
A 2-stage Approach to Parameter Estimation of Differential Equations using
Neural ODEs

Authors:

William Bradley, Fani Boukouvala

Date Submitted: 2021-11-07

Keywords: Neural ODEs, Neural-Networks, parameter estimation, Nonlinear programming

Abstract:

Modeling physio-chemical relationships using dynamic data is a common task in fields throughout science and engineering. A common
step in developing generalizable, mechanistic models is to fit unmeasured parameters to measured data. However, fitting differential
equation-based models can be computation intensive and uncertain due to the presence of nonlinearity, noise, and sparsity in the data,
which in turn causes convergence to local minima and divergence issues. This work proposes a merger of Machine Learning (ML) and
mechanistic approaches by employing ML models as a means to fit nonlinear mechanistic ODEs. Using a two-stage indirect approach,
Neural ODEs are used to estimate state derivatives, which are then used to estimate the parameters of a more interpretable
mechanistic ODE model. In addition to its computational efficiency, the proposed method demonstrates the ability of Neural ODEs to
better estimate derivative information than interpolating methods based on algebraic data-driven models. Most notably, the proposed
method is shown to yield accurate predictions even when little information is known about the parameters of the ODE equations. The
proposed parameter estimation approach is believed to be most advantageous when the ODE to be fit is strongly nonlinear with
respect its unknown parameters.

Record Type: Postprint

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0802
Citation (this specific file, latest version): LAPSE:2021.0802-1
Citation (this specific file, this version): LAPSE:2021.0802-1v1

Powered by TCPDF (www.tcpdf.org)

1

A 2-stage Approach to Parameter Estimation of Differential Equations using Neural ODEs 1

William Bradley, Fani Boukouvala* 2

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology 3

311 Ferst Dr., N.W. Atlanta, GA, 30332-0100 USAAbstract 4

Modeling physio-chemical relationships using dynamic data is a common task in fields throughout science 5

and engineering. A common step in developing generalizable, mechanistic models is to fit unmeasured 6

parameters to measured data. However, fitting differential equation-based models can be computation 7

intensive and uncertain due to the presence of nonlinearity, noise, and sparsity in the data, which in turn 8

causes convergence to local minima and divergence issues. This work proposes a merger of Machine 9

Learning (ML) and mechanistic approaches by employing ML models as a means to fit nonlinear 10

mechanistic ODEs. Using a two-stage indirect approach, Neural ODEs are used to estimate state derivatives, 11

which are then used to estimate the parameters of a more interpretable mechanistic ODE model. In addition 12

to its computational efficiency, the proposed method demonstrates the ability of Neural ODEs to better 13

estimate derivative information than interpolating methods based on algebraic data-driven models. Most 14

notably, the proposed method is shown to yield accurate predictions even when little information is known 15

about the parameters of the ODE equations. The proposed parameter estimation approach is believed to be 16

most advantageous when the ODE to be fit is strongly nonlinear with respect its unknown parameters. 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

Keywords: Neural ODEs; Neural-Networks; parameter estimation; Nonlinear programming; Time series 30

data 31

* Correspondence for this paper: fani.boukouvala@chbe.gatech.edu

2

1. Introduction 32

A truly optimal workflow for model-building is one that properly leverages available data resources, 33

domain-knowledge resources, and computational resources. The first two of these can be maximized 34

through mechanistic approaches, where hypotheses based on first principles knowledge are used to 35

formulate mechanistic models, which can be fit and validated with fewer experiments than purely 36

empirical approaches. However, sufficient first principles understanding is often lacking, and this hinders 37

the formulation of accurate mechanistic models. Moreover, when they are available, accurate models tend 38

to require excessive compute time for fitting of their parameters, simulation, and optimization. Data-39

driven models, on the other hand, tend to be computationally efficient, but require either too much data or 40

have too little interpretability to solve many scientific problems.1 Due to the contrasting yet 41

complementary strengths of data-driven and mechanistic approaches to model-building, many authors 42

have sought to combine these paradigms in ways that increase interpretability and lower data 43

requirements.2-4 Readers interested in a comparison of data-driven, mechanistic, and hybrid approaches 44

to model-building are encouraged to consult recent surveys.5-7 45

 46

Ultimately, mechanistic models offer the greatest interpretability and thus methods that efficiently regress 47

parameters of mechanistic models, especially those formulated as differential algebraic equations, would 48

facilitate vetting of model formulations when there is a high degree of uncertainty in the parameter 49

values. Yet despite decades of increasing computational power, fitting and simulation of differential 50

equation (DE) models remains computationally challenging for many systems of interest. The primary 51

methods for fitting nonlinear ODE models include ‘direct’ approaches such as the nonlinear least squares 52

(NLS),8-11 principle differential analysis,12-14 and direct Bayesian15, 16 and Gaussian Process-based 53

methods.17-21 Following the nomenclature of 22 the direct NLS procedures can be further divided into 54

sequential and simultaneous approaches. 55

 56

Also known as the constrained or non-feasible path approach, the simultaneous approach avoids 57

integrating the differential equations (DEs) repeatedly. For example, multiple shooting is a simultaneous 58

approach which breaks up the state trajectory into linked stages or intervals, parameterized by polynomial 59

basis functions.23-26 Alternatively, using collocation methods the state profiles are approximated using 60

polynomials connected on finite elements.11, 27 In these algebraic nonlinear programs (NLPs), the 61

parameters of the polynomial functions are solved simultaneously along with the parameters of the 62

differential equations. Especially the latter approach is frequently used when solving a boundary value or 63

optimal control problem as it offers a straightforward way to incorporate inequality or path constraints 64

and can be solved even when initial parameter guesses cause the differential equations to diverge upon 65

3

integration. However, due its large formulation, it is less frequently used to solve initial value problems 66

(IVPs).22 67

 68

For the unconstrained, or sequential, NLS, the DEs are integrated repeatedly during training. The 69

forward solution from integration is used to calculate the error between the DE model predictions and true 70

data. The gradients of the computed error or loss function are calculated to give the optimizer the 71

direction parameters should be updated at each iteration. Unconstrainted NLS is the version of the direct 72

approach used in this work. A comparison of strategies for integration and parameter estimation using the 73

direct approach can be found in 28. 74

 75

However, the direct approach has several weaknesses, including poor rate of convergence for highly 76

nonlinear systems and potential to converge to local minima.29, 30 This can be ameliorated somewhat via 77

multiple shooting methods, which may mitigate divergence when parameter values are far from their 78

correct values. However, if a good initial guess of model parameters is unavailable, integration of the 79

differential equations, especially for stiff systems, may still be infeasible. Although Bayesian approaches 80

have the potential to overcome some of the local minima issues of direct NLS methods, the direct 81

Bayesian methods are beholden to the same divergence issues as direct NLS methods since they involve 82

integration of the original DEs.31 In addition, as noted in 31 obtaining the posterior distribution for fully 83

Bayesian and Gaussian Process-based methods often relies on sampling via Metropolis Hastings-type 84

algorithms, which can be impractical for high dimensional problems. Finally, partial differential analysis 85

(PDA) can be unattractive for similar reasons as the constrained NLS scheme proposed by 27 since both 86

create a large optimization problem with a large number of unknowns, which may be challenging to 87

solve. 88

 89

4

 90

Figure 1. Depiction of the direct vs indirect (i.e. 2-stage) approach to parameter estimation. 91

 92

Alternatively, a far less computationally costly method is the 2-stage, or indirect, approach to parameter 93

estimation.32-35 In the 2-stage approach, state measurements are interpolated (i.e., smoothed) via data-94

driven models. Next, the data-driven model is differentiated to estimate system derivative information at 95

sampling times. Derivatives can also be inferred without interpolation, though with limited accuracy, 96

from numerical approximations. Lastly, using the derivative and state estimates of the data-driven model, 97

one can set up an algebraic nonlinear programming (NLP) problem to fit the parameters. We note here 98

than the 2-stage indirect approach should not be confused with the indirect approach in control theory 99

based on Pontryagin’s Maximum Principle.36, 37 In this work, the 2-stage indirect approach seeks to find 100

the parameter values of a differential equation (DE) without integrating the original DE during training. 101

By bypassing the integration of the original DEs, 2-stage methods tend to give significant compute 102

advantages over direct approaches. Initially, the beta-splines were suggested as the data-driven 103

interpolator for 2-stage methods for ODE parameter estimation.33 Since then, authors have implemented 104

the 2-step approach using other data-driven models, including support vector machines 38 and neural 105

networks.39 An illustration of the steps in the direct and indirect approaches is depicted in Figure 1. 106

 107

Despite its compute advantages, traditional 2-stage approaches suffer from limited accuracy for real 108

systems and at best are used to provide an initial guess for parameter values.40 This is because, especially 109

when data is noisy or contains outliers, data-driven models used to interpolate data tend to yield low 110

quality derivative estimates, which reduces the quality of the parameter estimates obtained when solving 111

the NLP.41 Furthermore, it is often the desire to experimentally explore a system using multiple 112

experimental runs with varying conditions, yet none of the derivative estimation techniques currently 113

proposed have a straightforward way to account for multiple batches of data with a single data-driven 114

