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Abstract: A new batch mode reactor was constructed to conduct continuous biodegradation of
3,5-dinitrosalicylic acid. Various types of matrices with immobilized Phanerochaete chrysosporium were
immersed in a solution containing pollutant and mineral nutrients. Three parameters were chosen to
optimize the process. The nitrate and nitrite ions concentrations and HPLC analysis were used to
prove the biodegradation of 3,5-dinitrosalicylic acid, and the mixed effects model using one-factor
ANOVA was used for statistical calculations. The results showed the correlation between the initial
pH, a medium composition, and the process time. In pH = 6.5, the degradation effectiveness was
estimated at 99% decrease in the substrate within 14 days, while an 80% decrease of acid concentration
was indicated in pH = 3.5 after 28 days of the process duration.
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1. Introduction

Nitroaromatic compounds have been produced and used primarily as explosives
materials for many years [1]. The presence of –NO2 groups determine their high toxic
and cancerogenic properties [2]. 3,5-Dinitrosalicylic acid (3,5-DNS acid) classified as a
hazardous waste and listed in the European Catalogue on Hazardous Waste with the codes
06.01.06 and 06.10.02.3 is one of the representatives of this chemical group [3]. 3,5-DNS
acid has been used for years as the main reagent in laboratories for the analysis of sugars
in reducing reactions [4]. The improper storage and utilization of 3,5-DNS acid influences
environmental pollution.

To minimize the contamination effect of nitroarenes on the environment, several meth-
ods were proposed. They were based on physicochemical and chemical reactions with
hydrogen peroxide or ozone, Fenton’s reagent in oxidation or UV radiation, incineration,
or sonolysis [5–9]. These processes are often supported by physical treatments like coag-
ulation, adsorption, or filtration [10]. The chemical and physicochemical methods have
limited efficiency and generate a high cost of utilization. Nevertheless, there is a group of
microorganisms which developed metabolic pathways for degradation of these pollutants.
The white rot fungi to which Phanerochaete chrysosporium has been classified produces
enzymes that are able to decompose nitroaromatic compounds including 3,5-DNS acid.
They can reduce nitro group to the amine derivative as well as divide the aromatic ring to
the aliphatic chain via enzymatic oxidation [11,12].

The aim of our research is to present a new process of 3,5-dinitrosalicylic acid degrada-
tion by Phanerochaete chrysosporium in a batch reactor that works at a micro-industrial scale.
The scientific literature reports that nitrocompounds, including 3,5-DNS acid, biodegrade in
stationary culture conditions. Our research allows for the improvement of biodegradation
efficiency as well as a reduction in time for the process.
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2. Materials and Methods
2.1. Materials
2.1.1. Biological Material

The microorganisms used in our research were Phanerochaete chrysosporium Burdsall
ATCC 34,511, which originated from the Lodz Centre Culture Collection (LOCK) and were
deposited in the Institute of Molecular and Industrial Biotechnology at Lodz University of
Technology.

The basidiomycete was inoculated and stored on the 3% agar maltose slants enriched
with 5 wt% of oat meals. Two weeks before starting the experiment, the strain was activated
in a wort medium (peptones 15 g/dm3, yeast extract 3 g/dm3, NaCl 6 g/dm3, and D(+)-
glucose 1 g/dm3) in the temperature 37 ◦C for one week in aerobic condition. Next, 5 cm3

of the Phanerochaete chrysosporium inoculum (OD 660 = 0.3) was added to each flask to allow
the biomass to grow before starting the flow culture experiment.

2.1.2. Immobilization Matrices

The matrices used in the continuous flow cultures for biomass immobilization were as
follows:

• Beech smoking chips of BROWIN Company, Poland, consisting of cellulose (41 wt%),
hemicellulose (33 wt%), lignin (22% wt%), and other substances (4 wt%) [13];

• Sugar beet pulp originating from sugar beet processes as the by-products used in the
form of a briquette which comprises carbohydrates (75 wt%) and nitrogen (9 wt%) [14];
and

• Polyurethane foam—block samples at sizes 1 cm3 × 1 cm3 × 1 cm3 of polyether polyol
foam (EUROFOAM Company). The polyurethane foam was free of nutrients. To
prepare the culture condition which could be compared to the samples including
the other matrices, it was necessary to enrich this culture with the source of polysac-
charides. The citrus peels were chosen as a natural source of dietary fibres (about
65 wt%) [15,16].

