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Abstract

Market uncertainties motivate the development of flexible polygeneration
systems that are able to adjust operating conditions to favor production of
the most profitable product portfolio. However, this operational flexibility
comes at the cost of higher capital expenditure. A scenario-based two-stage
stochastic nonconvex Mixed-Integer Nonlinear Programming (MINLP) ap-
proach lends itself naturally to optimizing these trade-offs. This work studies
the optimal design and operation under uncertainty of a hybrid feedstock flex-
ible polygeneration system producing electricity, methanol, dimethyl ether,
olefins or liquefied (synthetic) natural gas. The recently developed GOSSIP
software framework is used for modeling the optimization problem as well
as its efficient solution using the Nonconvex Generalized Benders Decompo-
sition (NGBD) algorithm. Two different cases are studied: The first uses
estimates of the means and variances of the uncertain parameters from his-
torical data, whereas the second assesses the impact of increased uncertain
parameter volatility. The value of implementing flexible designs character-
ized by the value of the stochastic solution (VSS) is in the range of 260 - 405
M$ for a scale of approximately 893 MW of thermal input. Increased price
volatility around the same mean results in higher expected net present value
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and VSS as operational flexibility allows for asymmetric exploitation of price
peaks.

Keywords: Polygeneration system, Waste-to-Energy, Stochastic
Programming, Decomposition Algorithm, Waste Tire, Optimization under
uncertainty

1. Introduction

Polygeneration involves the production of multiple products such as a
mix of electricity, fuels (gasoline, diesel, synthetic natural gas, hydrogen)
and chemicals (methanol, dimethyl ether, olefins, acetic acid) in the same
location. One pertinent strategy is to also use multiple complementary feed-
stocks in order to exploit certain synergies, for instance, by generating syngas
of different qualities that can be blended to provide the correct Hy/CO ratio
for downstream synthesis, sharing of upstream equipment or heat integration
of exothermic and endothermic processing units [1, 2]. In addition, including
an alternative feedstock such as waste tire [3, 4], plastics, municipal solid
waste [5] or petcoke [6, 7] may allow energy companies to lower their overall
environmental impact while also mitigating energy security concerns. The
use of wastes is particularly important because increased population growth
is expected to create larger waste quantities that require appropriate man-
agement. For instance, in the developed world, approximately 1 waste tire
per person per year is produced resulting in approximately 1 billion discarded
tires annually [8]. In addition, there are currently an estimated 4 billion waste
tires in landfills and stockpiles worldwide. In this paper, we study the use of
waste tires because they are a particularly suitable feedstock for conversion
to high-value products through gasification as a result of their homogeneous
nature, high energy density (Lower Heating Value of ~ 33.96 MJ/kg, higher
than coal), high volatile matter content (~ 67%) and low ash content (~ 7%)
9].

A further development to the polygeneration concept is to implement a
flexible design which involves oversizing process equipment so as to allow
adjustment of the production rates (and thus the product portfolio) in order
to exploit market volatility. Thus, the flexible design problem involves opti-
mizing the trade-offs between the increased capital costs associated with the
larger equipment capacities and the expected increase in profit due to opera-
tional flexibility. This optimization problem can be formulated as a scenario-



based two-stage stochastic Mixed-Integer Nonlinear Program (MINLP) as
explained in Section 2.1. The choice of equipment sizes is modeled using
discrete first-stage variables (fixed before the realization of uncertainty) and
the operating conditions are modeled using continuous second-stage variables
(adjusted in response to realization of uncertainty). This optimization prob-
lem is typically nonconvex as a result of the nonlinear equations necessary
to describe mixing, splitting and chemical reaction processes.

Such two-stage stochastic programs with recourse exhibit a special struc-
ture that makes them amenable to solution using duality-based decompo-
sition approaches. For instance, the Benders decomposition (or L-shaped
method) provides an efficient approach for solution of two-stage stochastic
Mixed-Integer Linear Programs (MILPs) [10]. This strategy was extended
to give the Generalized Benders Decomposition (GBD) algorithm that can
solve two-stage stochastic Mixed-Integer Convex Programs (MICPs) [11].
However, nonconvex optimization problems generally do not satisfy strong
duality, thus convergence cannot be guaranteed with GBD. This motivated Li
et al. [12, 13] to develop the Nonconvex Generalized Benders Decomposition
(NGBD) algorithm used in this paper which is summarized in Section 2.2.
The NGBD algorithm is guaranteed to solve two-stage stochastic nonconvex
MINLPs with discrete first-stage variables to global optimality. Furthermore,
we use the GOSSIP software (recently developed by Kannan and Barton) that
provides a versatile framework for modeling two-stage stochastic nonconvex
MINLPs as well as their efficient solution using the NGBD algorithm [14].