5

model. Each set of conditions would require estimation with a different data-driven model, increasing the 115

data-burden and complexity further. Thus, to be useful for real systems, the data-driven model in the 2-116

stage approach needs to accurately capture derivatives for nonlinear dynamic systems, with minimal 117

compute time, in the case of limited and/or noisy data, and possibly with data spread across system runs 118

collected under different process conditions. 119

 120

Among options for data-driven models, Neural Networks (NNs) are an attractive choice, as they have 121

long been used to approximate nonlinear algebraic relationships due to their universal approximation 122

potential.42 Methods to model dynamic systems by applying NNs to approximate relationships within 123

differential equations go as far back as the early 90’s.43-45 More recently, ‘neural ordinary differential 124

equations’ (NODEs)46 have been integrated with software with pervasive automatic differentiation to 125

accelerate fitting to spatio-temporal data for a variety of systems.47 By defining NNs to predict the 126

system derivatives directly, the NODE captures both state and derivative information during NN training. 127

This could potentially enable the NODE to better capture the curvature in the response of dynamically 128

evolving data than algebraic data-driven models that don’t consider derivative information during 129

training. A conceptual depiction of this hypothesized advantage is illustrated in the abstract figure at the 130

beginning of this article. 131

 132

This work proposes a novel approach to address the shortcomings of a 2-stage approach through the 133

application of Neural Ordinary Differential Equations (NODEs) as the data-driven component within an 134

indirect approach framework. This work also proposes a novel integration scheme for fitting Neural 135

ODEs. As the original ODE equations often have physically interpretable, albeit unknown, parameters 136

values, they are herein referred to as the mechanistic ODE or simply the mechanistic model. This will aid 137

in differentiating it from the more data-driven Neural ODE. In this work we set out to prove that 1) 138

Neural ODEs generally outperform purely data-driven NN models at estimating 1st order state derivatives 139

of dynamic data and 2) estimating mechanistic ODE parameters via a 2-stage approach abetted by Neural 140

ODEs can be competitive computationally and more flexible than direct approaches to fitting DE models. 141

To achieve this end, three cases studies are examined based on the Lotka-Volterra equations, the 142

dehydrogenation of ethylbenzene, and penicillin production via cell culture fermentation. Different 143

aspects of the method’s flexibility are illustrated via each of these case studies. 144

 145

The remainder of this paper is structured as follows. In Section 2, the two parameter fitting steps of the 2-146

stage approach are mathematically formulated and a general outline of the 2-stage approach is provided. 147

The performance and flexibility of the approach is explored is the Results (Section 3) through the lens of 148

6

three case studies. A discussion of the results can be found in Section 4. Finally, Section 5 concludes and 149

identifies opportunities for further investigation. 150

2. Methods 151

As illustrated previously in Figure 1, the 2-stage approach fits the parameters of the mechanistic model by 152

solving 2 separate regression problems. In the first stage, the parameters of the data-driven model are 153

fitted using the original measurement data. In the second stage, the parameters of the mechanistic ODE 154

are found using the state and derivative estimates of the data-driven model. The novel implementation of 155

the 2-stage approach proposed in this work (see Figure 2) fits a Neural ODE as the data-driven model. 156

This is done by first solving the following regression problem: 157

 158

 min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2 + λ ∑ 𝑤2

(1)

𝑠. 𝑡.

𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤)

(2)

 159

Here, 𝐾 state variables 𝑥𝑘, where 𝑘 = 1, … , 𝐾, are measured and predicted at time points 𝑗, where 𝑗 =160

1, … , 𝐽, by integrating a NODE with respect to independent variable t. Neural network parameters 𝑤 are 161

fitted to minimize an objective function equal to the sum of squared errors between the model prediction 162

and measured state data and a regularization term. Due to the large number of parameters in the Neural 163

Network, a regularized penalty term of the weights is added to the objective function multiplied by a 164

hyperparameter λ. Once the NODE is trained, derivative estimates are obtained by integrating the trained 165

NODE from time 𝑡0 = 0 to a final time 𝑡𝑓 of measured data using the same process conditions of the 166

measured data. State predictions of the NODE are used to simulate derivatives at times where measured 167

data is available. For the second stage of the 2-stage approach, a nonlinear program (NLP) is formulated 168

as in Eq. 3 and 4 to find the parameters of the original mechanistic ODE. 169

 170

min ∑(

𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)2

(3)

𝑠. 𝑡.

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
= 𝑓(𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸 , 𝑝)

(4)

 171

To solve this formulation, the parameters 𝑝 of the mechanistic ODE model 𝑓(𝑥, 𝑝) are found by 172

minimizing the sum of squared differences between the derivatives predicted by the NODE and the 173

7

derivatives predicted by the mechanistic model in the NLP. Alternatively, the objective to minimize 174

could be the sum of squared errors of the states. Note that all equations in the NLP formulation are purely 175

algebraic and no integration is involved. Further, it is worth emphasizing that the state and state 176

derivative values (𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸 and
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
, respectively) used to solve the NLP are estimates from the 177

fitted NODE, not the original measurement data. In order to test the limits of this approach, it is assumed 178

minimal prior knowledge of the true parameter values was available. Thus, all parameters are initialized 179

to the same value and given wide bounds when solving the NLP. Technically, since the Neural ODE can 180

be simulated at any time 𝑡, additional points could be added to the NLP formulation. However, limiting 181

the number of state/derivative values to the number of measured points was adequate for the purposes of 182

this study. In addition, derivative estimates of the NODE at initial conditions 𝑡 = 0 tended to be poor and 183

were not used when formulating the NLP. For each of the two optimization routines in the 2-stage 184

approach, an appropriate scaling method is used to account for states with differing orders of magnitude. 185

Namely, all state variables were divided by the range of their respective state measurements. 186

 187

 188

Figure 2. Depiction of steps and software used for training and testing DE models via the direct and 189

NODE-based indirect approaches. 190

 191

A comparison of steps for the direct and indirect approach is depicted in Figure 2. All Neural Networks 192

were trained using PyTorch,48 which uses automatic differentiation via the Autograd software package to 193

accelerate gradient calculation and thus parameter estimation. Moreover, all numerical integration 194

whether for the direct or indirect approach was conducted in PyTorch. The quasi-Newton method L-195

8

BFGS was used to train all PyTorch models and all NLP formulations were solved with nonlinear solver 196

IPOPT49 using linear solver MUMPS,50 in the Pyomo modeling environment.51, 52 A neural network with a 197

single hidden layer with a hyperbolic tangent activation function was found to give reasonable accuracy 198

across all case studies. However, as this work also sought to analyze NODE performance across different 199

noise levels, it was considered prudent to fit multiple NODEs for each level of noise, varying parameters 200

of the NODE stage 1 fitting algorithm (also known as hyperparameters) to maximize the generalizability 201

of the trained NODE. Specifically, the hyperparameter tuning was set to include 5, 7, or 10 hidden nodes 202

and the weight of λ in the stage 1 objective function was set to 10E-4, 10E-5, or 10E-6. Using a grid 203

search fitting of all combinations of these hyperparameters, the NODE whose hyperparameters led to the 204

lowest mean squared error between model predictions and noisy training data was selected for the stage 2 205

regression problem. 206

 207

A key technical challenge of this work was developing an integration training algorithm that consistently 208

fit an interpolating model to continuous data of arbitrary nonlinearity, sparsity and quality. In addition to 209

structural hyperparameters, some parameters of the optimization solver should be considered. Important 210

hyperparameters were found to be the termination criteria of the Neural ODE training algorithm and the 211

discretization method used. For all cases, the training algorithm was stopped when the objective function 212

ceased to improve by a set tolerance (rtol = 10-6) for more than 10 epochs. The forward Euler method 213

was used to integrate the ODEs—a necessary step to obtain model gradients during training. However, 214

additional modifications of the numerical integration algorithm were found necessary, which are best 215

discussed in the results section and is shown through the Lotka-Volterra case study. 216

3. Results 217

Before presenting the results for each case study, a brief introduction and objective of each example is 218

provided here. The Lotka-Volterra study will be used to illustrate key aspects of the NODE regression 219

algorithm as well as differentiate between the behavior of NODEs and mechanistic ODEs. Next, the 220

styrene reaction system will be used to contrast the performance of NODEs with algebraic data-driven 221

models, specifically Algebraic Neural Networks, when estimating system derivatives. This system is also 222

used to demonstrate the indirect approach’s ability to estimate parameters for mechanistic ODEs with 223

highly nonlinear terms. Finally, a fermenter system will investigate the performance of NODEs for noisy 224

systems as well as possible adaptions of the NODE indirect approach when domain knowledge is 225

available to inform the interpolating model (i.e., via hybrid modeling). All case studies use the same 226

integration algorithm, but due to their unique features and for the sake of concision, we present different 227

results and highlight different aspects of our approach through each case study. 228

