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Modeling physio-chemical relationships using dynamic data is a common task in fields throughout science 5 

and engineering.  A common step in developing generalizable, mechanistic models is to fit unmeasured 6 

parameters to measured data.  However, fitting differential equation-based models can be computation 7 

intensive and uncertain due to the presence of nonlinearity, noise, and sparsity in the data, which in turn 8 

causes convergence to local minima and divergence issues.  This work proposes a merger of Machine 9 

Learning (ML) and mechanistic approaches by employing ML models as a means to fit nonlinear 10 

mechanistic ODEs.  Using a two-stage indirect approach, Neural ODEs are used to estimate state derivatives, 11 

which are then used to estimate the parameters of a more interpretable mechanistic ODE model.  In addition 12 

to its computational efficiency, the proposed method demonstrates the ability of Neural ODEs to better 13 

estimate derivative information than interpolating methods based on algebraic data-driven models.  Most 14 

notably, the proposed method is shown to yield accurate predictions even when little information is known 15 

about the parameters of the ODE equations.  The proposed parameter estimation approach is believed to be 16 

most advantageous when the ODE to be fit is strongly nonlinear with respect its unknown parameters. 17 
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1. Introduction 32 

A truly optimal workflow for model-building is one that properly leverages available data resources, 33 

domain-knowledge resources, and computational resources.  The first two of these can be maximized 34 

through mechanistic approaches, where hypotheses based on first principles knowledge are used to 35 

formulate mechanistic models, which can be fit and validated with fewer experiments than purely 36 

empirical approaches.  However, sufficient first principles understanding is often lacking, and this hinders 37 

the formulation of accurate mechanistic models. Moreover, when they are available, accurate models tend 38 

to require excessive compute time for fitting of their parameters, simulation, and optimization.  Data-39 

driven models, on the other hand, tend to be computationally efficient, but require either too much data or 40 

have too little interpretability to solve many scientific problems.1  Due to the contrasting yet 41 

complementary strengths of data-driven and mechanistic approaches to model-building, many authors 42 

have sought to combine these paradigms in ways that increase interpretability and lower data 43 

requirements.2-4  Readers interested in a comparison of data-driven, mechanistic, and hybrid approaches 44 

to model-building are encouraged to consult recent surveys.5-7 45 

 46 

Ultimately, mechanistic models offer the greatest interpretability and thus methods that efficiently regress 47 

parameters of mechanistic models, especially those formulated as differential algebraic equations, would 48 

facilitate vetting of model formulations when there is a high degree of uncertainty in the parameter 49 

values.  Yet despite decades of increasing computational power, fitting and simulation of differential 50 

equation (DE) models remains computationally challenging for many systems of interest.  The primary 51 

methods for fitting nonlinear ODE models include ‘direct’ approaches such as the nonlinear least squares 52 

(NLS),8-11 principle differential analysis,12-14 and direct Bayesian15, 16 and Gaussian Process-based 53 

methods.17-21  Following the nomenclature of 22 the direct NLS procedures can be further divided into 54 

sequential and simultaneous approaches.  55 

 56 

Also known as the constrained or non-feasible path approach, the simultaneous approach avoids 57 

integrating the differential equations (DEs) repeatedly.  For example, multiple shooting is a simultaneous 58 

approach which breaks up the state trajectory into linked stages or intervals, parameterized by polynomial 59 

basis functions.23-26  Alternatively, using collocation methods the state profiles are approximated using 60 

polynomials connected on finite elements.11, 27  In these algebraic nonlinear programs (NLPs), the 61 

parameters of the polynomial functions are solved simultaneously along with the parameters of the 62 

differential equations.  Especially the latter approach is frequently used when solving a boundary value or 63 

optimal control problem as it offers a straightforward way to incorporate inequality or path constraints 64 

and can be solved even when initial parameter guesses cause the differential equations to diverge upon 65 
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integration.  However, due its large formulation, it is less frequently used to solve initial value problems 66 

(IVPs).22 67 

 68 

For the unconstrained, or sequential, NLS, the DEs are integrated repeatedly during training.    The 69 

forward solution from integration is used to calculate the error between the DE model predictions and true 70 

data.  The gradients of the computed error or loss function are calculated to give the optimizer the 71 

direction parameters should be updated at each iteration.   Unconstrainted NLS is the version of the direct 72 

approach used in this work.  A comparison of strategies for integration and parameter estimation using the 73 

direct approach can be found in 28.   74 

 75 

However, the direct approach has several weaknesses, including poor rate of convergence for highly 76 

nonlinear systems and potential to converge to local minima.29, 30  This can be ameliorated somewhat via 77 

multiple shooting methods, which may mitigate divergence when parameter values are far from their 78 

correct values.  However, if a good initial guess of model parameters is unavailable, integration of the 79 

differential equations, especially for stiff systems, may still be infeasible.  Although Bayesian approaches 80 

have the potential to overcome some of the local minima issues of direct NLS methods, the direct 81 

Bayesian methods are beholden to the same divergence issues as direct NLS methods since they involve 82 

integration of the original DEs.31  In addition, as noted in 31 obtaining the posterior distribution for fully 83 

Bayesian and Gaussian Process-based methods often relies on sampling via Metropolis Hastings-type 84 

algorithms, which can be impractical for high dimensional problems.  Finally, partial differential analysis 85 

(PDA) can be unattractive for similar reasons as the constrained NLS scheme proposed by 27 since both 86 

create a large optimization problem with a large number of unknowns, which may be challenging to 87 

solve.   88 

 89 
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  90 

Figure 1. Depiction of the direct vs indirect (i.e. 2-stage) approach to parameter estimation. 91 

 92 

Alternatively, a far less computationally costly method is the 2-stage, or indirect, approach to parameter 93 

estimation.32-35  In the 2-stage approach, state measurements are interpolated (i.e., smoothed) via data-94 

driven models.  Next, the data-driven model is differentiated to estimate system derivative information at 95 

sampling times.  Derivatives can also be inferred without interpolation, though with limited accuracy, 96 

from numerical approximations.  Lastly, using the derivative and state estimates of the data-driven model, 97 

one can set up an algebraic nonlinear programming (NLP) problem to fit the parameters.  We note here 98 

than the 2-stage indirect approach should not be confused with the indirect approach in control theory 99 

based on Pontryagin’s Maximum Principle.36, 37  In this work, the 2-stage indirect approach seeks to find 100 

the parameter values of a differential equation (DE) without integrating the original DE during training.  101 

By bypassing the integration of the original DEs, 2-stage methods tend to give significant compute 102 

advantages over direct approaches.  Initially, the beta-splines were suggested as the data-driven 103 

interpolator for 2-stage methods for ODE parameter estimation.33  Since then, authors have implemented 104 

the 2-step approach using other data-driven models, including support vector machines 38 and neural 105 

networks.39  An illustration of the steps in the direct and indirect approaches is depicted in Figure 1. 106 