Previous work on flexible polygeneration was done by Meerman et al.
who studied the conversion of coal, biomass and oil residues to hydrogen,
Fischer-Tropsch liquids, methanol, urea and electricity [15, 16]. The eco-
nomic value of implementing various levels of flexibility was determined and
an analysis on the favored feedstocks and products for each price scenario
was presented. However, an optimization of the system design and operating
conditions was not carried out. Farhat and Reichelstein presented a first-
principles analysis on the economic performance of flexible polygeneration
using a simplified case study of a coal to electricity and fertilizers process
[17]. They derived a series of propositions to quantify the “value of flexible
polygeneration” which could be subdivided into the “value of diversification”
and “value of flexibility”. While these propositions provide useful intuition,
they only hold for flow sheets without interconnections (where the flow sheet
could be represented as a tree) and no detailed process design or optimization
was done. Chen et al. studied the optimal design and operation of a pro-



cess in which coal and biomass are co-gasified to produce a mix of naphtha,
diesel, methanol or electricity [18]. The optimization problem was formulated
first as a two-stage stochastic nonconvex Nonlinear Program (NLP) with a
concave objective function and solved with BARON. In order to satisfy the
requirement of having only discrete first-stage variables, the optimization
problem was reformulated as an MINLP and solved using the NGBD algo-
rithm enhanced with additional dual information [19]. Both feedstocks were
converted in a single gasification unit, thus the option of generating multiple
syngas streams followed by subsequent blending was not studied.

While the studies presented above highlight the value of implementing
a flexible design for polygeneration processes, further research is necessary
on the co-utilization of waste tires and natural gas. These feedstocks are
converted into separate syngas streams of different qualities that can then be
blended in appropriate ratios so as to exploit available synergies. Further-
more, this work studies the influence of the degree of market volatility on
the expected profitability of the flexible polygeneration process. Thus, the
objective of this paper is to study the optimal design and operation under
uncertainty of such a hybrid feedstock flexible polygeneration system with a
product portfolio consisting of electricity, methanol, dimethyl ether, olefins
or liquefied (synthetic) natural gas.

This paper is organized as follows: Section 2 provides a brief overview of
the two-stage stochastic programming approach for optimization under un-
certainty, the GOSSIP software framework and the NGBD algorithm; Section
3 details the approach for process modeling and formulation of the optimiza-
tion under uncertainty problem; Section 4 presents the results and a discus-
sion of the computational performance of the NGBD algorithm versus the
state-of-the-art ANTIGONE solver. We present our conclusions in Section
5.

2. Optimization under uncertainty

2.1. General structure of two-stage stochastic nonconvexr MINLPs

Designing a flexible polygeneration process involves determining the op-
timal trade-offs between the increased capital costs as a result of over-sizing
the process equipment and the increased net profit as a result of operational
flexibility to exploit price peaks. In this work, we use the two-stage stochas-
tic programming approach [20] to place these two trade-offs on a level basis.
Two-stage stochastic programming divides the decision variables into two



categories: First-stage or design decision variables that are made before the
realization of uncertainty and cannot be altered after plant construction and
second-stage or operational variables that can be adjusted after the realiza-
tion of uncertainty during the plant life time. Thus, first-stage variables
correspond to the choice of equipment sizes while second-stage variables cor-
respond to operating conditions (such as flow rates, split fractions etc.) for
each scenario of uncertain parameters. A recent review of stochastic pro-
gramming approaches for optimization of process systems under uncertainty
is presented by Li and Grossmann [21].

