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Abstract: An investigation on the surface waviness of both the journal and the bearing bush and their
impact on the static characteristics of the hydrodynamic journal bearing is presented in this paper. The
finite difference method is introduced to solve a Reynolds equation and obtain the unknown pressure
field. The static characteristics, including the load carrying capacity, attitude angle, end leakage flow
rate and frictional coefficient are studied under different waviness parameters. The numerically
simulated results indicate that the waviness of the bearing bush may deteriorate or enhance the
bearing system, depending on the phase angle. The waviness of the journal causes periodic changes
in bearing behavior, owing to the alteration in the phase angle. The profile of the journal and bearing
surfaces near the attitude angle determines the performance of the bearing system.

Keywords: hydrodynamic journal bearing; surface waviness; finite difference method; static charac-
teristics

1. Introduction

Journal bearings have been widely used in the industry because of their advantages of
a low friction and high load capacity, as well as noise and vibration reduction. In engineer-
ing practices, it is impossible to manufacture perfect machine components, although highly
precise, accurate processing methods and equipment are available nowadays. Likewise,
surface waviness may occur during the manufacturing processes of journals and bearing
bushes. The effect of the shape errors of the journal and the bearing bush on the perfor-
mance of the bearing system is quite significant, since this determines the gap geometry
and hence the pressure generated.

A number of researchers focused their attention on examining the effect of a journal’s
shape errors on the characteristics of the bearing system, and lots of achievements have been
made [1–8]. Wilson [1] carried out an experiment to study the effect of a journal’s geometry
imperfections on hydrodynamic bearing performance characteristics. Mokhtar et al. [2,3]
theoretically and experimentally investigated the effect of the surface waviness parameters
of a journal on the static characteristics of hydrodynamic bearings. Chennabasavan and
Raman [4] examined the influence of a journal’s irregularities on the performance of porous
hydrodynamic bearings. Recently, the effect of a journal’s geometric irregularities, such
as in the barrel shape, bellmouth shape, circumferential undulations and the ideal shape,
on a hydrostatic bearing was studied in combination with the influence of a micropolar
lubricant [5], the influence of different pocket geometries [6], the influence of a non-circular
journal bearing [7], and the influence of a misaligned journal [8]. The studies [1–8] indicated
that the journal’s geometric irregularities have a great contribution to altering the bearing
performance. Therefore, more investigations need to be carried out to reveal the effect of a
journal’s geometrical irregularities on the bearing performance characteristics. However,
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as noted above, the studies were limited to a journal’s irregularities and neglected the effect
of waviness on the bearing.

In a practical situation, due to the limitations of processing equipment and process-
ing methods, surface waviness on the bearing bush cannot be eliminated completely.
A number of studies [9–18] examined the effect of bearing imperfections on the char-
acteristics of various bearing systems. Dimofte [9,10] evaluated the performance of a
three-wave journal bearing and revealed that the wave’s amplitude and position had a
significant influence on the bearing’s characteristics. Lin [11,12] examined the influence
of the width and height of the three-dimensional asperities on bearing performance in
a steady state. Ostayen et al. [13] analyzed the influence of the random track surface
waviness on the load capacity and flow rate of the thrust bearing. Kwan and Post [14]
demonstrated the sensitivity of the bearing’s load capacity and stiffness to manufacturing
errors. Rahmatabadi et al. [15] revealed that the static performance characteristics of a
lobed bearing were influenced by the bearing configurations. Furthermore, the effect
of the presence of surface waviness of the bearing bush in the circumferential and axial
direction [16–18] on the bearing system were analyzed. Zmarzly [19] showed the effect
of radial clearance values on the vibration level of a bearing system. However, the above
studies mainly focused on the effect of the bearing’s shape on bearing performances, and
the effect of the journal’s shape was neglected.

In recent years, certain literature investigated the influence of wear [20–23] and surface
roughness [24,25] on the behavior of a bearing system, and these studies indicated that
the surface morphology substantially affects the performance of journal bearing systems.
Some studies [26,27] analyzed the performance of the journal bearing with a partial surface
texture and revealed that the surface texture parameters and texture distribution have an
obvious influence on the behavior of bearing systems.