The Erlenmeyer’s flasks were filled up with 60% v/v matrices and soaked up in the
water (40% v/v). After sterilization (20 min in 121 ◦C under a pressure of 0.1 MPa), 5 cm3

of the Phanerochaete chrysosporium inoculum (OD 660 = 0.3) was added to each flask to
initiate the biomass growth before starting the flow culture experiment. The incubation
lasted 6 weeks in a temperature of 37 ◦C in aerobic condition.

2.1.3. The 3,5-Dinitosalicylic Acid

3,5-dinitrosalicylic acid (3,5-DNS) from Sigma-Aldrich (St. Louis, MO, USA) was used
in our research. Its CAS number was 609-99-4, and the purity was 98.4%.

2.2. Methods
2.2.1. Continuous Culture Condition

The biodegradation process was conducted at a micro-industrial scale in the batch
reactor (Figure 1) [17]. At the beginning, the peristaltic pump (2) was started by dispensing
the liquid dose onto the immobilizing matrix containing microorganisms. The matrix was
placed into the reactor (vessel 1) with a nominal capacity of 100 cm3.
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Figure 1. The bioreactor used in our studies: 1—reactor’s main chamber (vessel), 2—peristaltic pump,
3—aerator, 4—media container, 5—water bath, 6—inlet scrubber, 7—heating element, and 8—outlet
scrubber.

Simultaneously, four 500 cm3 containers (4) were filled with the chosen liquid media
(regular or enriched with mineral salts). The containers were placed in a water bath
while maintaining a constant temperature of 37 ◦C. Then, after 6 weeks of immobilizing
microorganisms, the peristaltic pump (2) supplied the medium from reactor (vessel) (1) to
the container (4) at initial volumetric flow equals 1.4 × 10−4 dm3/s. During the experiments,
the flow output was maintained at the same rate. In addition, an aerator (3) was used to
allow conduction of the process under aerobic conditions at both ports of the reactor at
the inlet (6) and outlet (8), respectively. The potassium manganate (VII) solution with a
concentration of 1 mol/dm3 was used to hold the air sterility.

Two types of media were applied during the experiment. The first medium (A)
consisted of distilled water, 0.1% v/v of the 3,5-DNS acid with the concentration of 4.0
× 10−3 mol/dm3, and 5.0 × 10−2 mol/dm3 citric buffer which allowed for starting the
cultures in various pH conditions: 3.5, 4.5, 5.5, or 6.5. The studies also considered three
immobilization matrices as the experimental samples: A1—medium A flowing beech
smoking chips; A2—medium A flowing a sugar beet pulp; and A3—medium A flowing
a polyurethane foam. The second medium solution (B) used in the process consisted of
the first medium (A) supplemented by the modified Czapek medium [18]. The potassium
nitrate was substituted by 1.0 g/dm3 ammonium sulphate. Additionally, the glucose
solution with an approximate concentration of 3.2 g/dm3 was added. The samples of this
experimental part were B1—medium B flowing the beech smoking chips; B2—medium B
flowing a sugar beet pulp; and B3—medium B flowing a polyurethane foam. After 28 days,
the process was stopped and the liquid samples were collected for chemical analyses.

2.2.2. Chemical Analysis

Every seven days, the samples were collected for chemical analysis. The pH measure-
ments were done using the Elmetron CP-505 pH-meter with temperature compensation.
The nitrate and nitrite ions concentrations were measured using QUANTOFIX test straps
at the concentration ranges 10–500 mg/dm3 of NO3

− and 1–80 mg/dm3 of NO2
−.
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The High-Performance Liquid Chromatography (HPLC) Analysis of 3,5-DNS Acid

The samples were subjected to liquid–liquid extraction against ethyl acetate (analytical
grade, POCH) three times in 2:1 liquid–extractant ratio. Then, the extract was evaporated
under a vacuum and dissolved in acetonitrile (HPLC grade, SIGMA-ALDRICH). The
extracted 3,5-DNS acid was analysed using a Dionex 5110 with C18 RP Phenomenex
250 mm × 4.60 mm × 5 µm column with a detector Dionex UVD 340S set to λ = 210 nm.
Mobile phase (isocratic conditions) consisted of 0.1% acetic acid solution (HPLC grade,
SIGMA-ALDRICH) of ultrapurified water and acetonitrile (HPLC, SIGMA-ALDRICH) in a
30:70 ratio.