9

3.1 Lotka-Volterra Equations 229

The Lotka-Volterra equations53, 54 were chosen as a first demonstration of the versatility of the NODE-230

based 2-stage approach. Commonly known as the predator-prey model, these equations are frequently 231

used to track the interactions between oscillatory populations for a wide variety of systems, including 232

chemical reactions,55 biological competition,56 and ecological systems.57 In addition, these equations are 233

frequently used to test differential equation solution methods (for example, see 27, 28, 32, 33) due their 234

characteristic nonlinearity and simple formulation. To train the NODE, 20 ‘measurements’ for 235

populations of species x and y were collected within a period t = [0,5] by simulating the Lotka-Volterra 236

ODE model, summarized in the Supporting Information. The task at hand is to fit all the parameters of 237

the mechanistic ODE using the 2-stage approach. 238

 239

Initially, the NODE was fitted by integrating over a single interval from time 𝑡𝑜 = 0 to final time 𝑡𝑓 = 5. 240

However, this consistently resulted in the NODE training converging to a local minimum between the 241

min and max values of the state profiles as shown in Figure 3. To overcome this undesired behavior, the 242

training algorithm was modified to integrate the Neural ODE not from a single initial value, but from 243

multiple initial values. Specifically, each timepoint j with measured data is used as an initial value (IV) in 244

the integrator, which is integrated forward in time for an arbitrary number of data points n, from 𝑡𝑗 to 245

𝑡𝑗+𝑛. Clearly, a balance must be made between the time interval for the forward integration steps, the 246

nonlinearly of the state space, and the quality (i.e., level of noise) of the data. It was decided to fix the 247

total integration to a span of 5 measured points for each initial value, and the number of Euler time steps 248

between measured data was set to 6. For the LV equations with 20 simulated points in the time interval t 249

= [0,5], the smallest Euler step size was Δt = 0.0417. The improved convergence using the revised 250

integration algorithm can be seen in Figure 3. Due to the improved convergence, this method integrating 251

over overlapping intervals spanning 5 measured points was used to train all NODEs in this work. 252

 253

10

 254

 255

Figure 3. Progression of NODE predictions in green for the Lotka-Volterra system at the beginning (left) 256

and end (right) of training when integrating from a single IV (top) and multiple IVs (bottom). 257

 258

The use of integration from multiple initial values may appear similar to the multiple shooting approach. 259

However, in general multiple shooting methods, the integration intervals do not overlap; rather, the 260

boundary conditions are optimized with the other model parameters until the final values of one interval 261

are equal to the initial value of the subsequent interval, creating a continuous dynamic solution. In 262

contrast, the integration method applied herein integrates over multiple overlapping intervals, beginning 263

from time points where measured data is available. Although the initial values could be included as 264

trainable parameters, in this work the initial value of each integral is fixed at locations of measured data. 265

The integration scheme also differs from multiple shooting in its fundamental purpose. Whereas the 266

purpose of multiple shooting is to avoid divergence during integration, the motivation for our method is 267

specifically to avoid convergence to local minima when training the NODE. To our best knowledge, this 268

is the first work to propose integrating over overlapping intervals to enable interpolation of dynamic data 269

of arbitrary nonlinearity. 270

11

 271

 272

Figure 4. Simulation of fitted Neural ODE (left) and fitted Lotka-Volterra equations (right) when trained 273

on data corrupted by Gaussian-distributed noise equivalent to 0, 1, 5, or 10% of the true data. True data 274

represented by dots. Training data restricted to interval t = [0,5]. Same initial value as training data. 275

 276

With a properly fitted NODE, the NODE can now be used to fit the mechanistic ODE (see again, stage 2 277

in Figure 2). Prior to this second fitting problem, the trained NODE is integrated from a single initial 278

value across the entire time trajectory to obtain state and derivative estimates used in the NLP estimating 279

mechanistic parameters. The NLP can then be solved without integrating the mechanistic ODE. It is 280

worth clarifying that NODEs are not the end model in the 2-stage approach. More appropriately, the 281

NODE can be viewed as a data-driven means to a mechanistic end. Due to their data-driven nature, 282

NODEs cannot be expected to offer accurate predictions far beyond the range of training data, despite the 283

fact that they are used to predict derivatives. Rather, the NODE is fitted to obtain system state and 284

derivative estimates for regressing mechanistic differential equations. If properly formulated, the 285

mechanistic model offers the system interpretability and extrapolation properties. 286

 287

To illustrate this principle, Figure 4 demonstrates the effect of simulating a trained NODE beyond the 288

limit of training data. For this illustration, the NODE was trained on 20 data samples in the interval t = 289

[0,5] corrupted with Gaussian-distributed noise equal to 0, 1, 5 or 10% of the range of the state data, and 290

it is then simulated for a period twice the time interval of the training data. In addition, a mechanistic 291

model is fitted by solving an algebraic NLP using the NODE state and derivative estimates from the 292

training interval t = [0,5], and is then simulated for double this interval. Several principles can be 293

extracted from Figure 4, of which two are highlighted here. First, the Neural ODE predictions are not 294

adversely affected by the addition of a small amount of noise, even improving when the noise added is 295

12

small, which may seem counterintuitive. However, this can be explained by the general overfitting 296

properties of Neural Networks (NNs). Numerous previous studies have shown that in many cases NNs 297

tend to generalize less well when data is ‘perfect’ (i.e., noiseless), suggesting that modelers add noise to 298

the data to discourage overfitting.58-61 NODEs are essentially Neural Networks that predict the 299

instantaneous change in a system. Thus, they inherit similar overfitting properties of Neural Networks. 300

However, as extrapolation is not required for estimation of the mechanistic ODE, the effects of overfitting 301

on extrapolation is not of serious concern for the NODE indirect approach. 302

 303

Second, it may appear from Figure 4, based on the case wherein the NODE is trained on 5% noise, that 304

the overfitting issue has been overcome and the NODE can extrapolate competitively with the fitted 305

mechanistic model. The ability of Neural ODEs to capture oscillatory dynamics is congruent with similar 306

studies.62 However, this behavior is better interpreted as sophisticated pattern-matching rather than 307

rigorous extrapolation. To clarify this claim, we tested the fitted Neural ODE and mechanistic ODE on 308

the case where the initial conditions of the predator-prey system change (see Figure 5). Without 309

retraining the models, the NODE and mechanistic model are simulated assuming a higher initial amount 310

of ‘predator’ in our system. This time the NODE clearly fails to capture the nuanced interactions between 311

system variables, regardless of the quality of the training data—even predicting physically unrealistic 312

negative values. As a juxtaposition, the correctly parameterized mechanistic model captures the variable 313

interactions with far greater precision. It is the potential for increased interpretability and extrapolation 314

that motivates the final model to be a mechanistic model in the 2-stage approach. 315

 316

Figure 5. Simulation of fitted NODE (left) and fitted Lotka-Volterra equations (right) when trained on 317

data corrupted by Gaussian-distributed noise equivalent to 0, 1, 5, or 10% of the true data. True data 318

represented by dots. Different initial values from training data. 319

 320

13

 321

3.2 Styrene Example 322

Serving as a second demonstration, the dehydrogenation of the ethylbenzene (EB) to form styrene is 323

modeled in a tubular reactor.63, 64 The reactor is assumed to operate in plug flow and thus reactant 324

concentrations change only in the axial direction. This system consists of a reversible reaction to the 325

desired products styrene and hydrogen as well as two undesired, irreversible side reactions. Benzene and 326

ethylene are produced in equimolar amounts and are thus assumed to have the same concentration. The 327

same is true of toluene and methane. In total, the 7 chemical species involved in the reaction include 328

ethylbenzene, styrene, hydrogen, benzene, ethylene, toluene, and methane. The stoichiometry of the 329

reaction along with the mechanistic model used to simulate the styrene production process are found in 330

the Supporting Information. To collect training data, the mechanistic model is simulated over a reactor 331

length t = [0,12] meters with initial temperatures in the range of T = [850, 950] Kelvin and an initial 332

ethylbenzene flow rate in the range FEB = [3,5] mol/s, all other species concentrations starting at zero. Six 333

system experiments are simulated with the above inlet conditions and 10 measurements of system states 334

are sampled at equidistant points along the reactor for each experiment for a total of 60 timepoints of 335

available training data. 336

 337

To motivate the use of NODEs in the two-stage approach, we compared its ability to capture system 338

derivatives with other data-driven models. For the EB system, the Neural Network representing the 339

NODE receives K=6 inputs 𝑥𝑘 corresponding to the flowrate of ethylbenzene, styrene, hydrogen, 340

benzene/ethylene, and toluene/methane and temperature. The NODE has 6 outputs corresponding to the 341

instantaneous derivatives of each of the system states. The states predicted by the NODE are obtained by 342

numerically integrating the model with respect to reactor length 𝑡. 343

 344

14

 345

 346

Figure 6. State and state derivative fits of the Neural ODE to styrene system data. Solid lines represent 347