The bearing clearance, which is influenced by the surface shape of both the journal and
the bearing bush, significantly contributes to affecting the performance of a bearing system.
Hence, to improve the design of journal bearings with more accurately predicted data,
the surface profile of both the journal and the bearing should be taken into consideration
simultaneously. Jain and Sharma [28,29] revealed that the non-circularity of the bearing’s
and journal’s geometric imperfections significantly affect the performance of a bearing
system. Cui et al. [30,31] studied the influence of manufacturing errors on the static
characteristics of aerostatic porous journal bearings, and the numerical and experimental
results demonstrated that the bearing behavior was greatly affected by the wave amplitude
and spatial wavelength. Zoupas et al. [32] showed that manufacturing errors can greatly
affect the bearing performance. It was found that the investigation of the surface shape of
both the journal and the bearing bush and their effects on the bearing characteristics was
not sufficient.

As can be seen from the previous references, the geometric imperfections of journals
and bearing bushes significantly affect the performance of the bearing system. However,
to the author′s knowledge, there are not comprehensive studies considering the effects of
both the surface waviness of the journal and the bearing bush on the performance of the
hydrodynamic journal bearing. It is the aim of this paper to fill this gap. The numerical
modeling studies the effect of the phase angle, amplitude and wavelength of the surface
waviness of the journal and the bearing bush on the static performance of hydrodynamic
journal bearings.

2. Theoretical Analysis

The Reynolds equation was derived from the Navier–Stokes equations, and the follow-
ing assumptions were made. The laminar lubricant was isoviscous and incompressible and
neglected the external force and the inertia force. Meanwhile, a no-slip boundary was used,
and the velocity gradient was ignored except in the circumferential and axial directions. In
the condition of the presence of surface waviness of the journal and the bearing bush, the
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oil film thickness was very small compared with the bearing length and the width of the
bearing. Therefore, the Navier–Stokes equations reduce to the Reynolds equation.

For the journal bearings, the squeeze effects and the assumption that the bearing was
in a steady state are neglected. The Reynolds equation can be expressed as the following
form [2,4,11–13,15–18]:

∂

∂X

(
h3 ∂p

∂X

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= 6ηU

∂h
∂X

(1)

where η is the dynamic viscosity of the oil, X, Z are the Cartesian coordinates, h is the oil film
thickness, p is the oil film pressure and U is the velocity of the oil on the journal’s surface.

Let us use the dimensionless parameters

φ =
X
r

, λ =
Z

L/2
, H = h/c, p =

p
6Uηr/c2 (2)

The dimensionless Reynolds equation can be expressed as

∂

∂φ

(
H3 ∂P

∂φ

)
+

D2

L2
∂

∂λ

(
H3 ∂P

∂λ

)
=

∂H
∂φ

(3)

where L is the axial length of the bearing, D is the diameter of the bearing, c is the bearing
clearance, H is the dimensionless oil film thickness, P is the dimensionless oil film pressure
and φ and λ are the dimensionless Cartesian coordinates.

The influence of the surface waviness of the journal and the bearing bush on bearing
performance is mathematically modeled in the expression of the oil film thickness.

2.1. Oil Film Thickness

The journal bearing geometry configuration with surface waviness both on the journal
and the bearing bush is shown in Figure 1. The dimensionless oil film thickness is expressed
as follows:

H = 1 + ε cos φ + H1 + H2 (4)

where H1 indicates the change in the dimensionless oil film thickness due to the surface
waviness of the journal, H2 indicates the change in the dimensionless oil film thickness
due to the surface waviness of the bearing bush and ε is the eccentricity ratio.
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The effect of the surface waviness of the journal on the fluid film profile is expressed
as follows:

H1 = A1 cos[n1(φ− α1)] (5)

The effect of the surface waviness of the bearing bush on the fluid film profile is
expressed as follows:

H2 = −A2 cos[n2(φ− α2)] (6)

where n1 and n2 are the number of waves of the journal and the bearing bush, α1,α2 is the
angle between the wave trough and the attitude angle (θ), as shown in Figure 1, φ is the
angular coordinate starting from the attitude angle, and A1 and A2 are the journal and
bearing bush surface waviness amplitude ratios.