 107 

Despite its compute advantages, traditional 2-stage approaches suffer from limited accuracy for real 108 

systems and at best are used to provide an initial guess for parameter values.40  This is because, especially 109 

when data is noisy or contains outliers, data-driven models used to interpolate data tend to yield low 110 

quality derivative estimates, which reduces the quality of the parameter estimates obtained when solving 111 

the NLP.41  Furthermore, it is often the desire to experimentally explore a system using multiple 112 

experimental runs with varying conditions, yet none of the derivative estimation techniques currently 113 

proposed have a straightforward way to account for multiple batches of data with a single data-driven 114 
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model.  Each set of conditions would require estimation with a different data-driven model, increasing the 115 

data-burden and complexity further.  Thus, to be useful for real systems, the data-driven model in the 2-116 

stage approach needs to accurately capture derivatives for nonlinear dynamic systems, with minimal 117 

compute time, in the case of limited and/or noisy data, and possibly with data spread across system runs 118 

collected under different process conditions. 119 

 120 

Among options for data-driven models, Neural Networks (NNs) are an attractive choice, as they have 121 

long been used to approximate nonlinear algebraic relationships due to their universal approximation 122 

potential.42  Methods to model dynamic systems by applying NNs to approximate relationships within 123 

differential equations go as far back as the early 90’s.43-45  More recently, ‘neural ordinary differential 124 

equations’ (NODEs)46 have been integrated with software with pervasive automatic differentiation to 125 

accelerate fitting to spatio-temporal data for a variety of systems.47  By defining NNs to predict the 126 

system derivatives directly, the NODE captures both state and derivative information during NN training.  127 

This could potentially enable the NODE to better capture the curvature in the response of dynamically 128 

evolving data than algebraic data-driven models that don’t consider derivative information during 129 

training.  A conceptual depiction of this hypothesized advantage is illustrated in the abstract figure at the 130 

beginning of this article. 131 

 132 

This work proposes a novel approach to address the shortcomings of a 2-stage approach through the 133 

application of Neural Ordinary Differential Equations (NODEs) as the data-driven component within an 134 

indirect approach framework.  This work also proposes a novel integration scheme for fitting Neural 135 

ODEs.  As the original ODE equations often have physically interpretable, albeit unknown, parameters 136 

values, they are herein referred to as the mechanistic ODE or simply the mechanistic model.  This will aid 137 

in differentiating it from the more data-driven Neural ODE.  In this work we set out to prove that 1) 138 

Neural ODEs generally outperform purely data-driven NN models at estimating 1st order state derivatives 139 

of dynamic data and 2) estimating mechanistic ODE parameters via a 2-stage approach abetted by Neural 140 

ODEs can be competitive computationally and more flexible than direct approaches to fitting DE models.  141 

To achieve this end, three cases studies are examined based on the Lotka-Volterra equations, the 142 

dehydrogenation of ethylbenzene, and penicillin production via cell culture fermentation.  Different 143 

aspects of the method’s flexibility are illustrated via each of these case studies.  144 

 145 

The remainder of this paper is structured as follows.  In Section 2, the two parameter fitting steps of the 2-146 

stage approach are mathematically formulated and a general outline of the 2-stage approach is provided.  147 

The performance and flexibility of the approach is explored is the Results (Section 3) through the lens of 148 
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three case studies.  A discussion of the results can be found in Section 4.  Finally, Section 5 concludes and 149 

identifies opportunities for further investigation. 150 

2. Methods 151 

As illustrated previously in Figure 1, the 2-stage approach fits the parameters of the mechanistic model by 152 

solving 2 separate regression problems.  In the first stage, the parameters of the data-driven model are 153 

fitted using the original measurement data.  In the second stage, the parameters of the mechanistic ODE 154 

are found using the state and derivative estimates of the data-driven model.  The novel implementation of 155 

the 2-stage approach proposed in this work (see Figure 2) fits a Neural ODE as the data-driven model.  156 

This is done by first solving the following regression problem: 157 

 158 

 min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2 + λ ∑ 𝑤2 

 

(1) 

 
𝑠. 𝑡.  

𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) 

 

(2) 

 159 

Here, 𝐾 state variables 𝑥𝑘, where 𝑘 = 1, … , 𝐾, are measured and predicted at time points 𝑗, where 𝑗 =160 

1, … , 𝐽, by integrating a NODE with respect to independent variable t.  Neural network parameters 𝑤 are 161 

fitted to minimize an objective function equal to the sum of squared errors between the model prediction 162 

and measured state data and a regularization term.  Due to the large number of parameters in the Neural 163 

Network, a regularized penalty term of the weights is added to the objective function multiplied by a 164 

hyperparameter λ.  Once the NODE is trained, derivative estimates are obtained by integrating the trained 165 

NODE from time 𝑡0 = 0 to a final time 𝑡𝑓 of measured data using the same process conditions of the 166 

measured data.  State predictions of the NODE are used to simulate derivatives at times where measured 167 

data is available.  For the second stage of the 2-stage approach, a nonlinear program (NLP) is formulated 168 

as in Eq. 3 and 4 to find the parameters of the original mechanistic ODE. 169 

 170 

 
min ∑(

𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)2 

 

(3) 

 
𝑠. 𝑡.  

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
= 𝑓(𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸 , 𝑝) 

 

(4) 

 171 

To solve this formulation, the parameters 𝑝 of the mechanistic ODE model 𝑓(𝑥, 𝑝) are found by 172 

minimizing the sum of squared differences between the derivatives predicted by the NODE and the 173 
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derivatives predicted by the mechanistic model in the NLP.  Alternatively, the objective to minimize 174 

could be the sum of squared errors of the states.  Note that all equations in the NLP formulation are purely 175 

algebraic and no integration is involved.  Further, it is worth emphasizing that the state and state 176 

derivative values (𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸  and 
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
, respectively) used to solve the NLP are estimates from the 177 

fitted NODE, not the original measurement data.  In order to test the limits of this approach, it is assumed 178 

minimal prior knowledge of the true parameter values was available.  Thus, all parameters are initialized 179 

to the same value and given wide bounds when solving the NLP.  Technically, since the Neural ODE can 180 

be simulated at any time 𝑡, additional points could be added to the NLP formulation.  However, limiting 181 

the number of state/derivative values to the number of measured points was adequate for the purposes of 182 

this study.  In addition, derivative estimates of the NODE at initial conditions 𝑡 = 0 tended to be poor and 183 

were not used when formulating the NLP.  For each of the two optimization routines in the 2-stage 184 

approach, an appropriate scaling method is used to account for states with differing orders of magnitude.  185 

Namely, all state variables were divided by the range of their respective state measurements. 186 

 187 

 188 

Figure 2. Depiction of steps and software used for training and testing DE models via the direct and 189 