NODE predictions, solid points are training data and ‘x’ tick marks are the derivatives of the original, 348

noiseless simulation. 349

 350

As mentioned previously, a major shortcoming of the two-stage approaches found in literature so far, is 351

poor estimation of system derivative information, which leads to poor estimation of mechanistic 352

parameters. To demonstrate the superior performance of the NODE, an Algebraic (i.e., non-dynamic) 353

Neural Network was also fitted, which receives length of reactor 𝑡 as its only input and outputs the 6 state 354

variables of the EB system (not derivatives). This Algebraic NN (a-NN) can predict state derivatives by 355

computing the gradient of the NN outputs with respect to its input, reactor length. The state variables 356

could also be used as inputs although these did not significantly enhance accuracy of the a-NN estimates. 357

The mathematical equations for the Neural ODE and the a-NN are thus formalized in equation 5 and 6, 358

respectively. 359

 360

 𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤)

(5)

15

 𝑥𝑘 = 𝑁𝑁(𝑡, 𝑤)

(6)

 361

Both the Neural ODE and a-NN are trained on a single batch of reaction data (i.e., 10 points along the 362

reactor) using the process conditions outlined in Experiment 1 in Table S.1 in the Supporting Information. 363

A small amount of Gaussian-distributed noise equivalent to 1% of the range of each state variable is 364

added. Depicted in Figure 6 and Figure 7 are the state and derivative estimates of the trained Neural ODE 365

and the a-NN, respectively. Clearly, both data-driven models provide an adequate interpolation of the 366

state data. Yet, when used to predict state derivatives, the Neural ODE estimates are far more reliable. 367

The a-NN visibly fails to capture the derivative profiles despite the state data being corrupted with 368

minimal error (i.e., 1% noise). The simple explanation for this lies in the fact that in the process of 369

integrating the NODE to predict the states, the NODE must accurately predict the derivatives. In contrast, 370

no state derivative information is involved in the training of the a-NN. 371

 372

 373

 374

Figure 7. State and state derivative fits of the Algebraic NN to styrene system data. Solid lines represent 375

NN predictions, solid points are training data and ‘x’ tick marks are the derivatives of the original, 376

noiseless simulation. 377

16

 378

The a-NN model was likewise fitted to the state data of the other case studies considered in this work and 379

the predicted derivatives plotted against the true rates, with equally underwhelming results. For the sake 380

of brevity, we surmise that for every system considered herein the NODE model gave more accurate 381

estimates of the state derivatives than a standard a-NN. These results are not surprising in light of 382

previous work, which has shown the importance of using dynamic data-driven models to interpolate 383

dynamic data, rather than their algebraic equivalents.45 384

 385

With the confidence in the NODE’s ability to capture system derivative information, we now turn to 386

NODE’s ability to estimate the parameter values of the original mechanistic ODE. For this task, 387

measurements from all six process conditions are used to fit the NODE and mechanistic ODE. It was 388

assumed that 3 parameters of the EB model were unknown, namely the frequency factor (FF) of each 389

reaction, all other parameters fixed at their true values. Unknown mechanistic parameters were initialized 390

to a value of 2 prior to regression. To demonstrate the robustness of NODE models to low-quality 391

training data, Gaussian noise was added to the measured data equal to 0, 5, and 10% of the range of the 392

state data. 393

 394

Table 1. Table of Frequency Factor (FF) Estimates via direct and NODE indirect approaches 395

 0% Noise 5% Noise 10% Noise

FF (direct) [-0.1626, 2.0039, 0.2787] [-0.1063, 2.0027, 0.3751] [-0.1020, 2.0025, 0.4575]

FF (indirect) [-0.1936, 13.0463, 0.16928] [-0.2622, 12.8374, 0.2061] [-0.2079, 12.8301, 0.3044]

True Frequency Factor Values: A1, A2, A3 = [-0.08539, 13.2392, 0.2961]

Initial FF Estimates (Pretraining): A1, A2, A3 = [2.0, 2.0, 2.0]

 396

Table 1 shows the fits of the three frequency factors using the direct and indirect approaches. Recall that 397

the direct approach requires the repeated integration of the mechanistic ODEs during parameter 398

estimation whereas the indirect approach avoids integrating the mechanistic ODEs in favor of integrating 399

NODEs via the NODE 2-stage approach. Both approaches perform well at estimating the frequency 400

factors for reactions 1 & 3. However, the Neural ODE 2-stage approach consistently provides superior 401

estimates for the frequency factor of reaction 2, even when training data is corrupted with a large amount 402

of noise. The inability of the direct approach to estimate A2 can be explained in part by the difference in 403

magnitude of the model gradients calculated during training. The initial value of the second parameter is 404

furthest from the true value, resulting in a gradient that is orders of magnitude different from the gradients 405

17

computed for the other parameters. This results in a poorly behaved parameter updating algorithm during 406

training. To try to understand the success of the 2-stage approach in overcoming this parameter 407

sensitivity issue, we also tried to solve the stage 2 formulation with L-BFGS rather than formulating it as 408

an NLP and solving it with IPOPT. Briefly, the L-BFGS solver was unable to find the true frequency 409

factor for reaction 2 even when ‘perfect’ state and derivative values were used in the stage 2 formulation. 410

While the exact cause for the success of the IPOPT-solved NLP form remains under investigation, we 411

hypothesize a possible reason for this behavior is the scaling performed internally by the IPOPT solver 412

enables more accurate convergence. This issue could be resolved with a priori scaling or reformulation 413

of the ODE model. However, without good foreknowledge of the true parameter values, such an ad hoc 414

approach is not straightforward. In contrast, the NODE approach abetted by an advanced NLP solver 415

offers good estimates of all system parameters without significant prior knowledge of the correct 416

parameter values. 417

 418

3.3 Penicillin Model 419

For the final case study used in this work to illustrate the versatility of NODEs, we chose to model the 420

production of penicillin via yeast fermentation. The fermentation has several challenging elements 421

unique to this system. First, modeling the reactor requires incorporating external forcing variables (also 422

known as control or system operating variables), namely the flow rate and substrate concentration of the 423

feed. Moreover, the level of nonlinearity in the system differs significantly between state variables. It is 424

further assumed that none of the 11 parameter values of the original mechanistic ODE are known, posing 425

a serious test to the proposed NODE algorithm. The system equations and process conditions can be 426

found in the Supporting Information. Nine sets of process run conditions are used to generate training 427

data. Assuming 10 data points can be collected from each run, 90 data points are available for training. 428

A depiction of the continuous state profiles of the nine process runs are given for reference in Figure 8. 429

 430

18

 431

Figure 8. Simulated state profiles from penicillin fermentation ODE model with correct parameters for all 432

9 experimental batch conditions. 433

 434

A few options exist for incorporating the forcing variables in the formulation of the Neural ODE. The 435

simplest approach is to modify Equation 6 to include the forcing variables as inputs to the Neural 436

Network. 437

 438

 𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , c, 𝑤) (7)

With all the state and forcing variables included, the NODE would have 6 inputs, including 2 forcing 439

variables 𝑐 = [𝐹, 𝑆𝑓] corresponding to the substrate concentration in the feed (𝑆𝑓) and feed flow rate (𝐹) 440

and 4 state variables (𝑥𝑘). With respect to outputs, the NODE would predict the derivatives of the 3 state 441

variables biomass (𝐵), substrate (𝑆) and product (𝑃) concentration. However, the addition of forcing 442

variables requires the NODE to learn complex nonlinear relationships with little extra data information 443

since the forcing variables are often constant throughout the process. Not surprisingly, training with all 444

variables resulted in inconsistent and diverging training properties. Alternatively, the size of the Neural 445

Network component of the NODE can be reduced by including mechanistic information in the neural 446

differential equation. Generally speaking, engineering systems have some readily available mechanistic 447

knowledge such as conservation balances that can be combined with data-driven models to create more 448

interpretable models. This is akin to hybrid semi-parametric modeling introduced in the early 90’s.43, 44 449

19

In the case of the fermenter example, the change in volume and the effect on concentration from the feed 450

rate can easily be deduced from a mass balance. This ‘hybrid’ model is formulated below: 451

 452

 𝑑𝐵

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) − 𝐵𝐷

(8)

 𝑑𝑆

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) + (𝑆𝑓 − 𝑆)𝐷

(9)

 𝑑𝑃

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) − 𝑃𝐷

(10)

 𝑑𝑉

𝑑𝑡
= 𝐹

(11)

𝐷 =

𝐹

𝑉

(12)

 453

With the mass balance properly specified, the number of NN inputs required to predict the remaining rate 454

term is reduced from 6 to 3. To thoroughly characterize the potential of the hybrid NODE formulation in 455

the context of the fermentation case study, the NODE is fit to data with varying levels of noise ranging 456

from 0-10%. Shown in Figure 9 is the NODE estimation versus state data for a single batch experiment 457

after training the NODE on all 9 sets of batch data with 5% added noise. Figure 9 also shows NODE 458

estimates of the state derivatives, having removed the poor derivative predictions at time t=0. Save for 459

the initial value, the NODE tends to give reasonable estimates of the state derivatives. 460