2.2. Finite Difference Method

The finite difference method was adopted to solve the Reynolds equation and gain
the film pressure distribution. First, the film in the bearing system is unfolded into a plane
from the attitude angle, and then the plane is equally meshed in the circumferential and
axial directions. The partial derivatives in the Reynolds equation can be represented by the
difference quotient of the pressure at each grid point, and the equations are transformed
into a set of algebraic equations. Then, according to the boundary conditions, the pressure
value at each node is iteratively obtained. By integrating the pressure value of the oil
film, the bearing capacity can be obtained, and then the other lubricating properties of the
bearing can be analyzed.

The partial derivatives in Equation (2) on each grid point (i,j) can be expressed as

∂
∂φ

(
H3 ∂p

∂φ

)
=

(
H3 ∂p

∂φ

)
i+1/2,j

−
(

H3 ∂p
∂φ

)
i−1/2,j

∆φ

= H3
i+1/2,j

pi+1,j−pi,j

(∆φ)2 − H3
i−1/2,j

pi,j−pi−1,j

(∆φ)2

(7)

∂
∂λ

(
H3 ∂p

∂λ

)
=

(
H3 ∂p

∂λ

)
i,j+1/2

−
(

H3 ∂p
∂λ

)
i,j−1/2

∆λ

= H3
i,j+1/2

pi,j+1−pi,j

(∆λ)2 − H3
i,j−1/2

pi,j−pi,j−1

(∆λ)2

(8)

Then, the following matrices can be obtained:

Ai,jPi+1,j + Bi,jPi−1,j + Ci,jPi,j+1 + Di,jPi,j−1 + Ei,jPi,j = Fi,j (9)

where
Ai,j = H3

i+1/2,j (10)

Bi,j = H3
i−1/2,j (11)

Ci,j = (
D
L

∆φ

∆λ
)

2
H3

i,j+1/2 (12)

Di,j = (
D
L

∆φ

∆λ
)

2
H3

i,j−1/2 (13)

Ei,j = Ai,j + Bi,j + Ci,j + Di,j (14)

Fi,j = ∆φ(Hi+1/2,j − Hi−1/2,j) (15)

The dimensionless film pressure Pi,j is expressed as

Pi,j =
Ai,jPi+1,j + Bi,jPi−1,j + Ci,jPi,j+1 + Di,jPi,j−1 − Fi,j

Ei,j
(16)
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where Ai,j, Bi,j, Ci,j, Di,j, Ei,j and Fi,j are coefficient matrices.

2.3. Boundary Conditions

The following boundary conditions are adopted to solve Equation (3):

P(φ, λ = ±1) = 0 (17)

P(φ1, λ) = 0 (18)

P(φ2, λ) = ∂P(φ2, λ)/∂φ = 0 (19)

where φ1 and φ2 are the angles of the start and end points of a hydrodynamic film for each
axial plane.

2.4. Static Characteristics Parameters
2.4.1. Dimensionless Load Capacity and Attitude Angle

The dimensionless load carrying capacity of the bearing can be established by using the
force balance. The dimensionless load components at x and z coordinates are expressed as

Fz = −
∫ 1

−1

∫ 2π

0
Pcos(θ + φ)dφdλ (20)

Fx = −
∫ 1

−1

∫ 2π

0
Psin(θ + φ)dφdλ (21)

And the attitude angle θ can be expressed by an iterative solution until the convergence
criterion is satisfied:

Fx

Fz
| ≤ 10−5 (22)

The total dimensionless load capacity is

F = Fz (23)

2.4.2. Dimensionless End Leakage Flow Rate

The dimensionless leakage flow rate from both ends of the plane of the bearing can be
represented by the following formula:

Q1 = −
∫ 2π

0
H3 ∗ ∂p

∂λ
|λ=1dφ (24)

Q2 = −
∫ 2π

0
H3 ∗ ∂p

∂λ
|λ=−1dφ (25)

The total dimensionless end leakage flow rate of the lubricant is expressed as

Q = Q1 + Q2 (26)

2.4.3. Frictional Coefficient

The circumferential frictional force on the journal surface can be calculated as

Fc = −
∫ L

0

∫ 2πR

0
(

h
2

∂p
∂x

+ η
U
h
)dxdz (27)

Then, the circumferential friction coefficient is expressed as

µ =
Fc

F
(28)
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3. Solution Procedure