NODE-based indirect approaches. 190 

 191 

A comparison of steps for the direct and indirect approach is depicted in Figure 2.  All Neural Networks 192 

were trained using PyTorch,48 which uses automatic differentiation via the Autograd software package to 193 

accelerate gradient calculation and thus parameter estimation.   Moreover, all numerical integration 194 

whether for the direct or indirect approach was conducted in PyTorch.  The quasi-Newton method L-195 
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BFGS was used to train all PyTorch models and all NLP formulations were solved with nonlinear solver 196 

IPOPT49 using linear solver MUMPS,50 in the Pyomo modeling environment.51, 52 A neural network with a 197 

single hidden layer with a hyperbolic tangent activation function was found to give reasonable accuracy 198 

across all case studies.  However, as this work also sought to analyze NODE performance across different 199 

noise levels, it was considered prudent to fit multiple NODEs for each level of noise, varying parameters 200 

of the NODE stage 1 fitting algorithm (also known as hyperparameters) to maximize the generalizability 201 

of the trained NODE.  Specifically, the hyperparameter tuning was set to include 5, 7, or 10 hidden nodes 202 

and the weight of λ in the stage 1 objective function was set to 10E-4, 10E-5, or 10E-6.  Using a grid 203 

search fitting of all combinations of these hyperparameters, the NODE whose hyperparameters led to the 204 

lowest mean squared error between model predictions and noisy training data was selected for the stage 2 205 

regression problem.   206 

 207 

A key technical challenge of this work was developing an integration training algorithm that consistently 208 

fit an interpolating model to continuous data of arbitrary nonlinearity, sparsity and quality.  In addition to 209 

structural hyperparameters, some parameters of the optimization solver should be considered.    Important 210 

hyperparameters were found to be the termination criteria of the Neural ODE training algorithm and the 211 

discretization method used.  For all cases, the training algorithm was stopped when the objective function 212 

ceased to improve by a set tolerance (rtol = 10-6) for more than 10 epochs.  The forward Euler method 213 

was used to integrate the ODEs—a necessary step to obtain model gradients during training.  However, 214 

additional modifications of the numerical integration algorithm were found necessary, which are best 215 

discussed in the results section and is shown through the Lotka-Volterra case study.  216 

3. Results 217 

Before presenting the results for each case study, a brief introduction and objective of each example is 218 

provided here.  The Lotka-Volterra study will be used to illustrate key aspects of the NODE regression 219 

algorithm as well as differentiate between the behavior of NODEs and mechanistic ODEs.  Next, the 220 

styrene reaction system will be used to contrast the performance of NODEs with algebraic data-driven 221 

models, specifically Algebraic Neural Networks, when estimating system derivatives.  This system is also 222 

used to demonstrate the indirect approach’s ability to estimate parameters for mechanistic ODEs with 223 

highly nonlinear terms.  Finally, a fermenter system will investigate the performance of NODEs for noisy 224 

systems as well as possible adaptions of the NODE indirect approach when domain knowledge is 225 

available to inform the interpolating model (i.e., via hybrid modeling).  All case studies use the same 226 

integration algorithm, but due to their unique features and for the sake of concision, we present different 227 

results and highlight different aspects of our approach through each case study.  228 
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3.1 Lotka-Volterra Equations 229 

The Lotka-Volterra equations53, 54 were chosen as a first demonstration of the versatility of the NODE-230 

based 2-stage approach.  Commonly known as the predator-prey model, these equations are frequently 231 

used to track the interactions between oscillatory populations for a wide variety of systems, including 232 

chemical reactions,55 biological competition,56 and ecological systems.57  In addition, these equations are 233 

frequently used to test differential equation solution methods (for example, see 27, 28, 32, 33) due their 234 

characteristic nonlinearity and simple formulation.  To train the NODE, 20 ‘measurements’ for 235 

populations of species x and y were collected within a period t = [0,5] by simulating the Lotka-Volterra 236 

ODE model, summarized in the Supporting Information.  The task at hand is to fit all the parameters of 237 

the mechanistic ODE using the 2-stage approach. 238 

 239 

Initially, the NODE was fitted by integrating over a single interval from time 𝑡𝑜 = 0 to final time 𝑡𝑓 = 5.  240 

However, this consistently resulted in the NODE training converging to a local minimum between the 241 

min and max values of the state profiles as shown in Figure 3.  To overcome this undesired behavior, the 242 

training algorithm was modified to integrate the Neural ODE not from a single initial value, but from 243 

multiple initial values.  Specifically, each timepoint j with measured data is used as an initial value (IV) in 244 

the integrator, which is integrated forward in time for an arbitrary number of data points n, from 𝑡𝑗 to 245 

𝑡𝑗+𝑛.  Clearly, a balance must be made between the time interval for the forward integration steps, the 246 

nonlinearly of the state space, and the quality (i.e., level of noise) of the data.  It was decided to fix the 247 

total integration to a span of 5 measured points for each initial value, and the number of Euler time steps 248 

between measured data was set to 6.  For the LV equations with 20 simulated points in the time interval t 249 

= [0,5], the smallest Euler step size was Δt = 0.0417.  The improved convergence using the revised 250 

integration algorithm can be seen in Figure 3.  Due to the improved convergence, this method integrating 251 

over overlapping intervals spanning 5 measured points was used to train all NODEs in this work.  252 

 253 
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  254 

  255 

Figure 3. Progression of NODE predictions in green for the Lotka-Volterra system at the beginning (left) 256 

and end (right) of training when integrating from a single IV (top) and multiple IVs (bottom). 257 

 258 

The use of integration from multiple initial values may appear similar to the multiple shooting approach.  259 

However, in general multiple shooting methods, the integration intervals do not overlap; rather, the 260 

boundary conditions are optimized with the other model parameters until the final values of one interval 261 

are equal to the initial value of the subsequent interval, creating a continuous dynamic solution.  In 262 

contrast, the integration method applied herein integrates over multiple overlapping intervals, beginning 263 

from time points where measured data is available.  Although the initial values could be included as 264 

trainable parameters, in this work the initial value of each integral is fixed at locations of measured data.  265 

The integration scheme also differs from multiple shooting in its fundamental purpose.  Whereas the 266 

purpose of multiple shooting is to avoid divergence during integration, the motivation for our method is 267 

specifically to avoid convergence to local minima when training the NODE.  To our best knowledge, this 268 

is the first work to propose integrating over overlapping intervals to enable interpolation of dynamic data 269 

of arbitrary nonlinearity.   270 
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 271 

 272 

Figure 4. Simulation of fitted Neural ODE (left) and fitted Lotka-Volterra equations (right) when trained 273 

on data corrupted by Gaussian-distributed noise equivalent to 0, 1, 5, or 10% of the true data.  True data 274 

represented by dots.  Training data restricted to interval t = [0,5].  Same initial value as training data.   275 

 276 

With a properly fitted NODE, the NODE can now be used to fit the mechanistic ODE (see again, stage 2 277 

in Figure 2).  Prior to this second fitting problem, the trained NODE is integrated from a single initial 278 

value across the entire time trajectory to obtain state and derivative estimates used in the NLP estimating 279 

mechanistic parameters.  The NLP can then be solved without integrating the mechanistic ODE.  It is 280 

worth clarifying that NODEs are not the end model in the 2-stage approach.  More appropriately, the 281 