2.3. Statistical Calculations

The statistical calculations and presentation of the results were done using Statictica
12 (StatSoft, Tulsa, OK, USA).

3. Results and Discussion

To optimize the process, we focused on three factors: the type of immobilization
matrix, the mineral composition of the liquid media, and the initial culture acidity (pH).

The results obtained in our research proved that the initial composition of the process
medium and its initial acidity significantly influenced the biodegradation effect (Figure 2).
In strongly acidic conditions (pH = 3.5), the degradation process was not effective within
the investigated time while an initial pH higher than 4.5 intensified the process. The most
effective decomposition of 3,5-DNS acid (over 90%) was observed at the second week of
the process in the samples with initial pHs 5.5 and 6.5. The results showed that the type of
immobilization matrix did not determine the process effectiveness significantly.

Figure 2. The 3,5-dinitrosalicylic acid (3,5-DNS acid) decrease after biodegradation process.

In our previous research concerning 3,5-DNS acid biodegradation by Phanerochaete
chrysosporium in stationary condition cultures, the substrate’s concentration decreased after
the third week of the process [19]. The most effective degradation level did not exceed 55%
of the initial concentration of 3,5-DNS acid (8 × 10−4 mol/dm3).

To prove 3,5-DNS acid is decomposed by basidiomycetes, we started with the iden-
tification of nitrate and nitrite ions that should appear in the medium solution during
biodegradation. Figures 3 and 4 show the tests results which confirm high both nitrate and
nitrite ions concentrations levels in the enriched medium cultures in which the initial pHs
were 5.5 and 6.5.
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Figure 3. The nitrate ions concentration levels in various process conditions.

Figure 4. The nitrite ions concentration levels in various process conditions.

The HPLC analyses confirmed the presence of intermediate products of 3,5-DNS acid
(1) which appeared during the enzymatic decomposition (Table 1).

There were two possibilities of the 3,5-DNS acid initial decomposition (Figure 5): by
C1 ring decarboxylation or by the reduction of the −NO2 group linked to C3 in an acid
molecule [20]. The by-products that appeared were 3-amino-5-nitrosalicylic acid (2) and 2,4-
dinitrophenol (3). The 2-amino-4-nitrophenol appeared as the third common by-product
(4). Next, the nitro groups linked to C5 and C6 were replaced by the hydroxyl groups
which caused the appearance of the 1-amino-2,4,5-trihydroxybenzene (5). The next step in
the enzymatic oxidation was ring decomposition to the aliphatic chain by-products.
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Table 1. The compounds identified during various stages of 3,5-DNS acid biodegradation.

No m/z Retention Time [min] Name of Substrate and by Products

1 227 1.86 the 3,5-dinitrosalicylic acid
2 197 2.74 the 3-amino-5-nitrosalicylic acid
3 183 2.16 the 2,4-dinitrophenol
4 153 2.24 the 2-amino-4-nitrophenol
5 141 2.31 the 1-amino-2,4,5-trihydroxybenzene
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Figure 5. The 3,5-disalicilic acid degradation pathway Phanerochaete chrysosporium.

The enzyme system of Phanerochaete chrysosporium characterized by broad spectrum
enzyme production consisted of membrane-bound cyto-chrome P450-related proteins,
dioxygenases, nitrobenzene nitroreductase (E.C. 1.7.1.16), lignin peroxidase LiP (E.C.
1.11.1.14), manganese-dependent peroxidase MnP (E.C. 1.11.1.13), and laccase (E.C.1.10.3.2)
that catalyse the decomposition of chloropesticides, nitroarenes, or aryl alcohols [21–24].
Lignin peroxidase (LiP) synthesized by Phanerochaete chrysosporium is one of the enzymes
directly involved 3,5-DNS acid biodegradation which dominated in the first stages of
molecule oxidation by 3-amino-5-nitrosalicylic acid or 2,4-dinitrophenol to obtain 2-amino-
4-nitrophenol.