Figure 2 describes the flow chart illustrating the solution procedure used in this
study. Initially the bearing parameters, the number of grids, the eccentricity ratio ε and the
tentative values of the attitude angle were input into the program. The governing equation
(Equation (3)) was solved, along with the oil film thickness equations and boundary
conditions defined in the earlier sections. The Gauss–Seidel method is adopted to obtain
film pressure distribution, and the iterative process will continue until the convergence, as
shown in Equation (29), is attained. k is the number of iterations in Equation (29). During
the entire process of the iterative calculation, the cavitation effect is considered by setting
all negative pressures to zero. The Newton–Raphson method is used to obtain the attitude
angle. The inner loop is used to ensure the convergence of the pressure distribution, while
the outside loop guarantees the convergence of the attitude angle. The iteration is repeated
until the required tolerance is satisfied, as indicated in Figure 2:

m
∑

i=1

n
∑

j=1
|P k+1

i,j − Pk
i,j

∣∣∣
m
∑

i=1

n
∑

j=1
|P k+1

i,j

∣∣∣ = Errp (29)
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For a vertical external load w, due to the presence of surface waviness on the journal
and bearing bush, the corresponding journal center equilibrium position (εθ) is not unique.
Therefore, it is difficult to illustrate the variation of the equilibrium position with the
external load. In this paper, the static characteristics of the bearing system were studied
under different eccentricity ratios.

4. Results and Discussion

To simulate the static characteristics of the hydrodynamic journal bearing, a model
was developed according to theoretical analysis and the solution procedure discussed in
the earlier section. In order to confirm the accuracy of the developed model, the simulated
results of the hydrodynamic journal bearings with no surface waviness on the journal and
the bearing bush from this model were compared with those found in [33]. Figure 3 shows
the comparison of the load capacity, altitude angle, circumferential friction coefficient
and dimensionless end leakage flow rate against the eccentricity ratio from this paper and
in [33]. It can be seen that the results of the hydrodynamic journal bearings from the present
work are in good agreement with those found in [33], which indicates the validation of the
numerical model proposed in this study.
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The bearing parameters and lubricant properties from the published paper are listed
in Table 1. The dimensionless bearing geometric parameters and the surface waviness
parameters of the present study are listed in Table 2.

Table 1. Bearing parameters and lubricant properties from [33].

Parameters. Value

Journal radius 30 mm
Bearing length 66 mm
Radial clearance 0.03 mm
Rotational speed 3000 r/min
Lubricant viscosity 0.009 pa s

Table 2. Dimensionless bearing′s parameters of the present study.

Parameters Value

r: Journal radius 30 mm
L: Bearing length 60 mm
c: Radial clearance 0.03 mm
n: Rotational speed 3000 r/min
g: Lubricant viscosity 0.0125 pa s
n1: Waviness number of journal 3, 6, 9
n2: Waviness number of bearing bush 3, 6, 9
Am1: Waviness amplitude of journal (1.2, 1.5, 1.8) µm
A1: Waviness amplitude ratio of journal (Am1/c) 0.04, 0.05, 0.06
Am2: Waviness amplitude of bearing bush (2.4, 3.0, 3.6) µm
A2: Waviness amplitude ratio of bearing bush (Am2/c) 0.08, 0.1, 0.12
α1: Waviness phase angle of journal [0–360/n1]
α2: Waviness phase angle of bearing bush [0–360/n2]

4.1. With Surface Waviness Only on the Journal or the Bearing Bush

The analysis for the effect of the surface waviness of the journal or the bearing bush
was conducted to compare the results with the ideal shaft and bearing bush. Figures 4 and 5
show the effect of the phase angles of the surface waviness of the journal α1 or bearing
bush α2 on bearing performance. The eccentricity ratio was 0.5. Due to the manufacturing
precision of the journal being higher in practice than that of the bearing bush, the wave
amplitude ratio of the journal was assumed to be 0.05 and the bearing bush was assumed
to be 0.1. α1 and α2 had the opposite effect on the bearing performance, as can be seen
from Figures 4 and 5. This is expected since the surface waviness of the journal and
the bearing bush had the opposite effect on the bearing clearance, as can be seen from
Equations (5) and (6). The bearing clearance changed the pressure distribution and then
affected the bearing performance. The variation of the bearing performance with phase
angles presented cosine curves, and the curve amplitude of the bearing bush was bigger
than that of the journal. This is because the amplitude of the surface waviness of the
bearing bush was greater than that of the journal, and the variation of clearance caused by
the bearing bush was greater than that of the journal. Furthermore, in cases where only the
bearing bush had surface waviness, the values of F, Q, µ and θ could be represented with
cosine curves with periods of 360/n2.