NODE can be viewed as a data-driven means to a mechanistic end.  Due to their data-driven nature, 282 

NODEs cannot be expected to offer accurate predictions far beyond the range of training data, despite the 283 

fact that they are used to predict derivatives.  Rather, the NODE is fitted to obtain system state and 284 

derivative estimates for regressing mechanistic differential equations.  If properly formulated, the 285 

mechanistic model offers the system interpretability and extrapolation properties.   286 

 287 

To illustrate this principle, Figure 4 demonstrates the effect of simulating a trained NODE beyond the 288 

limit of training data.  For this illustration, the NODE was trained on 20 data samples in the interval t = 289 

[0,5] corrupted with Gaussian-distributed noise equal to 0, 1, 5 or 10% of the range of the state data, and 290 

it is then simulated for a period twice the time interval of the training data.  In addition, a mechanistic 291 

model is fitted by solving an algebraic NLP using the NODE state and derivative estimates from the 292 

training interval t = [0,5], and is then simulated for double this interval.  Several principles can be 293 

extracted from Figure 4, of which two are highlighted here.  First, the Neural ODE predictions are not 294 

adversely affected by the addition of a small amount of noise, even improving when the noise added is 295 
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small, which may seem counterintuitive.  However, this can be explained by the general overfitting 296 

properties of Neural Networks (NNs).  Numerous previous studies have shown that in many cases NNs 297 

tend to generalize less well when data is ‘perfect’ (i.e., noiseless), suggesting that modelers add noise to 298 

the data to discourage overfitting.58-61  NODEs are essentially Neural Networks that predict the 299 

instantaneous change in a system.  Thus, they inherit similar overfitting properties of Neural Networks.  300 

However, as extrapolation is not required for estimation of the mechanistic ODE, the effects of overfitting 301 

on extrapolation is not of serious concern for the NODE indirect approach.  302 

 303 

Second, it may appear from Figure 4, based on the case wherein the NODE is trained on 5% noise, that 304 

the overfitting issue has been overcome and the NODE can extrapolate competitively with the fitted 305 

mechanistic model.  The ability of Neural ODEs to capture oscillatory dynamics is congruent with similar 306 

studies.62  However, this behavior is better interpreted as sophisticated pattern-matching rather than 307 

rigorous extrapolation.  To clarify this claim, we tested the fitted Neural ODE and mechanistic ODE on 308 

the case where the initial conditions of the predator-prey system change (see Figure 5).  Without 309 

retraining the models, the NODE and mechanistic model are simulated assuming a higher initial amount 310 

of ‘predator’ in our system.  This time the NODE clearly fails to capture the nuanced interactions between 311 

system variables, regardless of the quality of the training data—even predicting physically unrealistic 312 

negative values.  As a juxtaposition, the correctly parameterized mechanistic model captures the variable 313 

interactions with far greater precision.  It is the potential for increased interpretability and extrapolation 314 

that motivates the final model to be a mechanistic model in the 2-stage approach.   315 

  316 

Figure 5. Simulation of fitted NODE (left) and fitted Lotka-Volterra equations (right) when trained on 317 

data corrupted by Gaussian-distributed noise equivalent to 0, 1, 5, or 10% of the true data.  True data 318 

represented by dots.  Different initial values from training data.  319 

 320 
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 321 

3.2 Styrene Example 322 

Serving as a second demonstration, the dehydrogenation of the ethylbenzene (EB) to form styrene is 323 

modeled in a tubular reactor.63, 64  The reactor is assumed to operate in plug flow and thus reactant 324 

concentrations change only in the axial direction.  This system consists of a reversible reaction to the 325 

desired products styrene and hydrogen as well as two undesired, irreversible side reactions.   Benzene and 326 

ethylene are produced in equimolar amounts and are thus assumed to have the same concentration.  The 327 

same is true of toluene and methane.  In total, the 7 chemical species involved in the reaction include 328 

ethylbenzene, styrene, hydrogen, benzene, ethylene, toluene, and methane.  The stoichiometry of the 329 

reaction along with the mechanistic model used to simulate the styrene production process are found in 330 

the Supporting Information.  To collect training data, the mechanistic model is simulated over a reactor 331 

length t = [0,12] meters with initial temperatures in the range of T = [850, 950] Kelvin and an initial 332 

ethylbenzene flow rate in the range FEB = [3,5] mol/s, all other species concentrations starting at zero.  Six 333 

system experiments are simulated with the above inlet conditions and 10 measurements of system states 334 

are sampled at equidistant points along the reactor for each experiment for a total of 60 timepoints of 335 

available training data. 336 

 337 

To motivate the use of NODEs in the two-stage approach, we compared its ability to capture system 338 

derivatives with other data-driven models.  For the EB system, the Neural Network representing the 339 

NODE receives K=6 inputs 𝑥𝑘 corresponding to the flowrate of ethylbenzene, styrene, hydrogen, 340 

benzene/ethylene, and toluene/methane and temperature.  The NODE has 6 outputs corresponding to the 341 

instantaneous derivatives of each of the system states.  The states predicted by the NODE are obtained by 342 

numerically integrating the model with respect to reactor length 𝑡.   343 

 344 
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 345 

 346 

Figure 6. State and state derivative fits of the Neural ODE to styrene system data. Solid lines represent 347 

NODE predictions, solid points are training data and ‘x’ tick marks are the derivatives of the original, 348 

noiseless simulation. 349 

  350 

As mentioned previously, a major shortcoming of the two-stage approaches found in literature so far, is 351 

poor estimation of system derivative information, which leads to poor estimation of mechanistic 352 

parameters.  To demonstrate the superior performance of the NODE, an Algebraic (i.e., non-dynamic) 353 

Neural Network was also fitted, which receives length of reactor 𝑡 as its only input and outputs the 6 state 354 

variables of the EB system (not derivatives).  This Algebraic NN (a-NN) can predict state derivatives by 355 

computing the gradient of the NN outputs with respect to its input, reactor length.  The state variables 356 

could also be used as inputs although these did not significantly enhance accuracy of the a-NN estimates.  357 

The mathematical equations for the Neural ODE and the a-NN are thus formalized in equation 5 and 6, 358 

respectively. 359 

 360 

 𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) 

 

(5) 
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 𝑥𝑘 = 𝑁𝑁(𝑡, 𝑤) 

 

(6) 

 361 

Both the Neural ODE and a-NN are trained on a single batch of reaction data (i.e., 10 points along the 362 

reactor) using the process conditions outlined in Experiment 1 in Table S.1 in the Supporting Information.  363 

A small amount of Gaussian-distributed noise equivalent to 1% of the range of each state variable is 364 

added.  Depicted in Figure 6 and Figure 7 are the state and derivative estimates of the trained Neural ODE 365 

and the a-NN, respectively.  Clearly, both data-driven models provide an adequate interpolation of the 366 

state data.  Yet, when used to predict state derivatives, the Neural ODE estimates are far more reliable.  367 