 461

 462

Figure 9. Fit of Neural ODE to penicillin state data (left) and estimate of the state derivatives (right) 463

when data is corrupted with 5% Gaussian noise. Data and fit shown for batch case #1. 464

20

 465

Similar to the previous examples, the derivative and state estimates from fitting the hybrid NODE are 466

used to estimate parameters of the mechanistic ODE. Once again, little prior information is assumed 467

about the values of the mechanistic parameters and thus all mechanistic parameters are initialized to equal 468

2 at the beginning of NLP optimization. The fitted mechanistic model using derivatives estimates from 469

hybrid NODEs trained on different levels of noise are shown in Figure 10. 470

 471

 472

Figure 10. Simulation of the Penicillin ODE system after fitting with data corrupted with 0% (left) and 473

10% (right) noise. Data and fit shown for batch case #1. 474

 475

Figure 11 shows calculated errors of the fitted Penicillin model and juxtaposes those errors with the errors 476

from the mechanistic models of the previous case studies fitted via the 2-stage approach. Errors reported 477

in Figure 11 are the mean absolute value error (MAE) between the state data predicted by the fitted 478

mechanistic ODE and the original mechanistic ODE with true parameter values, averaged over N training 479

data points (see equation 13), where i = 1, …, N. 480

 481

MAE =

∑ 𝑎𝑏𝑠(𝑥𝑖,𝑡𝑟𝑢𝑒 − 𝑥𝑖,𝑝𝑟𝑒𝑑)

𝑁

(13)

 482

In order to visualize the errors on the same plot, the MAE of the styrene predictions are scaled by a factor 483

of 10, all other errors left unscaled. The trends in accuracy tend to be consistent with what was observed 484

earlier in the Lotka-Volterra study. In the presence of near perfect data with no noise, the fitted 485

mechanistic model tends to show slightly inferior performance. This is believed to be caused by the 486

NODE slightly overfitting the data, a problem less evident at small amounts (i.e., 1%) of noise. This is 487

21

interesting when considering the fact that the NODE is trained by using the measurement data as the fixed 488

initial condition during integration, which becomes more erroneous as the level of noise increases. 489

However, the NODE fit is by no means impervious to poor quality data, and this latter factor explains the 490

increase in fitting error when training on data with greatest corruption (i.e., 10% noise). Nevertheless, the 491

issues of overfitting and poor data quality notwithstanding, by using data from multiple experiments as 492

well as the method of overlapping integration, the Neural ODE still offers a reasonable interpolation of 493

the state data as depicted previously in Figure 9. 494

 495

Figure 11. Mean Absolute Error for 3 case studies fitted to data with different levels of noise. 496

 497

Table 2 shows parameter values of the fitted mechanistic model. Unlike the previous two case studies, 498

the ODE parameters found via the 2-stage approach did not always approach values close to those in the 499

original set of equations simulating the data. As a check that the NLP solution found is a global one, the 500

parameters were also initialized to their true values and the NLP solved with the improved starting values. 501

However, this consistently converged to same set of parameter values as the NLP with poor initial 502

parameter values. This can be attributed to the variance in sensitivity of the parameters. In an actual 503

modeling scenario, some parameters may be identified before model fitting using separate experiments or 504

nominal literature values. Modelers may often choose to fix insensitive parameters to nominal values, 505

thus decreasing the number of mechanistic parameters that require fitting. This would invariably increase 506

the accuracy of the final parameter fit in our 2-stage approach. 507

 508

Table 2. Actual and fitted parameter estimates for Penicillin case study 509

cLmax kL ki m_xm k kp μ_m kx qpm Yps Yxs

0

1

2

3

4

5

6

Lotka-Volterra Styrene X10 Penicillin

M
e

an
 A

b
so

lu
te

 E
rr

o
r

MAEs across varying levels of noise

0% 1% 5% 10%

22

True values 0.0519 0.05 1 0.01 0.0137 0.0001 0.0100 0.3 0.0837 1.2 0.47

0% Noise 0.0447 6.3077 11.0 0.0010 0.0084 9.9708 0.0049 0.1251 0.0083 0.2713 0.4076

1% Noise 0.0382 0.0104 19.99 0.0129 0.0077 9.9922 0.0069 0.2420 0.0056 0.4781 0.4273

5% Noise 0.0461 0.0108 19.99 0.0047 0.0054 9.9796 0.0138 0.535 0.0052 0.2780 0.4406

10% Noise 0.0401 0.0106 19.99 0.0420 0.0026 9.9919 0.0105 0.4693 0.0044 0.6278 0.6673

 510

3.4 Compute Time—Direct and Indirect Approaches 511

As a final assessment of the relative merits of the NODE 2-stage approach, the computational 512

requirements of the proposed approach and the traditional direct approach were tabulated for the case of 513

noiseless training data. For this study, the NN in the NODE was fixed at 10 hidden nodes. All training 514

studies were conducted on a laptop computer with an Intel Core i7-6700 CPU processor (3.4 GHz). To 515

ensure a fair comparison, the algorithms and software used to find the parameters of mechanistic ODEs 516

and Neural ODEs were kept nearly identical. Specifically, both ODE types are repeatedly integrated 517

using the same numerical integrator (Euler’s method), use the same method for gradient calculation 518

(automatic differentiation), and use the same nonlinear optimizer (L-BFGS). Both minimize the same 519

objective function (Eq. 1) except the direct approach does not include the regularization term penalizing 520

large parameter values. For the direct approach, compute time was defined as the time required to train 521

the mechanistic ODE parameters. Whereas the compute time for the indirect approach includes the time 522

to fit the Neural ODE parameters and the time to solve the NLP for the mechanistic parameters—stage 1 523

and 2 of the indirect approach, respectively. Not included in the time comparison is the hyperparameter 524

tuning. In other words, stage 1 includes only the time required to fit a single NODE. Although 525

hyperparameter tuning invariably increases the compute cost of the NODE 2-stage approach, the cross-526

validation procedure using grid search can be parallelized to prevent such a procedure from substantially 527

increasing compute times. 528

 529

The results are present in Table 3. The compute times tend to be comparable despite the larger number of 530

parameters in the Neural Network that must be fit. For example, in the case of the ethylbenzene system, 531

which is made highly nonlinear by the presence of exponential functions, the direct approach is required 532

to fit 3 mechanistic parameters vs. 136 parameters in the Neural ODE. In contrast, the Lotka-Volterra 533

system, which is linear with respect to its 3 parameters, observes minimal compute gains by using the 2-534

stage approach. It is reasonable to conclude, therefore, that the influence of nonlinear operators on the 535

sensitivity of the parameter gradients, rather than the number of parameters, plays a bigger role in 536

23

compute costs. The NLP when properly formulated requires little compute power in comparison to fitting 537

the ODE models. 538

 539

 540

 541

Table 3. Compute Times for Direct vs Indirect Approaches (dp=Number of data points used for training) 542

 Lotka Volterra

(2 states, 3 params, 20 dp)

Ethylbenzene

(6 states, 3 params, 60 dp)

Penicillin

(3 states, 11 params, 90 dp)

Direct

Approach

(i.e. shooting)

Total: 76 s Total: 352 s Did not converge

Indirect NODE

or Hybrid ODE

Approach

Total: 62 s

NODE: 62 s

NLP: 0.009 s

Total: 116 s

NODE: 110 s

NLP: 6.76 s

Total: 183 s

HODE: 181 s

NLP: 1.932 s

 543

 A comparison with the direct approach for the penicillin model was not possible as the direct approach 544

quickly diverged unless parameter estimates close to the true values are supplied as an initial guess. 545

However, obtaining good parameter guesses is not always possible. Thus, more than faster compute 546

times, it may be that the greatest advantage of the 2-stage approach is the ability to obtain reasonable 547

model estimates when little is known about their parameter values. This obviates the need for ad hoc 548

scaling and parameter bounding that would be required for direct approaches, which although harder to 549

quantify, may represent a significant time savings of the 2-stage approach. 550

4. Discussion 551

There are several aspects and findings of this study that are worth further discussion. Firstly, although 552

there is a trend toward deep machine learning architectures, a simple neural network with a single hidden 553

layer was found to be sufficiently robust when used in the NODE to model the state and rate space of 554

each case study. This is not to say that alternate NN architectures could not improve the approximation 555

accuracy of Neural ODEs—a question that may hold interesting answers, especially for more complex 556

systems or systems with more dimensions. It is also important to mention that this approach offers more 557

than a simple data-driven correction to the mechanistic model. In this approach the NODE (or hybrid 558

ODE) is not the final model, rather it is the tool that helps us arrive at a parametrized mechanistic model. 559