As can be seen from Figure 4a, near the phase angles α2 = 0 and α1 = 60◦, F gets
its minimum value, while Figure 5a shows that there existed phase angles α2 = 30◦ and
α1 = 0, approximately at which F took its minimum value. This is probably due to the
pressure near the attitude angle having a great contribution to the load capacity of the
bearing. When F reached its minimum value, the film thickness caused by the waviness
of the journal and the bearing bush was at its maximum near the attitude angle, and the
pressure generated by the film reached its minimum. Figure 6 shows the phase angles of
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the bearing bush and the journal, corresponding to the minimum value of F, and the value
of oil film reaching its maximum.
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2 : Waviness phase angle of bearing bush / 2[0-360 ]n  

4.1. With Surface Waviness Only on the Journal or the Bearing Bush 
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4.2. Effect of the Combined Waviness Phase Angle

In this section, the effect of the waviness phase angle of both the journal and the
bearing bush on the performance of the bearing were studied for four cases, namely
(n1= 3,n2= 3), (n1= 3,n2= 6), (n1= 6,n2= 3) and (n1= 6,n2= 6), and the eccentricity ratio
was 0.5. The wave amplitude ratio of the journal was 0.05, and for the bearing bush it was
0.1. The variation range of the waviness phase angle of the journal was from 0 to 360◦/n1,
and for the bearing bush it was from 0 to 360◦/n2.

4.2.1. Influence on Dimensionless Load Capacity

Figure 7 shows the dimensionless bearing load capacity F against the phase angles
of the surface waviness both on the journal α1 and the bearing bush α2 under four cases.
The noticeable observation from Figure 7a,c is that the value of F first increased and
then decreased with the change of α2 from 0◦ to 120◦, and it reached its maximum at
approximately α2= 60◦, which coincides with the changing trend of Figure 4a in the case of
n2 = 3. Similarly, the value of F in Figure 7b,d first decreased and then increased with the
change of α2 from 0◦ to 60◦, and it reached its maximum at approximately α2= 0◦, which is
similar to the changing trend in Figure 5a in the case of n2 = 6. The above change trends
of F were expected, since for any phase angle α1, the change trends of the film thickness
caused by α2 is similar with the situation of surface waviness only on the bearing, and
vice versa. Therefore, the change trends of F in the combined waviness condition against
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α2 were similar with the condition of surface waviness only on the bearing. Furthermore,
it can be observed from Figure 7 that the maximum pressure in the combined condition
was greater than either of the corresponding conditions. This is mainly due to the fact
that, in the combined surface waviness condition, the oil film was further reduced, and the
maximum pressure and F increased.
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4.2.2. Influence on Dimensionless End Leakage Flow Rate

The dimensionless end leakage flow rate Q against the phase angles of the surface
waviness of both the journal α1 and the bearing bush α2 under four cases are shown in
Figure 8. It is noted that the variation of Q in Figure 8a,c first increased and then decreased
with the change of α2 from 0◦ to 120◦, and it reached its maximum at approximately
α2= 60◦, which is consistent with the changing trend of Figure 4b in the case of n2 = 3. At
the same time, the variations of Q in Figure 8b,d are similar to those of Figure 5b in the
case of n2 = 6. The change trends of Q are similar to those of F in Figure 7, but they are not
completely consistency with them. The above phenomenon is probably due to the fact that
the value of Q was related to the oil pressure and section shape of the gap. The pressure
increased with the increase of F, and the value of Q was also increased. Meanwhile, the
value of Q was also affected by the clearance between the journal and the bearing bush.
Therefore, the variations of Q were similar to F, but not in full accord with it.
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4.2.3. Influence on the Friction Coefficient

Figure 9 shows the friction coefficient µ according to different phase angles of the
surface waviness on both the journal α1 and the bearing bush α2 under four cases. It
should be noticed from Figure 9 that the variation of µ is opposite to that of F in Figure 7.
This is mainly because, with the increase of F and the maximum oil pressure increase,
the minimum value of the oil film was zero, and therefor the pressure gradient increased.
However, the positive value and negative value of the pressure gradient counteracted each
other in the integration, and the variation of the friction force was much less than that of F,
as can be observed from Equation (27). According to Equation (28), the change trends of
the friction coefficient were opposite to those of F.