The a-NN visibly fails to capture the derivative profiles despite the state data being corrupted with 368 

minimal error (i.e., 1% noise).  The simple explanation for this lies in the fact that in the process of 369 

integrating the NODE to predict the states, the NODE must accurately predict the derivatives.  In contrast, 370 

no state derivative information is involved in the training of the a-NN.   371 

  372 

 373 

 374 

Figure 7. State and state derivative fits of the Algebraic NN to styrene system data. Solid lines represent 375 

NN predictions, solid points are training data and ‘x’ tick marks are the derivatives of the original, 376 

noiseless simulation. 377 
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 378 

The a-NN model was likewise fitted to the state data of the other case studies considered in this work and 379 

the predicted derivatives plotted against the true rates, with equally underwhelming results.  For the sake 380 

of brevity, we surmise that for every system considered herein the NODE model gave more accurate 381 

estimates of the state derivatives than a standard a-NN.  These results are not surprising in light of 382 

previous work, which has shown the importance of using dynamic data-driven models to interpolate 383 

dynamic data, rather than their algebraic equivalents.45 384 

 385 

With the confidence in the NODE’s ability to capture system derivative information, we now turn to 386 

NODE’s ability to estimate the parameter values of the original mechanistic ODE.  For this task, 387 

measurements from all six process conditions are used to fit the NODE and mechanistic ODE.  It was 388 

assumed that 3 parameters of the EB model were unknown, namely the frequency factor (FF) of each 389 

reaction, all other parameters fixed at their true values.  Unknown mechanistic parameters were initialized 390 

to a value of 2 prior to regression.  To demonstrate the robustness of NODE models to low-quality 391 

training data, Gaussian noise was added to the measured data equal to 0, 5, and 10% of the range of the 392 

state data.  393 

 394 

Table 1. Table of Frequency Factor (FF) Estimates via direct and NODE indirect approaches 395 

  0% Noise 5% Noise 10% Noise 

FF (direct) [-0.1626, 2.0039, 0.2787] [-0.1063, 2.0027, 0.3751] [-0.1020, 2.0025, 0.4575] 

FF (indirect) [-0.1936, 13.0463, 0.16928] [-0.2622, 12.8374, 0.2061]  [-0.2079, 12.8301, 0.3044] 

True Frequency Factor Values: A1, A2, A3 = [-0.08539, 13.2392, 0.2961]  

Initial FF Estimates (Pretraining): A1, A2, A3 = [2.0, 2.0, 2.0] 

 396 

Table 1 shows the fits of the three frequency factors using the direct and indirect approaches.  Recall that 397 

the direct approach requires the repeated integration of the mechanistic ODEs during parameter 398 

estimation whereas the indirect approach avoids integrating the mechanistic ODEs in favor of integrating 399 

NODEs via the NODE 2-stage approach.  Both approaches perform well at estimating the frequency 400 

factors for reactions 1 & 3.  However, the Neural ODE 2-stage approach consistently provides superior 401 

estimates for the frequency factor of reaction 2, even when training data is corrupted with a large amount 402 

of noise.  The inability of the direct approach to estimate A2 can be explained in part by the difference in 403 

magnitude of the model gradients calculated during training.  The initial value of the second parameter is 404 

furthest from the true value, resulting in a gradient that is orders of magnitude different from the gradients 405 
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computed for the other parameters.  This results in a poorly behaved parameter updating algorithm during 406 

training.  To try to understand the success of the 2-stage approach in overcoming this parameter 407 

sensitivity issue, we also tried to solve the stage 2 formulation with L-BFGS rather than formulating it as 408 

an NLP and solving it with IPOPT.  Briefly, the L-BFGS solver was unable to find the true frequency 409 

factor for reaction 2 even when ‘perfect’ state and derivative values were used in the stage 2 formulation.  410 

While the exact cause for the success of the IPOPT-solved NLP form remains under investigation, we 411 

hypothesize a possible reason for this behavior is the scaling performed internally by the IPOPT solver 412 

enables more accurate convergence.  This issue could be resolved with a priori scaling or reformulation 413 

of the ODE model.  However, without good foreknowledge of the true parameter values, such an ad hoc 414 

approach is not straightforward.  In contrast, the NODE approach abetted by an advanced NLP solver 415 

offers good estimates of all system parameters without significant prior knowledge of the correct 416 

parameter values. 417 

 418 

3.3 Penicillin Model 419 

For the final case study used in this work to illustrate the versatility of NODEs, we chose to model the 420 

production of penicillin via yeast fermentation.  The fermentation has several challenging elements 421 

unique to this system.  First, modeling the reactor requires incorporating external forcing variables (also 422 

known as control or system operating variables), namely the flow rate and substrate concentration of the 423 

feed.  Moreover, the level of nonlinearity in the system differs significantly between state variables.  It is 424 

further assumed that none of the 11 parameter values of the original mechanistic ODE are known, posing 425 

a serious test to the proposed NODE algorithm. The system equations and process conditions can be 426 

found in the Supporting Information.  Nine sets of process run conditions are used to generate training 427 

data.  Assuming 10 data points can be collected from each run, 90 data points are available for training.  428 

A depiction of the continuous state profiles of the nine process runs are given for reference in Figure 8. 429 

 430 
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 431 

Figure 8. Simulated state profiles from penicillin fermentation ODE model with correct parameters for all 432 

9 experimental batch conditions.  433 

 434 

A few options exist for incorporating the forcing variables in the formulation of the Neural ODE.  The 435 

simplest approach is to modify Equation 6 to include the forcing variables as inputs to the Neural 436 

Network. 437 

 438 

 𝑑𝑥𝑘

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , c, 𝑤) (7) 

With all the state and forcing variables included, the NODE would have 6 inputs, including 2 forcing 439 

variables 𝑐 = [𝐹, 𝑆𝑓] corresponding to the substrate concentration in the feed (𝑆𝑓) and feed flow rate (𝐹) 440 

and 4 state variables (𝑥𝑘).  With respect to outputs, the NODE would predict the derivatives of the 3 state 441 

variables biomass (𝐵), substrate (𝑆) and product (𝑃) concentration.  However, the addition of forcing 442 

variables requires the NODE to learn complex nonlinear relationships with little extra data information 443 

since the forcing variables are often constant throughout the process.  Not surprisingly, training with all 444 

variables resulted in inconsistent and diverging training properties.  Alternatively, the size of the Neural 445 

Network component of the NODE can be reduced by including mechanistic information in the neural 446 

differential equation.  Generally speaking, engineering systems have some readily available mechanistic 447 

knowledge such as conservation balances that can be combined with data-driven models to create more 448 

interpretable models.  This is akin to hybrid semi-parametric modeling introduced in the early 90’s.43, 44  449 
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In the case of the fermenter example, the change in volume and the effect on concentration from the feed 450 

rate can easily be deduced from a mass balance.  This ‘hybrid’ model is formulated below: 451 