 560

24

Hyperparameter tuning may help minimize overfitting of the NODE, generating a more optimal 561

interpolation of the data. In this work, the NODE was selected after hyperparameters such as the number 562

of hidden nodes and regularization weight were varied. Hyperparameters such as the discretization 563

method and termination criteria for training were held constant across case studies or given random initial 564

values (i.e., initialization of NN weights). Other possible hyperparameters that one may choose to 565

consider include the NN structure (number of hidden layers, activation function, etc.) and features of the 566

nonlinear optimizer (e.g. learning rate). We acknowledge, however, that these are all (hyper)parameters 567

of the approach that may need to be optimized for other case studies using either an automated grid search 568

or more advanced techniques. Parallel computing can be used to prevent such a grid search from 569

exponentially increasing compute time. As software packages for implementing NODEs become more 570

standardized, we anticipate selection of these hyperparameters to be increasingly streamlined, making 571

hyperparameter tuning and cross-validation a fast and straightforward process. 572

 573

Another interesting finding of this work is related to the use of integration when training Neural ODEs. 574

Typical 2-stage approaches use algebraic data-driven models to estimate state derivatives to avoid the 575

time-intensive integration of DEs required in the direct approach. In contrast, by applying NODEs for 576

derivative estimation, the proposed method effectively reintroduces integration into the 2-stage approach, 577

albeit only in the first stage. Algebraic data-driven models, such as the Algebraic Neural Network used in 578

this work, can be trained in fractions of the time required to train Neural ODEs, yet their derivative 579

estimates are not sufficiently accurate for solving the NLP in stage 2. Therefore, as argued in this work, 580

the ability of Neural ODEs to accurately capture derivative information favors their use notwithstanding 581

the added compute cost of integration/gradient calculation during NODE training. 582

 583

Conversely, although Neural ODEs required more training time than an a-NN, their training time was 584

competitive if not faster than the direct estimation of mechanistic parameters. Although the NODE’s 585

neural network architecture used in this work may be small when compared to many deep learning 586

architectures, the NODE had many more parameters that required fitting than the mechanistic model. It 587

may seem counterintuitive that a model with more parameters can be fit with competitive compute cost 588

and more reliably than directly fitting a model with fewer parameters. 589

 590

Two factors are believed to contribute to this observation. First, due to their large number of parameters, 591

NN fits are often non-unique, enabling the model to interpolate the available data equally well with 592

several combinations of parameter values. This feature is not an issue in terms of generalizability of the 593

proposed approach as the NODE is not the final model and is not expected to extrapolate. Secondly, 594

25

gradients used to update parameters during NN training tend to be better behaved and fall within a tighter 595

range than what can be expected of some mechanistic models. This is because the nonlinear operators in 596

the mechanistic ODEs, especially exponential and logarithmic terms, tend to cause parameter values and 597

gradients to range over larger orders of magnitude. For example, in the case of the styrene system, when 598

the direct approach was used and the gradients of the unknown mechanistic parameters (initially assumed 599

to equal 2) were calculated with respect to the loss function at the start of training, it was found that the 600

difference between the true parameter values and parameter gradients varied over 8 orders in magnitude. 601

In contrast, none of the initial gradients of the 136 NODE parameters at the start of training differed from 602

the final parameter values by more than 3 orders in magnitude. A wide discrepancy between parameter 603

gradients and true parameter values invariably leads to poor convergence. In summary, the NODE 2-604

stage approach can be faster than the direct estimation of mechanistic models by avoiding integration of 605

the mechanistic model during estimation of its parameters, which may be less sensitive and more 606

constrained than NODE parameters. Only in stage 2 of the 2-stage approach must the mechanistic 607

constraints be considered, but since the NLP formulation is already algebraic, no numerical methods are 608

involved at this stage. Although the problem of mechanistic parameter sensitivity could be addressed 609

with model scaling and reformulation, when the mechanistic parameters are unknown, the proper scaling 610

is not always obvious. A more thorough treatment of the Neural ODEs observed stable convergence is a 611

potential topic for future work. 612

 613

A common concern when training the weights of Neural Networks is convergence to local minima. In 614

this work, designing the algorithm to integrate over overlapping intervals was found to overcome 615

convergence to unacceptable local minima. Moreover, in this work, it was assumed that a sample for 616

each state variable was available at each sampling moment and the initial values for integration were 617

fixed at the measurement values. Although not emphasized in the results, the algorithm also proved to 618

readily generalize to training on data sampled at irregular intervals. For example, the interval between 619

sampled states of the fermenter varied slightly between 21 and 24 hrs, requiring the automated adjustment 620

of the Euler step size during training. For cases where the data is even sparser, states are measured at 621

uneven time intervals or some measurements are missing, algebraic data-driven models could be used to 622

interpolate missing state values. However, it should be acknowledged that if data is too sparse such that it 623

does not cover the curvature of state trajectory, NODE interpolations will not represent the true trajectory 624

well and the 2-stage method is not expected to give satisfactory results. Global optimization methods 625

could be added to the Neural ODE training stage to ensure global convergence; however, this would 626

significantly increase computational cost. More importantly, as the NODE is not the end model and 627

already offers the needed accuracy for derivative estimates, global optimization methods for NODE 628

26

training might not be necessary. Although not done here, the weights of the neural network could be pre-629

trained with the courser derivative estimates of algebraic data-driven models prior to training the Neural 630

ODE, which could further accelerate NODE training. 631

 632

A potential weakness of estimating system derivatives with data-driven models is the poor derivative 633

estimates at initial conditions. This is unfortunate as the most interesting nonlinear behavior tends to 634

occur at the initial stage of the process. This behavior has been observed repeatedly for splines34, 41 but 635

has not been commented on for NODEs. A hypothesis for this behavior is that the initial system 636

derivatives present an extra degree of freedom not constrained by data as at intermediate time points. If 637

the modeler knows the initial rates these could be enforced, eliminating the extra degree of freedom, 638

though such information is generally not known. More realistically, since the NODE can be regressed on 639

multiple batches of data, thoughtful design of experiments could mitigate the effect of poor initial 640

estimates. Regardless, this work follows the heuristic of removing derivative estimates at initial 641

conditions, and the two-stage approach still managed to yield reasonable fits to the state data. 642

 643

It is well-known that a direct approach can have greater statistical accuracy than indirect approaches—this 644

is because the additional step of fitting the data-driven model in the indirect approach may incur an 645

‘information loss’ that may bias the final mechanistic model fit.65, 66 Even in this case, as has been 646

demonstrated in previous studies,30, 33, 66 the discovered parameters from the faster indirect approach can 647

be used as initial guesses in the direct approach to alleviate some of the computational burden. This 648

advantage would be even more pronounced in situations where the exact formula of the mechanistic 649

model is uncertain. In this contribution, it was assumed that the available mechanistic model was the 650

same as mechanistic ODEs that simulated the measurement data. However, when the true ODE model is 651

unknown, the modeler may be required to select between multiple mechanistic models with different 652

parameterizations. In this case, a single NODE can be regressed whose derivative estimates are used to 653

fit all the proposed mechanistic models separately, a task that would be computationally more significant 654

with a direct approach. 655

 656

Finally, it should be stressed that our proposed approach is not exempt from issues of parameter 657

identifiability and sensitivity. With all parameter estimation approaches, one should verify that data 658

quantity and quality is adequate to obtain the needed level of parameter precision prior to parameter 659

fitting (e.g. by conducting identifiability and sensitivity analysis). Moreover, other sources of domain 660

knowledge that could be used to improve initial guesses and tighten the feasibility bounds for parameters 661

should be incorporated when available. As with other indirect approaches, the NODE indirect approach 662

27

does not have a straightforward extension to systems with unmeasured (i.e. latent) states. If the 663

mechanistic DEs are assumed a function of unmeasured states, methods typically associated with the 664

direct approaches will be required to relate unmeasured states to measured variables during parameter 665

estimation. A comparison of the proposed approach with direct integration methods was conducted to 666

highlight the advantage of the proposed approach versus direct approaches. However, to fully classify the 667

scenarios where indirect estimation via Neural ODEs would be superior, a more comprehensive 668

comparison with other DE solution methods mentioned in the introduction should be conducted. Many of 669

these direct approaches are under active development or being revisited and a full comparison is outside 670

the scope of this study. 671

5. Conclusions 672

This work compared the ability of NODEs and Algebraic NNs to extract state derivative information from 673

data. It further compared the indirect approach based on NODEs with a direct NLS approach for 674

regressing ODE models. A clear increase in accuracy was shown when NODEs are the interpolating 675

model. Other data-driven models could be used to estimate system derivatives and an exhaustive 676

comparison with all methods was outside the scope of this work. However, we anticipate that NODEs 677

will outperform all methods based on algebraic interpolating models (e.g. splines) as none of these 678

methods consider state derivatives during model fitting. Moreover, a single algebraic data-driven model 679

has no straightforward way to interpolate data from multiple batch runs based on different system forcing 680

conditions. In contrast, the differential equation-based NODEs can easily incorporate data from different 681

system conditions via user-specification of initial and boundary conditions and external forcing variables. 682