4.2.4. Influence on the Altitude Angle

Figure 10 shows the altitude angle θ against different phase angles of the surface
waviness on both the journal α1 and the bearing bush α2 under four cases. It is shown that
the variation of θ in Figure 10a,c first decreased and then increased with the change of α2
from 0◦ to 120◦ in the case of n2 = 3. In the meantime, the variation in Figure 10b,d first
increased and then decreased with the change of α2 from 0◦ to 60◦ in the case of n2 = 6.
This is due to the fact that the altitude angle θ was used to adjust the balance of the oil
pressure in the X direction, as can be seen in the schematic diagram in Figure 11. The oil
film thickness first decreased and then increased in the left-hand load line, and the oil
pressure first increased and then decreased when α2 changed from 0◦ to 120◦ in the case of
n2 = 3, as can be seen from Figure 6a. Therefore, to keep the balance of the oil force in the
X direction, the angle θ needed to first decrease and then increase.
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Figure 11. Schematic diagram of the oil pressure without surface waviness.

4.3. Effect of the Waviness Number

Figure 12 shows the bearing dimensionless load capacity F, dimensionless end leakage
flow rate Q, circumferential friction coefficient µ and altitude angle θ against the eccentricity
ratio under the same circumferential waviness amplitude ratio and different waviness
numbers. It can be seen that with the decrease of the waviness number, the range of change
for F, Q, µ and θ became more pronounced. This is mainly due to the fact that the curvature
radius of the oil film thickness and the pressure near the attitude angle increased with the
decrease of the waviness number. The results of the pressure integration near the maximum
value would increase with the reduction of the waviness number, and the results of the
pressure integration near the minimum value would decrease with the reduction of the
waviness number.
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4.4. Effect of the Waviness Amplitude

Figure 13 shows the bearing’s static performance against the eccentricity ratio under
the same waviness number and different waviness amplitude ratio. The variation tenden-
cies of F, Q, µ and θ against the eccentricity ratio were similar to those in Figure 12. As
the amplitude ratio increased, the maximum value of F increased and the minimum value
was basically unchanged. This is because the film thickness reduced with the increase of
the waviness amplitude ratio and film pressure increasing. The value of F increased with
the increasing film pressure. The variation trends of F, Q, µ and θ in Figure 13 against the
eccentricity ratio was explained in the previous section.

Processes 2021, 9, x FOR PEER REVIEW 17 of 20 
 

 

A1=0.06, A2=0.12

A1=0.05, A2=0.1

A1=0.04, A2=0.08

filled marker, max 
unfilled marker, min 

F

F

 

A1=0.06, A2=0.12

A1=0.05, A2=0.1

A1=0.04, A2=0.08

filled marker, max 
unfilled marker, min 

Q

Q

 

(a) (b) 

A1=0.06, A2=0.12

A1=0.05, A2=0.1

A1=0.04, A2=0.08

filled marker, max 

unfilled marker, min 



 

A1=0.06, A2=0.12

A1=0.05, A2=0.1

A1=0.04, A2=0.08

filled marker, max 
unfilled marker, min 



 

(c) (d) 

Figure 13. Variations of the maximum and minimum dimensionless bearing load capacity (a), 

dimensionless end leakage flow rate (b), friction coefficient (c) and altitude angle (d) with the ec-

centricity ratio under the same waviness number ( 1 6n = , 2 6n = ) and a different waviness am-

plitude ratio. 

5. Conclusions 

In the present study, the effect of the surface waviness on the bearing characteristics 

was investigated. The waviness of the journal and the bearing bush was modeled, and the 

waviness amplitude, waviness number and phase angles were taken into consideration. 