In particular, the flexible design problem is formulated as a two-stage
stochastic MINLP with a structure presented in Problem (SP), where y de-
notes the first-stage design decision variables; x;, pp, w;, denote the second-
stage operational decision variables, probability of occurrence and realization
of the uncertain parameter vector in scenario h respectively; ¢ denotes a vec-
tor corresponding to capital cost data and f;, is the objective function of
the second-stage (recourse) problem indexed by scenario h (corresponding
to the operating profit in that scenario); data matrix A and vector b define
constraints on the first-stage variables; data matrix B and the functions g,
are used to represent scenario-dependent constraints; Y and X, correspond
to the bounds on y and x;, respectively. We note that the uncertain param-
eters are modeled using a random vector with finite support i.e., the vector
of uncertainty parameters can take on one of a finite number of scenarios s,
where h € {1,...,s} indexes the scenario set. Thus Problem (SP) corresponds
to the deterministic equivalent problem.

max ¢y + thfh(Xm wh)

YA h=1

s.t. Ay <b,
By + gn(xp, wp) <0, Vh e {1,...,s}, (SP)
yevy,
xp € Xp, Vh e {l,...,s}

We note that the flexible design problem (SP) satisfies the following as-
sumptions (although the NGBD algorithm is more generally applicable [13]):

1. All first-stage variables are bounded and discrete and thus can be re-
formulated using binary variables and additional linear constraints i.e.,
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y € {0,1}", where n, denotes the number of first-stage variables.
This requirement needs to be satisfied for guaranteed convergence of
the NGBD algorithm.

2. All second-stage variables x;, are continuous.

3. All participating functions are assumed to be factorable (i.e., they can
be expressed as a finite recursive composition of certain univariate and
bivariate functions as detailed in [22])

4. All participating functions are assumed to be separable in the (first-
stage) binary and (second-stage) continuous variables. In addition, the
capital cost data are not subject to uncertainty and all participating
functions are assumed to be affine in y.

The objectives, process model and constraints of the flexible design problem
are translated into the form of Problem (SP) as described in Section 3.

2.2. Overview of the NGBD algorithm and the GOSSIP software framework

Two-stage stochastic programs exhibit a special structure: The first-stage
variables of Problem (SP) are complicating variables in the sense that fixing
them allows the original optimization problem to be separated into a number
of smaller independent subproblems. This suggests a solution approach that
involves iterating between searching the space of first-stage variables followed
by the space of second-stage variables. Geoffrion outlines a two-step con-
ceptual framework for the synthesis of efficient mathematical programming
algorithms based on this intuition: First, the original problem is manipu-
lated (using techniques such as projection, dualization, inner linearization
and outer linearization) to derive an equivalent “Master Problem” that is
easier to solve, and second, solution strategies (such as piecewise, relaxation
and restriction) are employed to reduce the master problem to a sequence of
subproblems that ideally can be solved using efficient specialized solvers [23].
Duality-based decomposition approaches are an illustration of this strategy:
For instance, the GBD algorithm can be viewed as a procedure of applying
projection and dualization followed by relaxation and restriction [11, 24].

The NGBD algorithm is a generalization of the GBD algorithm to the
class of problems containing participating functions that are nonconvex in
the second-stage variables. The general principle is to iteratively solve a se-
ries of lower bounding and upper bounding problems until convergence to a
globally optimal solution (within a specified tolerance). The lower bound-
ing problem is formulated by convexifying the original problem (SP). The



current implementation employs the Auxiliary Variable Method detailed in
[25] although alternative approaches based on McCormick relaxations [22]
(or the differentiable variant [26]) could also be implemented. The GBD al-
gorithm is used to solve the lower bounding problem. Once GBD converges
with a solution to the lower bounding problem, an upper bounding problem
is constructed by fixing the y variables to this lower bounding solution. This
yields a nonconvex NLP that is also fully decomposable by scenario. Affine
inequalities are added to the lower bounding problem to exclude previously
visited solutions y and the procedure is iterated until convergence [27].

In order to provide a versatile framework for the formulation of two-stage
stochastic nonconvex MINLPs and their efficient solution using the NGBD
algorithm, the GOSSIP software was recently developed as detailed in [14].
A native C++-based modeling language is provided for the user to formu-
late an optimization problem which can be of the form of Problem (SP).
Subroutines for parsing the user-defined model as well as pre-processing are
implemented. In addition, subroutines for automatic construction of all the
necessary subproblems for the NGBD algorithm as well as links to state-of-
the-art optimization solvers for their solution are implemented. A link to
ANTIGONE is also implemented to solve the deterministic equivalent prob-
lem without using a decomposition strategy [28].
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Figure 1: Superstructure of the hybrid natural gas and waste tire feedstock polygeneration system.