 452 

 𝑑𝐵

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) − 𝐵𝐷 

 

(8) 

 𝑑𝑆

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) + (𝑆𝑓 − 𝑆)𝐷 

 

(9) 

 𝑑𝑃

𝑑𝑡
= 𝑁𝑁(𝑥𝑘 , 𝑤) − 𝑃𝐷 

 

(10) 

 𝑑𝑉

𝑑𝑡
= 𝐹 

 

(11) 

 
𝐷 =

𝐹

𝑉
 

 

(12) 

 453 

With the mass balance properly specified, the number of NN inputs required to predict the remaining rate 454 

term is reduced from 6 to 3.  To thoroughly characterize the potential of the hybrid NODE formulation in 455 

the context of the fermentation case study, the NODE is fit to data with varying levels of noise ranging 456 

from 0-10%.  Shown in Figure 9 is the NODE estimation versus state data for a single batch experiment 457 

after training the NODE on all 9 sets of batch data with 5% added noise.  Figure 9 also shows NODE 458 

estimates of the state derivatives, having removed the poor derivative predictions at time t=0.  Save for 459 

the initial value, the NODE tends to give reasonable estimates of the state derivatives. 460 

 461 

   462 

Figure 9. Fit of Neural ODE to penicillin state data (left) and estimate of the state derivatives (right) 463 

when data is corrupted with 5% Gaussian noise.  Data and fit shown for batch case #1. 464 
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 465 

Similar to the previous examples, the derivative and state estimates from fitting the hybrid NODE are 466 

used to estimate parameters of the mechanistic ODE.  Once again, little prior information is assumed 467 

about the values of the mechanistic parameters and thus all mechanistic parameters are initialized to equal 468 

2 at the beginning of NLP optimization.  The fitted mechanistic model using derivatives estimates from 469 

hybrid NODEs trained on different levels of noise are shown in Figure 10.   470 

 471 

 472 

Figure 10. Simulation of the Penicillin ODE system after fitting with data corrupted with 0% (left) and 473 

10% (right) noise.  Data and fit shown for batch case #1. 474 

 475 

Figure 11 shows calculated errors of the fitted Penicillin model and juxtaposes those errors with the errors 476 

from the mechanistic models of the previous case studies fitted via the 2-stage approach.  Errors reported 477 

in Figure 11 are the mean absolute value error (MAE) between the state data predicted by the fitted 478 

mechanistic ODE and the original mechanistic ODE with true parameter values, averaged over N training 479 

data points (see equation 13), where i = 1, …, N.   480 

 481 

 
MAE =

∑ 𝑎𝑏𝑠( 𝑥𝑖,𝑡𝑟𝑢𝑒 − 𝑥𝑖,𝑝𝑟𝑒𝑑)

𝑁
 

 

(13) 

 482 

In order to visualize the errors on the same plot, the MAE of the styrene predictions are scaled by a factor 483 

of 10, all other errors left unscaled.  The trends in accuracy tend to be consistent with what was observed 484 

earlier in the Lotka-Volterra study.  In the presence of near perfect data with no noise, the fitted 485 

mechanistic model tends to show slightly inferior performance.  This is believed to be caused by the 486 

NODE slightly overfitting the data, a problem less evident at small amounts (i.e., 1%) of noise.    This is 487 



21 
 

interesting when considering the fact that the NODE is trained by using the measurement data as the fixed 488 

initial condition during integration, which becomes more erroneous as the level of noise increases.  489 

However, the NODE fit is by no means impervious to poor quality data, and this latter factor explains the 490 

increase in fitting error when training on data with greatest corruption (i.e., 10% noise).  Nevertheless, the 491 

issues of overfitting and poor data quality notwithstanding, by using data from multiple experiments as 492 

well as the method of overlapping integration, the Neural ODE still offers a reasonable interpolation of 493 

the state data as depicted previously in Figure 9.   494 

 495 

Figure 11. Mean Absolute Error for 3 case studies fitted to data with different levels of noise. 496 

 497 

Table 2 shows parameter values of the fitted mechanistic model.  Unlike the previous two case studies, 498 

the ODE parameters found via the 2-stage approach did not always approach values close to those in the 499 

original set of equations simulating the data.  As a check that the NLP solution found is a global one, the 500 

parameters were also initialized to their true values and the NLP solved with the improved starting values.  501 

However, this consistently converged to same set of parameter values as the NLP with poor initial 502 

parameter values.  This can be attributed to the variance in sensitivity of the parameters.  In an actual 503 

modeling scenario, some parameters may be identified before model fitting using separate experiments or 504 

nominal literature values.  Modelers may often choose to fix insensitive parameters to nominal values, 505 

thus decreasing the number of mechanistic parameters that require fitting.  This would invariably increase 506 

the accuracy of the final parameter fit in our 2-stage approach. 507 

 508 

Table 2. Actual and fitted parameter estimates for Penicillin case study 509 
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True values 0.0519 0.05 1 0.01 0.0137 0.0001 0.0100 0.3 0.0837 1.2 0.47 

0% Noise 0.0447 6.3077 11.0 0.0010 0.0084 9.9708 0.0049 0.1251 0.0083 0.2713 0.4076 

1% Noise 0.0382 0.0104 19.99 0.0129 0.0077 9.9922 0.0069 0.2420 0.0056 0.4781 0.4273 

5% Noise 0.0461 0.0108 19.99 0.0047 0.0054 9.9796 0.0138 0.535 0.0052 0.2780 0.4406 

10% Noise 0.0401 0.0106 19.99 0.0420 0.0026 9.9919 0.0105 0.4693 0.0044 0.6278 0.6673 

 510 

3.4 Compute Time—Direct and Indirect Approaches 511 

As a final assessment of the relative merits of the NODE 2-stage approach, the computational 512 

requirements of the proposed approach and the traditional direct approach were tabulated for the case of 513 

noiseless training data.  For this study, the NN in the NODE was fixed at 10 hidden nodes.  All training 514 

studies were conducted on a laptop computer with an Intel Core i7-6700 CPU processor (3.4 GHz).  To 515 

ensure a fair comparison, the algorithms and software used to find the parameters of mechanistic ODEs 516 

and Neural ODEs were kept nearly identical.  Specifically, both ODE types are repeatedly integrated 517 

using the same numerical integrator (Euler’s method), use the same method for gradient calculation 518 