 683

Although the Neural ODE-based approach showed computational gains over direct integration of the 684

mechanistic ODEs, the most attractive advantage of this approach lies in its ability to find mechanistic 685

parameters with minimal prior knowledge of their values and minimal parameter scaling. Improvement 686

in parameter estimation is most notable for mechanistic DEs that require parameterization of highly 687

nonlinear operators (e.g. logarithms and exponentials). Many interesting questions remain in regards to 688

possible extensions of the method. Especially interesting would be analyses on the scalability of the 689

NODE 2-stage method to more complex differential equation systems (e.g. PDEs) and higher order DE 690

systems, for which previous work encourages promising results.47, 67 It may also be worth exploring the 691

effect of including the initial conditions as trainable parameters along with the NODE parameters if the 692

initial conditions are uncertain. The potential to improve parameter estimates by solving the NLP with 693

global optimization solvers is yet another interesting direction. These and other directions are a matter for 694

future investigation. 695

28

 696

Supporting Information 697

A complete mathematical formulation for each case study, its parameter values, and the system 698

conditions used to simulate training data is summarized the Supporting Information file of this paper. 699

This information is available free of charge via the Internet at http://pubs.acs.org/. 700

Author Information 701

Corresponding Author 702

Fani Boukouvala – Department of Chemical and Biomolecular Engineering, Georgia Institute of 703

Technology, 311 Ferst Dr., N.W. Atlanta, Georgia, 30332-0100 USA 704

*Tel.: (404) 385-5371, Email: fani.boukouvala@chbe.gatech.edu, ORCID iD: 0000-0002-0584-1517 705

Authors 706

William Bradley – Department of Chemical and Biomolecular Engineering, Georgia Institute of 707

Technology, 311 Ferst Dr., N.W. Atlanta, Georgia, 30332-0100 USA, ORCID iD: 0000-0003-2505-6898 708

Notes 709

The authors declare no competing financial interest. 710

Acknowledgements 711

WB and FB gratefully acknowledge funding received from RAPID/NNMI Grant #GR10002225, Georgia 712

Tech start-up grant and NSF CBET grants (1336386 and 1944678). 713

 714

Abbreviations 715

ANN – Algebraic Neural Network 716

DE – Differential Equation 717

EB – Ethylbenzene 718

FF – Frequency Factor 719

IVP – Initial Value Problem 720

ML – Machine Learning 721

NLP – Nonlinear Program(ming) 722

NLS – Nonlinear Least Squares 723

NN – Neural Network 724

NODE – Neural Ordinary Differential Equation 725

ODE – Ordinary Differential Equation 726

PDE – Partial Differential Equation 727

29

 728

 729

References 730

1. Venkatasubramanian, V., The promise of artificial intelligence in chemical engineering: Is it here, 731
finally? Aiche J 2019, 65 (2), 466-478. 732
2. Lee, D.; Jayaraman, A.; Kwon, J. S., Development of a hybrid model for a partially known 733
intracellular signaling pathway through correction term estimation and neural network modeling. PLOS 734
Computational Biology 2020, 16 (12), e1008472. 735
3. Quaghebeur, W.; Nopens, I.; Baets, B. D., Incorporating Unmodeled Dynamics Into First-736
Principles Models Through Machine Learning. IEEE Access 2021, 9, 22014-22022. 737
4. von Stosch, M.; Oliveira, R.; Peres, J.; Feyo de Azevedo, S., Hybrid semi-parametric modeling in 738
process systems engineering: Past, present and future. Comput Chem Eng 2014, 60, 86-101. 739
5. Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V., Integrating Physics-Based Modeling with 740
Machine Learning: A Survey. ArXiv 2020, abs/2003.04919. 741
6. Ahmad, I.; Ayub, A.; Kano, M.; Cheema, I. I., Gray-box Soft Sensors in Process Industry: Current 742
Practice, and Future Prospects in Era of Big Data. Processes 2020, 8 (2), 243. 743
7. Rüden, L. v.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R.; Kirsch, B.; 744
Pfrommer, J.; Pick, A.; Ramamurthy, R.; Walczak, M.; Garcke, J.; Bauckhage, C.; Schücker, J., Informed 745
Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv: 746
Machine Learning 2019. 747
8. Hemker, P., Numerical methods for differential equations in system simulation and in parameter 748
estimation : (Analysis and simulation of biochemical systems; proc. of the 8th FEBS meeting, 749
Amsterdam, 1972, p 59-80). Stichting Mathematisch Centrum: 1972. 750
9. Bard, Y., Comparison of Gradient Methods for the Solution of Nonlinear Parameter Estimation 751
Problems. SIAM Journal on Numerical Analysis 1970, 7 (1), 157-186. 752
10. Benson, M., Parameter fitting in dynamic models. Ecological Modelling 1979, 6 (2), 97-115. 753
11. Li, Z.; Osborne, M. R.; Prvan, T., Parameter estimation of ordinary differential equations. IMA 754
Journal of Numerical Analysis 2005, 25 (2), 264-285. 755
12. Ramsay, J. O., Principal Differential Analysis: Data Reduction by Differential Operators. Journal of 756
the Royal Statistical Society: Series B (Methodological) 1996, 58 (3), 495-508. 757
13. Varziri, M. S.; Poyton, A. A.; McAuley, K. B.; McLellan, P. J.; Ramsay, J. O., Selecting optimal 758
weighting factors in iPDA for parameter estimation in continuous-time dynamic models. Comput Chem 759
Eng 2008, 32 (12), 3011-3022. 760
14. Ramsay, J. O.; Hooker, G.; Campbell, D.; Cao, J., Parameter estimation for differential 761
equations: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical 762
Methodology) 2007, 69 (5), 741-796. 763
15. Putter, H.; Heisterkamp, S. H.; Lange, J. M. A.; de Wolf, F., A Bayesian approach to parameter 764
estimation in HIV dynamical models. Statistics in Medicine 2002, 21 (15), 2199-2214. 765
16. Huang, Y.; Liu, D.; Wu, H., Hierarchical Bayesian Methods for Estimation of Parameters in a 766
Longitudinal HIV Dynamic System. Biometrics 2006, 62 (2), 413-423. 767
17. Calderhead, B.; Girolami, M.; Lawrence, N. D., Accelerating Bayesian inference over nonlinear 768
differential equations with Gaussian processes. In Proceedings of the 21st International Conference on 769
Neural Information Processing Systems, Curran Associates Inc.: Vancouver, British Columbia, Canada, 770
2008; pp 217–224. 771
18. Dondelinger, F.; Husmeier, D.; Rogers, S.; Filippone, M., ODE parameter inference using 772
adaptive gradient matching with Gaussian processes. In Proceedings of the Sixteenth International 773

30

Conference on Artificial Intelligence and Statistics, Carlos, M. C.; Pradeep, R., Eds. PMLR: Proceedings of 774
Machine Learning Research, 2013; Vol. 31, pp 216--228. 775
19. Chkrebtii, O. A.; Campbell, D. A.; Calderhead, B.; Girolami, M. A., Bayesian Solution Uncertainty 776
Quantification for Differential Equations. Bayesian Anal. 2016, 11 (4), 1239-1267. 777
20. Wang, Y.; Barber, D., Gaussian processes for Bayesian estimation in ordinary differential 778
equations. In Proceedings of the 31st International Conference on International Conference on Machine 779
Learning - Volume 32, JMLR.org: Beijing, China, 2014; pp II–1485–II–1493. 780
21. Schober, M.; Duvenaud, D.; Hennig, P., Probabilistic ODE solvers with Runge-Kutta means. In 781
Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, 782
MIT Press: Montreal, Canada, 2014; pp 739–747. 783
22. Biegler, L. T., An overview of simultaneous strategies for dynamic optimization. Chemical 784
Engineering and Processing: Process Intensification 2007, 46 (11), 1043-1053. 785
23. Bock, H. G.; Plitt, K. J., A Multiple Shooting Algorithm for Direct Solution of Optimal Control 786
Problems*. IFAC Proceedings Volumes 1984, 17 (2), 1603-1608. 787
24. Baake, E.; Baake, M.; Bock, H. G.; Briggs, K. M., Fitting ordinary differential equations to chaotic 788
data. Physical Review A 1992, 45 (8), 5524-5529. 789
25. van Domselaar, B.; Hemker, P., Nonlinear parameter estimation in initial value problems, 790
Technical Report NW 18/75. Mathematical Centre Amsterdam: 1975. 791
26. Hamilton, F. In Parameter Estimation in Differential Equations: A Numerical Study of Shooting 792
Methods, 2011. 793
27. Tjoa, I. B.; Biegler, L. T., Simultaneous solution and optimization strategies for parameter 794
estimation of differential-algebraic equation systems. Industrial & Engineering Chemistry Research 1991, 795
30 (2), 376-385. 796
28. Rackauckas, C.; Ma, Y.; Dixit, V.; Guo, X.; Innes, M.; Revels, J.; Nyberg, J.; Ivaturi, V. D., A 797
Comparison of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of 798
Differential Equation Solutions. ArXiv 2018, abs/1812.01892. 799
29. Ding, A. A.; Wu, H., Estimation of Ordinary Differential Equation Parameters Using Constrained 800
Local Polynomial Regression. Stat Sin 2014, 24 (4), 1613-1631. 801
30. Chang, J.-S.; Li, C.-C.; Liu, W.-L.; Deng, J.-H., Two-stage parameter estimation applied to 802
ordinary differential equation models. Journal of the Taiwan Institute of Chemical Engineers 2015, 57, 803
26-35. 804
31. Huang, H.; Handel, A.; Song, X., A Bayesian approach to estimate parameters of ordinary 805
differential equation. Computational Statistics 2020, 35 (3), 1481-1499. 806
32. Swartz, J.; Bremermann, H., Discussion of parameter estimation in biological modelling: 807
Algorithms for estimation and evaluation of the estimates. Journal of Mathematical Biology 1975, 1 (3), 808
241-257. 809
33. Varah, J. M., A Spline Least Squares Method for Numerical Parameter Estimation in Differential 810
Equations. SIAM Journal on Scientific and Statistical Computing 1982, 3 (1), 28-46. 811
34. Liang, H.; Wu, H., Parameter Estimation for Differential Equation Models Using a Framework of 812
Measurement Error in Regression Models. Journal of the American Statistical Association 2008, 103 813
(484), 1570-1583. 814
35. Brunel, N. J. B., Parameter estimation of ODE's via nonparametric estimators. Electron. J. Statist. 815
2008, 2, 1242-1267. 816
36. Boltyanskiy, V.; Gamkrelidze, R. V. y.; Pontryagin, L. S. Theory of optimal processes; JOINT 817
PUBLICATIONS RESEARCH SERVICE ARLINGTON VA: 1961. 818
37. Bryson, A.; Ho, Y. C.; Siouris, G., Applied Optimal Control: Optimization, Estimation, and Control. 819
Systems, Man and Cybernetics, IEEE Transactions on 1979, 9, 366-367. 820