The process was intensified by the presence of nutrients in the culture medium such
as cellulose and hemicelluloses as well as aromatic alcohols that may have been released
through the breakdown of lignin [25]. The alcohols could slow down the catalytic decom-
position of 3,5-DNS acid due to the co-substrates of enzymes degrading nitrocompounds.
The presence of Mn(II) ions influenced biomass growth as well as manganese-dependent
peroxidase (MnP) and lignin peroxidase (LiP) synthesis and their activities [26,27].

In order to confirm the hypothesis concerning the influence of three chosen parameters
on 3,5-DNS acid biodegradation, statistical calculations were also performed. The first-
order (noninteractive) ANOVA main effects analysis as well as the post-hoc Duncan’s test
were used. The results proved that the medium composition, the initial pH, and the type
of matrix significantly influenced the changing substrate concentrations during the process
(Figure 6).

The chemical analyses and statistic calculations proved that parameters like the type
of immobilization matrix, the mineral composition of the liquid media, and the initial pH
caused high process effectiveness conducted in the batch reactor.
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4. Conclusions

The results obtained in our research proved that Phanerochaete chrysosporium is able
to degrade 3,5-dinitrosalicylic acid. Phanerochaete chrysosporium was able to decompose
3,5-dinitrosalicylic acid under proper conditions to fully degrade a 4 × 10−3 mol/dm3

solution of the substrate within 14 days. The reactor was operated in aatch mode until the
assumed reduction of the 3,5-dinitrosalicylic acid was achieved.

All the tested parameters (the mineral composition, the initial pH of the cultures, as
well as the type of immobilization matrix) were important for efficient biodegradation. The
most effective results of the biodegradation in a batch mode reactor working at a micro-
industrial scale guaranteed the culture condition in the enriched medium with an initial
pH of 6.5 with microorganisms immobilized on the sugar beet pulp and the polyurethane
foam. The obtained results are fundamental for implementing the process on the industrial
scale and for application in wastewater treatment.

Author Contributions: Conceptualization, R.M. and E.S.; methodology, R.M. and E.S.; software,
M.S. and R.M.; validation, M.S. and R.M.; formal analysis, R.M., M.S., and W.S.; investigation, R.M.;
resources, R.M. and E.S.; writing—original draft preparation, E.S., R.M., and T.P.O.; writing—review
and editing, E.S. and T.P.O.; visualization, E.S. and R.M.; supervision, E.S.; project administration,
R.M. and E.S. All authors have read and agreed to the published version of the manuscript.
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19. Madaj, R.; Kalinowska, H.; Sroczyński, W.; Szeląg, J.; Sobiecka, E. Biodegradation of 3,5-dinitrosalicylic acid by Phanerochaete

chrysosporium. Folia Biol. Oecologica 2018, 14, 14–22. [CrossRef]
20. Spain, J.C. Biodegradation of Nitroaromatic Compounds. Annu. Rev. Microbiol. 1995, 49, 523–555. [CrossRef]
21. Mougin, C.; Pericaud, C.; Dubroca, J.; Asther, M. Enhanced mineralization of lindane in soils supplemented with the white rot

basidiomycete Phanerochaete chrysosporium. Soil Biol. Biochem. 1997, 29, 1321–1324. [CrossRef]
22. Brahushi, F.; Kengara, F.O.; Song, Y.; Jiang, X.; Munch, J.C.; Wang, F. Fate Processes of Chlorobenzenes in Soil and Potential

Remediation Strategies: A Review. Pedosphere 2017, 27, 407–420. [CrossRef]
23. De, S.; Perkins, M.; Dutta, S.K. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete

chrysosporium. J. Hazard. Mater. 2006, 135, 350–354. [CrossRef]
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