From the investigation, several conclusions can be drawn, and they are as follows: 

1. Journal bearings with waviness on the bearing bush may deteriorate or enhance the 

bearing characteristics, depending on the phase angle. A large waviness amplitude 

and small waviness number can further enhance the bearing characteristics. Such 

characteristics can be used to design bearings with high performance; 

2. In the case of combined or sole presence of surface waviness on the journal or bearing 

bush, the gap geometry near the attitude angle caused by the waviness of the journal 

and bearing bush greatly contributes to the pressure generated and hence determines 

the bearing performance; 
3. In the case of combining the journal and bearing bush surface waviness with the 

growth of the wave number, the maximum values of F , Q ,   and   will de-

crease while the minimum values will increase, and the bearing characteristics tend 

to be stable. With the growth of the wave amplitude ratio and the decrease of the 

wave number, the bearing characteristics will be greatly influenced, and the range of 

change of F , Q ,   and   becomes larger; 

Figure 13. Variations of the maximum and minimum dimensionless bearing load capacity (a), dimensionless end leakage
flow rate (b), friction coefficient (c) and altitude angle (d) with the eccentricity ratio under the same waviness number
(n1 = 6, n2 = 6) and a different waviness amplitude ratio.

5. Conclusions

In the present study, the effect of the surface waviness on the bearing characteristics
was investigated. The waviness of the journal and the bearing bush was modeled, and the
waviness amplitude, waviness number and phase angles were taken into consideration.
From the investigation, several conclusions can be drawn, and they are as follows:

1. Journal bearings with waviness on the bearing bush may deteriorate or enhance the
bearing characteristics, depending on the phase angle. A large waviness amplitude
and small waviness number can further enhance the bearing characteristics. Such
characteristics can be used to design bearings with high performance;
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2. In the case of combined or sole presence of surface waviness on the journal or bearing
bush, the gap geometry near the attitude angle caused by the waviness of the journal
and bearing bush greatly contributes to the pressure generated and hence determines
the bearing performance;

3. In the case of combining the journal and bearing bush surface waviness with the
growth of the wave number, the maximum values of F, Q, µ and θ will decrease while
the minimum values will increase, and the bearing characteristics tend to be stable.
With the growth of the wave amplitude ratio and the decrease of the wave number,
the bearing characteristics will be greatly influenced, and the range of change of F, Q,
µ and θ becomes larger;

4. The bearing with surface waviness on the journal thus generates periodic variations
in its characteristics, due to the alteration of α1. Regarding the trajectory of the
journal’s center, it would present periodic motion due to the change in load capacity,
which may be a factor that causes a whirling action. As such, when the journal has
a small waviness number, the journal’s center equilibrium position (εθ) generates
large periodic variations and damages the bearing’s stability. In order to improve the
stability of the journal bearing, the waviness amplitude ratio of the journal should be
controlled, and a small waviness number should be avoided;

5. The investigation in this paper presents initial research. Subsequent studies will
expand on it with other surface irregularities and 3D journal and bearing bush
morphologies. The research results indicate that the effect of surface waviness on the
bearing system needs further discussion, and the dynamic and transient characteristics
should be investigated.
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Abbreviations

c the bearing clearance (m)
h oil film thickness (m)
n rotational speed (r/min)
p oil film pressure (N/m)
o1, o2 journal and bearing center
η dynamic viscosity of oil (Ns/m2)
X, Z circumferential and axial coordinates
L axial length of the bearing (m)
D diameter of the journal (m)
pi,j oil film pressure matrices
H dimensionless oil film thickness
k iteration number
e eccentricity (m)
r journal radius (m)
ε eccentricity ratio (e/c)
θ attitude angle (rad)
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µ frictional coefficient
φ, λ coordinates (φ = X/r, λ = 2Z/L)
U linear velocity of the journal (m/s)
Fc frictional force (N)
Hi,j oil film thickness matrices
Fx, Fz load capacity in the X and Z directions
m1,m2 grid number in circumferential and axial coordinates
n1,n2 waviness numbers of the journal and bearing bush
Am1 Am2 waviness amplitude of the journal and bearing (m)
F, F load capacity (F = 2cF/ηUrL)
P dimensionless oil film pressure (pc2/6Uηr)
Q dimensionless end leakage flow rate (QL/cUr2)
φ1,φ2 angles of the start and end of the hydrodynamic film (rad)
Ai,j,Bi,j,Ci,j,Di,j,Ei,j,Fi,j coefficient matrices
A1,A2 journal and bearing bush surface waviness amplitude

ratio (A1 = Am1/c, A2 = Am2/c)
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