(automatic differentiation), and use the same nonlinear optimizer (L-BFGS).  Both minimize the same 519 

objective function (Eq. 1) except the direct approach does not include the regularization term penalizing 520 

large parameter values.  For the direct approach, compute time was defined as the time required to train 521 

the mechanistic ODE parameters.  Whereas the compute time for the indirect approach includes the time 522 

to fit the Neural ODE parameters and the time to solve the NLP for the mechanistic parameters—stage 1 523 

and 2 of the indirect approach, respectively.  Not included in the time comparison is the hyperparameter 524 

tuning.  In other words, stage 1 includes only the time required to fit a single NODE.  Although 525 

hyperparameter tuning invariably increases the compute cost of the NODE 2-stage approach, the cross-526 

validation procedure using grid search can be parallelized to prevent such a procedure from substantially 527 

increasing compute times.   528 

 529 

The results are present in Table 3.  The compute times tend to be comparable despite the larger number of 530 

parameters in the Neural Network that must be fit.  For example, in the case of the ethylbenzene system, 531 

which is made highly nonlinear by the presence of exponential functions, the direct approach is required 532 

to fit 3 mechanistic parameters vs. 136 parameters in the Neural ODE.  In contrast, the Lotka-Volterra 533 

system, which is linear with respect to its 3 parameters, observes minimal compute gains by using the 2-534 

stage approach.  It is reasonable to conclude, therefore, that the influence of nonlinear operators on the 535 

sensitivity of the parameter gradients, rather than the number of parameters, plays a bigger role in 536 



23 
 

compute costs.  The NLP when properly formulated requires little compute power in comparison to fitting 537 

the ODE models.   538 

   539 

 540 

 541 

Table 3. Compute Times for Direct vs Indirect Approaches (dp=Number of data points used for training) 542 

  Lotka Volterra 

(2 states, 3 params, 20 dp) 

Ethylbenzene 

(6 states, 3 params, 60 dp) 

Penicillin 

(3 states, 11 params, 90 dp) 

Direct 

Approach 

(i.e. shooting) 

Total: 76 s Total: 352 s Did not converge 

Indirect NODE 

or Hybrid ODE 

Approach 

Total: 62 s 

NODE: 62 s 

NLP: 0.009 s 

Total: 116 s 

NODE: 110 s 

NLP: 6.76 s 

Total: 183 s 

HODE: 181 s 

NLP: 1.932 s 

 543 

 A comparison with the direct approach for the penicillin model was not possible as the direct approach 544 

quickly diverged unless parameter estimates close to the true values are supplied as an initial guess.  545 

However, obtaining good parameter guesses is not always possible.  Thus, more than faster compute 546 

times, it may be that the greatest advantage of the 2-stage approach is the ability to obtain reasonable 547 

model estimates when little is known about their parameter values.  This obviates the need for ad hoc 548 

scaling and parameter bounding that would be required for direct approaches, which although harder to 549 

quantify, may represent a significant time savings of the 2-stage approach.   550 

4. Discussion 551 

There are several aspects and findings of this study that are worth further discussion.  Firstly, although 552 

there is a trend toward deep machine learning architectures, a simple neural network with a single hidden 553 

layer was found to be sufficiently robust when used in the NODE to model the state and rate space of 554 

each case study.  This is not to say that alternate NN architectures could not improve the approximation 555 

accuracy of Neural ODEs—a question that may hold interesting answers, especially for more complex 556 

systems or systems with more dimensions.  It is also important to mention that this approach offers more 557 

than a simple data-driven correction to the mechanistic model.  In this approach the NODE (or hybrid 558 

ODE) is not the final model, rather it is the tool that helps us arrive at a parametrized mechanistic model.   559 

 560 
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Hyperparameter tuning may help minimize overfitting of the NODE, generating a more optimal 561 

interpolation of the data.  In this work, the NODE was selected after hyperparameters such as the number 562 

of hidden nodes and regularization weight were varied.  Hyperparameters such as the discretization 563 

method and termination criteria for training were held constant across case studies or given random initial 564 

values (i.e., initialization of NN weights).  Other possible hyperparameters that one may choose to 565 

consider include the NN structure (number of hidden layers, activation function, etc.) and features of the 566 

nonlinear optimizer (e.g. learning rate).  We acknowledge, however, that these are all (hyper)parameters 567 

of the approach that may need to be optimized for other case studies using either an automated grid search 568 

or more advanced techniques.  Parallel computing can be used to prevent such a grid search from 569 

exponentially increasing compute time.  As software packages for implementing NODEs become more 570 

standardized, we anticipate selection of these hyperparameters to be increasingly streamlined, making 571 

hyperparameter tuning and cross-validation a fast and straightforward process. 572 

 573 

Another interesting finding of this work is related to the use of integration when training Neural ODEs.  574 

Typical 2-stage approaches use algebraic data-driven models to estimate state derivatives to avoid the 575 

time-intensive integration of DEs required in the direct approach.  In contrast, by applying NODEs for 576 

derivative estimation, the proposed method effectively reintroduces integration into the 2-stage approach, 577 

albeit only in the first stage.  Algebraic data-driven models, such as the Algebraic Neural Network used in 578 

this work, can be trained in fractions of the time required to train Neural ODEs, yet their derivative 579 

estimates are not sufficiently accurate for solving the NLP in stage 2.  Therefore, as argued in this work, 580 

the ability of Neural ODEs to accurately capture derivative information favors their use notwithstanding 581 

the added compute cost of integration/gradient calculation during NODE training. 582 

 583 

Conversely, although Neural ODEs required more training time than an a-NN, their training time was 584 

competitive if not faster than the direct estimation of mechanistic parameters.   Although the NODE’s 585 

neural network architecture used in this work may be small when compared to many deep learning 586 

architectures, the NODE had many more parameters that required fitting than the mechanistic model.  It 587 

may seem counterintuitive that a model with more parameters can be fit with competitive compute cost 588 

and more reliably than directly fitting a model with fewer parameters.   589 

 590 

Two factors are believed to contribute to this observation.  First, due to their large number of parameters, 591 

NN fits are often non-unique, enabling the model to interpolate the available data equally well with 592 

several combinations of parameter values.  This feature is not an issue in terms of generalizability of the 593 

proposed approach as the NODE is not the final model and is not expected to extrapolate.  Secondly, 594 
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gradients used to update parameters during NN training tend to be better behaved and fall within a tighter 595 

range than what can be expected of some mechanistic models.  This is because the nonlinear operators in 596 

the mechanistic ODEs, especially exponential and logarithmic terms, tend to cause parameter values and 597 

gradients to range over larger orders of magnitude.  For example, in the case of the styrene system, when 598 

the direct approach was used and the gradients of the unknown mechanistic parameters (initially assumed 599 

to equal 2) were calculated with respect to the loss function at the start of training, it was found that the 600 

difference between the true parameter values and parameter gradients varied over 8 orders in magnitude.  601 