variables are indicated in red and presented in Table 2

The operational decision



Unit Parameters Reference
Tire Feedstock Ultimate (wt%): C: 77.3, H: 6.2, N: 0.6, S: 1.8, O: 7.3, Ash: 6.8 3]
Proximate (wt%): VM: 67.7, FC: 25.5, Ash: 6.8
Natural Gas (NG) Feedstock T =30 °C, P = 30 bar [29]
Composition (mol%): CHy: 93.9, Ny: 0.008, CO4: 0.01, CoHg: 0.032, C3Hg: 0.007, C,: 0.004
Waste Tire Converter
Waste tire preparation Crumb size = 0.18 mm [30]
Gasification Entrained Flow gasification. 29.11 wt% water/70.88 wt% waste tire, P = 56 bar [31]
Oxygen to Tire ratio: 0.91, Ash melting energy: (1.0 kJ/kgqsn) [32]
COS hydrolysis T =200 °C, P = 54 bar
H,S removal Solvent composition: 62.3 mol% DEPG: 37.7 mol% H,O [33]
T = 40 °C, 53.5 bar, Removal: 92.7 % of H,S
Claus process Two-stage sulfur conversion, Furnace: T = 950 °C [34]
Natural Gas Converter
NG pre-heater & pre-reformer Pre-heater outlet T = 550 °C, Pre-reformer: T = 550 °C, P = 29.8 bar, Steam to NG ratio: 0.2 [1]
NG reformer Autothermal reformer, Steam to NG ratio: 0.75, Oxygen to NG ratio: 0.95, Raw syngas cooled, dried & compressed to 55 bar [1]
Air Separation Unit°(ASU) Oxygen purity: 99.5 mol%, Recovery pressure P = 10 bar [6, 35]
Water Gas Shift (WGS) High temperature WGS: T = 420 °C, P = 54 bar 1, 6]
CO; removal Solvent composition: 63.9 mol% DEPG: 36.1 mol% H,O [33]
T = 20 °C, P = 53.5 bar, Removal: 96.9 % of CO,
Methanation Four-stage conversion, Inlet T = 300 °C, Inlet P = 53.6 bar. [36]
Adiabatic reactors. Total AP = 3 bar (across 4 stages), Recycle ratio = 75 %
SNG compression & purification Outlet pressure = 55 bar (34, 3]
SNG liquefaction SNG flow rate = 9.7 kg/s, P = 55 bar, Inlet T = 22 °C, Outlet T = -157 °C [29]
MSHE UA,,.. = 25.0 MW/K, Pressure ratio = 6.5
Refrigerant mole composition: Ny: 8.3, CHy: 24.0, CoHg: 36.9, n-C4Hyo: 30.8
Low P = 2.8 bar, high P = 18.0 bar, AT,,;, = 0.95 K, Flow rate = 58.5 kg/s
Methanol synthesis & purification T = 240 °C, P = 51 bar, Recycle ratio = 85 %, Off-gases to GT, Purity: 99.5 mol% [37, 38]
DME synthesis & purification T = 280 °C, P = 50 bar, Off-gases to GT [38, 39]
DME Purification column, Purity: 99.5 mol%
MTO & purification T = 400 °C, P = 40 bar, Off-gases to GT [40]
CO, absorption unit. Absorbent: 70.0 wt% DGA: 30.0 wt% H,O, Absorber: 2 bar, Regenerator: 1.5 bar, Purity 99.9 mol%
De-ethanizer, 35 bar Ethane recovery: 99.80 %, Power consumption: 0.35 MWe/MW v gthane
De-methanizer, 34 bar Methane removal: 99.99 % Power consumption: 1.21 MWe/MW Ly pethane
C2-splitter, 10 bar, Ethylene recovery: 95.00 %, purity: 99.9 mol%, Power consumption: 0.64 MWe/MW gy, gthyiene
De-propanizer, 25 bar, Propylene recovery: 98.00 %, purity: 99.2 mol%
Gas Turbine Thermal Efficiency: 46.8 % (Ratio of Net Power out [MW] to Total LHV of input fuel) Simulation
Steam Turbine Thermal Efficiency (High Quality heat): 44.1 %, Thermal Efficiency (Low Quality heat): 15.4 % (Details in Supp. Mat.) [41, 42]
Postcombustion CO, capture Solvent composition: 72.3 wt% DGA: 27.3 wt% H,0 (33, 3]
T = 70 °C, P = 1.0 bar, CO5 Removal = 95.0 %
CO4 compression Multistage compressors, CO, purity = 99.1 mol%, Outlet T = 25 °C, P = 153 bar [35]
CO4 transportation and sequestration Operating cost: 12.5 $/tonne [1]
Compressors Isentropic efficiency = 80 %, maximum pressure ratio = 5 [1]
Pumps Efficiency = 80 % 1]

