition, the aggregation of multi-
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branched particles was revealed due to the interaction of the spherical core with each
other. Additionally, both SPR absorbance and intensity of SPR still had a high value,
874 nm and 1.14, respectively. This could be assigned to the greater contribution of the
UV–Vis spectrum because of aggregation rather than the formation of surface plasmon
resonance branches. The intensity of SPR significantly declined to 0.80, when amplitude
was adjusted to d 100 µm, and the SPR absorbance fell to 690 nm. Synthesized GNS in
60 µm amplitude sonication have long and sharp multi-branches, whereas in prepared
GNS in higher amplitude, the branches were short and un-harp (Table 8). Sonication power
is the electrical energy supplied to the probe sonicator and transformed into mechanical
energy. This is executed by exciting the piezoelectric crystals moving in the longitudinal
direction, where the mechanical energy result in the probe vibrating up and down [39].
The stronger amplitude applied, the higher is the acoustic energy produced. When suitable
amplitude sonication was applied, the reduction of Au+ to Au0 were accelerated, which
resulted in higher reaction yields than without sonication-assisted sample, in the same
time reaction. Nevertheless, an overly strong amplitude generated a high acoustic energy
that led to uncontrolled rapid reduction, so the overall isotropic small particles reaction
dominated the over multi-branched anisotropic.
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Table 7. The influence of amplitude to surface plasmon resonance and intensity absorbance.

Amplitude (µm) SPR (nm) Absorbance

0 831 0.20
20 832 0.26
40 874 0.53
60 877 0.37
80 874 1.24

100 690 0.80

Table 8. The influence of amplitude sonication to morphology, average core and branches of GNS.

Amplitude (µm) Morphology Core (nm) Branches (nm)

60 Long multi-branches 62.08 ± 7.32 67.73 ± 22.73
80 Short multi-branches 73.10 ± 24.66 27.88 ± 5.83

100 Few branches 28.26 ± 3.66 8.99 ± 2.58

3.2.2. Effect of Sonication Time

Figure 9 (the UV–Vis results) and Figure 10 (TEM images) show the influence of time
sonication on the morphology and size of GNS prepared with a constant amplitude 50 µm.
Both intensity and SPR absorbance increased when a longer sonication time was applied,
and it reached the highest value at 6 min. Nevertheless, both decreased rapidly, despite a
prolonged time sonication. Table 9 indicates that the intensity from 0.32 rose to 1.15 and SPR
absorbance from 831 nm shifted to 833 nm, with an elongated time sonication of 6 min. The
SPR absorbance shifted to the NIR region because both the size of core and the branched
length increased. Synthesized GNS at 4 min exhibited an average branched length of
31.32 ± 7.62 nm and a core diameter of 52.02 ± 9.95 nm, that from 6 min had branches of
65.01 ± 11.39 nm and an average core of 75.34 ± 18.37. Intensity of SPR dropped to 0.44,
while the SPR shifted significantly down to 630 nm. The time sonication of 8 min resulted
in GNS with short and unsharp branches, besides, there was a rise of core diameter of
multi-branched particles due to the interaction of each particle. Meanwhile, longer time
sonication obtained gold nanoparticles that were short rod particles (Table 10). It is possible
that the influence of time sonication might be based on cavitation bubbles. Sonication for a
prolonged period that generated more cavitation bubbles led to an uncontrolled and rapid
reduction, due to higher acoustic energy. As a result, the gold nanoparticles had a smaller
core, and fewer and shorter branches were formed [40].

Table 9. The influence of time sonication to surface plasmon resonance and intensity absorbance.

US Time (min) SPR (nm) Absorbance

0 831 0.32
2 833 0.39
4 832 1.13
6 833 1.15
8 746 0.96
10 630 0.44

3.3. Investigation of Interaction between CS and GNS

The FT–IR of pure CS and CS-coated GNS spectra are shown in Figure 11. In the
spectrum of pure CS, there was a band at around 2883 cm−1 that corresponded to the
stretching vibration of the C-H groups. Two peaks located at 1649 cm−1 and 1324 cm−1

related to the C=O stretching vibration of amide I and C-N stretching of amide III, respec-
tively [41]. These bands confirmed the N-acetyl groups of CS [42]. The band at 1589 cm−1

corresponded to the bending vibration of the N-H groups (amide II) [42].
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Figure 10. TEM images of GNS prepared in different sonication time—(a) 6 min, (b) 8 min and (c) 10 min.

Table 10. The influence time sonication to morphology, average core and branches of GNS.

US Time (min) Morphology Core (nm) Branches (nm)

4 Long multi-branches 52.02 ± 9.95 31.32 ± 7.62
6 Long multi-branches 75.34 ± 18.37 65.01 ± 11.39
8 Short multi-branches 87.44 ± 11.08 18.65 ± 5.01
10 Short rod-shape - -

The FT–IR spectrum of CS-capped GNS was the shift of bands observed in pure
CS. The C-H stretching shifted to 2880 cm−1, while the bending of N-H bonds moved to
1557 cm−1. Additionally, stretching of C=O (amide I) and C-N (amide III) was located at
1642 cm−1 and 1310 cm−1. These shifts indicated the interaction between the functional
groups of CS and GNS [42].
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3.4. The XRD Diagram of GNS

Figure 12 is the XRD diagram of CS-coated GNS. The recorded pattern exhibited peaks
located at 38.0◦, 44.9◦, 65.2◦ and 77.4◦, which correspond to the (111), (200), (220), (311) and
(222) planes of the gold face-centered-cubic (fcc) crystalline structure, respectively [43]. It
was clear that there was an intense peak located at 38.0◦, which was indexed to the (111)
plane. Additionally, a weaker peak for the (200) plane at 65.2◦ and another at 77.3◦ for
the (311) plane was observed. Finally, a very weak peak located at 77.3◦ related to the
(311) plane.

3.5. Cytotoxicity of the CS-Capped GNS

Biocompatibility is an important property for biomedical applications. MTT assay
was used to study the cell compatibility of CS-coated GNS. The cell viability of normal rat
fibroblast (NIH/3T3) and normal human fibroblast (BJ-5ta), exposed to various concentra-
tions of multi-branched nanoparticles are shown in Figure 13. The proliferation of both
NIH/3T3 and BJ-5ta cell lines treated in various GNS concentration were still around 90%,
even at a high concentration of 200 µg/mL, except for BJ-5ta, which had a concentration of
over 82%. The results indicate that CS-coated GNS was a good biocompatible agent and
is a prospective material for use in biomedical applications. GNS have wide biomedical
applications in Raman scattering sensing [44], stem cell tracking [45], bioimaging [46],
photothermal treatment [47] and immunotherapy [48].
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4. Conclusions

This study presents a rapid and green preparation of GNS using the seedless, free
surfactant, and ultrasound-assisted method. The GNS particles obtained had long and
sharp multi-branches with an average core of 67.85 ± 6.79 nm and a branched length of
76.11 ± 14.23 nm, through an adjusted conditional reaction, such as pH, mass concentration
of CS, HQ concentration, as well as amplitude and time sonication. The influences of the
conditions above and properties of the prepared GNS were characterized using UV–Vis
absorption, FTIR, TEM, XRD, to determine the standard procedure for synthesizing GNS.
Furthermore, cytotoxicity of the CS-coated GNS were investigated by the MTT assay on
two cell lines, including NIH/3T3 and BJ-5ta. The results indicated that CS-coated GNS
was a biocompatible agent, due to its high cell viability. Multi-branched gold nanoparticles
are prospective materials not only for biomedical applications but also in cosmetics.
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