31

38. Mehrkanoon, S.; Mehrkanoon, S.; Suykens, J. A. K., Parameter estimation of delay differential 821
equations: An integration-free LS-SVM approach. Communications in Nonlinear Science and Numerical 822
Simulation 2014, 19 (4), 830-841. 823
39. Dua, V., An Artificial Neural Network approximation based decomposition approach for 824
parameter estimation of system of ordinary differential equations. Comput Chem Eng 2011, 35 (3), 545-825
553. 826
40. Dattner, I., Differential equations in data analysis. WIREs Computational Statistics n/a (n/a), 827
e1534. 828
41. Yang, A.; Martin, E.; Morris, J., Identification of semi-parametric hybrid process models. Comput 829
Chem Eng 2011, 35 (1), 63-70. 830
42. Cybenko, G., Approximation by superpositions of a sigmoidal function. Mathematics of Control, 831
Signals and Systems 1989, 2 (4), 303-314. 832
43. Psichogios, D. C.; Ungar, L. H., A hybrid neural network-first principles approach to process 833
modeling. Aiche J 1992, 38 (10), 1499-1511. 834
44. Thompson, M. L.; Kramer, M. A., Modeling chemical processes using prior knowledge and neural 835
networks. Aiche J 1994, 40 (8), 1328-1340. 836
45. Rico-Martínez, R.; Krischer, K.; Kevrekidis, I. G.; Kube, M. C.; Hudson, J. L., DISCRETE- vs. 837
CONTINUOUS-TIME NONLINEAR SIGNAL PROCESSING OF Cu ELECTRODISSOLUTION DATA. Chemical 838
Engineering Communications 1992, 118 (1), 25-48. 839
46. Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential 840
Equations arXiv e-prints [Online], 2018. https://ui.adsabs.harvard.edu/abs/2018arXiv180607366C 841
(accessed June 01, 2018). 842
47. Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov, K.; Supekar, R.; Skinner, D.; 843
Ramadhan, A. Universal Differential Equations for Scientific Machine Learning arXiv e-prints [Online], 844
2020, p. arXiv:2001.04385. https://ui.adsabs.harvard.edu/abs/2020arXiv200104385R (accessed January 845
01, 2020). 846
48. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; 847
Gimelshein, N.; Antiga, L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; 848
Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., PyTorch: An Imperative Style, High-849
Performance Deep Learning Library. ArXiv 2019, abs/1912.01703. 850
49. Wächter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm 851
for large-scale nonlinear programming. Mathematical Programming 2006, 106 (1), 25-57. 852
50. Amestoy, P.; Buttari, A.; Duff, I.; Guermouche, A.; L’Excellent, J.-Y.; Uçar, B., Mumps. In 853
Encyclopedia of Parallel Computing, Padua, D., Ed. Springer US: Boston, MA, 2011; pp 1232-1238. 854
51. Hart, W. E.; Laird, C. D.; Watson, J.-P.; Woodruff, D. L.; Hackebeil, G. A.; Nicholson, B. L.; 855
Siirola, J. D., Pyomo--optimization modeling in python. Springer International Publishing: 2017. 856
52. Hart, W. E.; Watson, J.-P.; Woodruff, D. L., Pyomo: modeling and solving mathematical 857
programs in Python. Mathematical Programming Computation 2011, 3 (3), 219. 858
53. Lotka, A. J., Contribution to the Mathematical Theory of Capture. Proceedings of the National 859
Academy of Sciences 1932, 18 (2), 172. 860
54. Volterra, V., Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Società 861
anonima tipografica "Leonardo da Vinci: Città di Castello, 1926. 862
55. Sánchez-Pérez, J. F.; Conesa, M.; Alhama, I.; Cánovas, M., Study of Lotka–Volterra Biological or 863
Chemical Oscillator Problem Using the Normalization Technique: Prediction of Time and Concentrations. 864
Mathematics 2020, 8 (8), 1324. 865
56. Joseph, T. A.; Shenhav, L.; Xavier, J. B.; Halperin, E.; Pe’er, I., Compositional Lotka-Volterra 866
describes microbial dynamics in the simplex. PLOS Computational Biology 2020, 16 (5), e1007917. 867

32

57. Stenseth, N. C.; Falck, W.; Bjørnstad, O. N.; Krebs, C. J., Population regulation in snowshoe hare 868
and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proceedings of the 869
National Academy of Sciences 1997, 94 (10), 5147-5152. 870
58. Bishop, C. M., Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 871
7 (1), 108–116. 872
59. Sietsma, J.; Dow, R. J. F., Creating artificial neural networks that generalize. Neural Networks 873
1991, 4 (1), 67-79. 874
60. Holmstrom, L.; Koistinen, P., Using additive noise in back-propagation training. IEEE Transactions 875
on Neural Networks 1992, 3 (1), 24-38. 876
61. Poole, B.; Sohl-Dickstein, J.; Ganguli, S., Analyzing noise in autoencoders and deep networks. 877
ArXiv 2014, abs/1406.1831. 878
62. Rubanova, Y.; Chen, R. T.; Duvenaud, D., Latent odes for irregularly-sampled time series. arXiv 879
preprint arXiv:1907.03907 2019. 880
63. Snyder, J. D.; Subramaniam, B., A novel reverse flow strategy for ethylbenzene dehydrogenation 881
in a packed-bed reactor. Chemical Engineering Science 1994, 49 (24, Part 2), 5585-5601. 882
64. Fogler, H. S., Elements of chemical reaction engineering. Third edition. Upper Saddle River, N.J. : 883
Prentice Hall PTR, [1999] ©1999: 1999. 884
65. Xue, H.; Miao, H.; Wu, H., Sieve Estimation of Constant and Time-Varying Coefficients in 885
Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and 886
Measurement Error. Annals of statistics 2010, 38 4, 2351-2387. 887
66. Michalik, C.; Chachuat, B.; Marquardt, W., Incremental Global Parameter Estimation in 888
Dynamical Systems. Industrial & Engineering Chemistry Research 2009, 48 (11), 5489-5497. 889
67. Norcliffe, A.; Bodnar, C.; Day, B.; Simidjievski, N.; Lió, P., On Second Order Behaviour in 890
Augmented Neural ODEs. ArXiv 2020, abs/2006.07220. 891

 892

 893

33

Abstract Graphic 894

 895

Table of Contents 896

Abstract ... 1 897

1. Introduction .. 2 898

2. Methods .. 6 899

3. Results ... 8 900

3.1 Lotka-Volterra Equations .. 9 901

3.2 Styrene Example ... 13 902

3.3 Penicillin Model ... 17 903

3.4 Compute Time—Direct and Indirect Approaches ... 22 904

4. Discussion .. 23 905

5. Conclusions ... 27 906

Supporting Information .. 28 907

Author Information ... 28 908

Acknowledgements ... 28 909

Abbreviations .. 28 910

References .. 29 911

 912

 913

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