In contrast, none of the initial gradients of the 136 NODE parameters at the start of training differed from 602 

the final parameter values by more than 3 orders in magnitude.  A wide discrepancy between parameter 603 

gradients and true parameter values invariably leads to poor convergence.  In summary, the NODE 2-604 

stage approach can be faster than the direct estimation of mechanistic models by avoiding integration of 605 

the mechanistic model during estimation of its parameters, which may be less sensitive and more 606 

constrained than NODE parameters.  Only in stage 2 of the 2-stage approach must the mechanistic 607 

constraints be considered, but since the NLP formulation is already algebraic, no numerical methods are 608 

involved at this stage.  Although the problem of mechanistic parameter sensitivity could be addressed 609 

with model scaling and reformulation, when the mechanistic parameters are unknown, the proper scaling 610 

is not always obvious.  A more thorough treatment of the Neural ODEs observed stable convergence is a 611 

potential topic for future work. 612 

 613 

A common concern when training the weights of Neural Networks is convergence to local minima.  In 614 

this work, designing the algorithm to integrate over overlapping intervals was found to overcome 615 

convergence to unacceptable local minima.  Moreover, in this work, it was assumed that a sample for 616 

each state variable was available at each sampling moment and the initial values for integration were 617 

fixed at the measurement values.  Although not emphasized in the results, the algorithm also proved to 618 

readily generalize to training on data sampled at irregular intervals.  For example, the interval between 619 

sampled states of the fermenter varied slightly between 21 and 24 hrs, requiring the automated adjustment 620 

of the Euler step size during training.  For cases where the data is even sparser, states are measured at 621 

uneven time intervals or some measurements are missing, algebraic data-driven models could be used to 622 

interpolate missing state values.  However, it should be acknowledged that if data is too sparse such that it 623 

does not cover the curvature of state trajectory, NODE interpolations will not represent the true trajectory 624 

well and the 2-stage method is not expected to give satisfactory results.  Global optimization methods 625 

could be added to the Neural ODE training stage to ensure global convergence; however, this would 626 

significantly increase computational cost.  More importantly, as the NODE is not the end model and 627 

already offers the needed accuracy for derivative estimates, global optimization methods for NODE 628 
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training might not be necessary.  Although not done here, the weights of the neural network could be pre-629 

trained with the courser derivative estimates of algebraic data-driven models prior to training the Neural 630 

ODE, which could further accelerate NODE training. 631 

 632 

A potential weakness of estimating system derivatives with data-driven models is the poor derivative 633 

estimates at initial conditions.  This is unfortunate as the most interesting nonlinear behavior tends to 634 

occur at the initial stage of the process.  This behavior has been observed repeatedly for splines34, 41 but 635 

has not been commented on for NODEs.  A hypothesis for this behavior is that the initial system 636 

derivatives present an extra degree of freedom not constrained by data as at intermediate time points.  If 637 

the modeler knows the initial rates these could be enforced, eliminating the extra degree of freedom, 638 

though such information is generally not known.   More realistically, since the NODE can be regressed on 639 

multiple batches of data, thoughtful design of experiments could mitigate the effect of poor initial 640 

estimates.  Regardless, this work follows the heuristic of removing derivative estimates at initial 641 

conditions, and the two-stage approach still managed to yield reasonable fits to the state data.  642 

 643 

It is well-known that a direct approach can have greater statistical accuracy than indirect approaches—this 644 

is because the additional step of fitting the data-driven model in the indirect approach may incur an 645 

‘information loss’ that may bias the final mechanistic model fit.65, 66  Even in this case, as has been 646 

demonstrated in previous studies,30, 33, 66 the discovered parameters from the faster indirect approach can 647 

be used as initial guesses in the direct approach to alleviate some of the computational burden.  This 648 

advantage would be even more pronounced in situations where the exact formula of the mechanistic 649 

model is uncertain.  In this contribution, it was assumed that the available mechanistic model was the 650 

same as mechanistic ODEs that simulated the measurement data.  However, when the true ODE model is 651 

unknown, the modeler may be required to select between multiple mechanistic models with different 652 

parameterizations.  In this case, a single NODE can be regressed whose derivative estimates are used to 653 

fit all the proposed mechanistic models separately, a task that would be computationally more significant 654 

with a direct approach. 655 

 656 

Finally, it should be stressed that our proposed approach is not exempt from issues of parameter 657 

identifiability and sensitivity.  With all parameter estimation approaches, one should verify that data 658 

quantity and quality is adequate to obtain the needed level of parameter precision prior to parameter 659 

fitting (e.g. by conducting identifiability and sensitivity analysis).  Moreover, other sources of domain 660 

knowledge that could be used to improve initial guesses and tighten the feasibility bounds for parameters 661 

should be incorporated when available.  As with other indirect approaches, the NODE indirect approach 662 
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does not have a straightforward extension to systems with unmeasured (i.e. latent) states.  If the 663 

mechanistic DEs are assumed a function of unmeasured states, methods typically associated with the 664 

direct approaches will be required to relate unmeasured states to measured variables during parameter 665 

estimation.  A comparison of the proposed approach with direct integration methods was conducted to 666 

highlight the advantage of the proposed approach versus direct approaches.  However, to fully classify the 667 

scenarios where indirect estimation via Neural ODEs would be superior, a more comprehensive 668 

comparison with other DE solution methods mentioned in the introduction should be conducted.  Many of 669 

these direct approaches are under active development or being revisited and a full comparison is outside 670 

the scope of this study. 671 

5. Conclusions 672 

This work compared the ability of NODEs and Algebraic NNs to extract state derivative information from 673 

data.  It further compared the indirect approach based on NODEs with a direct NLS approach for 674 

regressing ODE models.  A clear increase in accuracy was shown when NODEs are the interpolating 675 

model.  Other data-driven models could be used to estimate system derivatives and an exhaustive 676 

comparison with all methods was outside the scope of this work.  However, we anticipate that NODEs 677 

will outperform all methods based on algebraic interpolating models (e.g. splines) as none of these 678 

methods consider state derivatives during model fitting.  Moreover, a single algebraic data-driven model 679 

has no straightforward way to interpolate data from multiple batch runs based on different system forcing 680 

conditions.  In contrast, the differential equation-based NODEs can easily incorporate data from different 681 

system conditions via user-specification of initial and boundary conditions and external forcing variables. 682 

 683 

Although the Neural ODE-based approach showed computational gains over direct integration of the 684 

mechanistic ODEs, the most attractive advantage of this approach lies in its ability to find mechanistic 685 

parameters with minimal prior knowledge of their values and minimal parameter scaling.  Improvement 686 

in parameter estimation is most notable for mechanistic DEs that require parameterization of highly 687 

nonlinear operators (e.g. logarithms and exponentials).  Many interesting questions remain in regards to 688 

possible extensions of the method.  Especially interesting would be analyses on the scalability of the 689 

NODE 2-stage method to more complex differential equation systems (e.g. PDEs) and higher order DE 690 

systems, for which previous work encourages promising results.47, 67  It may also be worth exploring the 691 

effect of including the initial conditions as trainable parameters along with the NODE parameters if the 692 

initial conditions are uncertain.  The potential to improve parameter estimates by solving the NLP with 693 

global optimization solvers is yet another interesting direction.  These and other directions are a matter for 694 

future investigation. 695 
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A complete mathematical formulation for each case study, its parameter values, and the system 698 

conditions used to simulate training data is summarized the Supporting Information file of this paper.  699 

This information is available free of charge via the Internet at http://pubs.acs.org/. 700 
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