Table 1: Operating parameters and specifications used for the rigorous process simulation



3. Optimization Problem Formulation

3.1. Process Simulation and Surrogate Model

3.1.1. General description

Figure 1 presents a superstructure of the hybrid natural gas and solid
waste tire feedstock polygeneration process that produces the following prod-
uct portfolio: Electricity, liquefied (synthetic or well) natural gas, methanol,
dimethyl ether, ethylene and propylene. Rigorous mass and energy balance
models for the various sections of the superstructure are developed using ei-
ther Aspen HYSYS v10 (for Selexol units) or Aspen Plus v10 (for all other
units); an overview of the operating conditions used is presented in Table 1.
A detailed presentation of the process modeling and simulation strategy is
available in our previous work ([4] and [43]) where global optimization was
performed without consideration of uncertainty. However, certain simplifica-
tions are made in the current work in order to keep the optimization problem
computationally tractable when uncertainty is considered. An overview of
the process model and changes made is presented next.

Operational decision variables for each scenario (x5,) are presented in red
in Figure 1 and described in Table 2. The total thermal input of the entire
plant in each scenario h is determined by two (extensive) decision variables:
The mass flow rates of waste tire (mye ) and natural gas (myep). This
plantwide thermal input is constrained to be less than 893 MW so as to
provide a fair comparison with both our previous work ([3, 4, 43]) as well
as a benchmark paper by Larson et al. [44]. All other operational decision
variables are intensive.

3.1.2. Waste Tire train

In Figure 1, we define a nonstandard block termed “Aggregate Waste Tire
Converter” that encompasses four sub-blocks. The first is a tire feedstock
and slurry preparation unit in which rubber is separated out, ground into
crumbs and mixed with water. The crumb tire slurry and oxygen from an
air separation unit (ASU) are fed into the second sub-block consisting of an
entrained flow gasifier (housed together with the radiant syngas cooling and
quench system) that generates raw syngas. The third sub-block performs
syngas cleaning and consists of a scrubber (for removal of particulates, sul-
fides and chlorides), COS hydrolysis (to HsS) unit, syngas cooler and sour
water knockout drum, a Selexol-based HyS removal unit and a Claus unit
(for conversion of captured HsS to elemental sulfur). Slag flows down the



walls of the gasifier and falls down into the quench where it solidifies. The
solids and ash are removed and treated in the fourth sub-block.

Compared to our previous work, two simplifications are made: The ra-
tio of the oxygen to tire mass flow rate is fixed and the option for sulfur
removal is implemented immediately after the gasifier. Since all other rele-
vant operating conditions are fixed, these two simplifications imply that the
surrogate mass balance model takes the form of a linear function (Equation
1) relating the clean syngas mole flow rate in scenario h (frpsweet_gas,ih) tO
Myiren- All the constants such as the mole fraction of component 7 belong-
ing to the component set I (T7psweet_gas,i), molecular weight (MWrpsweet_gas)
and syngas yield (Rgp - the ratio of the mass flow rates of clean syngas to
tire) of the clean syngas stream are determined directly from the Aspen Plus
simulation. The Hy/CO mole ratio of the clean tire-derived syngas stream
is ~ 0.7. We note that making the first simplification eliminates the need
to implement a highly nonlinear (and thus nonconvex) surrogate model to
represent the complex gasification process as was done in [43]; we found that
performing optimization under uncertainty with such a model was computa-
tionally intractable even for a small number of scenarios because convexifying
these constraints yields only weak lower bounds which in turn implies that
the set of feasible candidate solutions of the first-stage binary variables does
not shrink sufficiently quickly. An analogous argument holds for develop-
ing the surrogate energy balance model. Similarly, implementing the sulfur
removal system immediately after the gasifier eliminates the (nonconvex) bi-
linear terms associated with an additional stream splitter. In addition, for
the case of flexible polygeneration, we expect it to be cheaper to implement
a single high-throughput sulfur removal system prior to the stream splitter
that operates in a large number of scenarios than to implement multiple sul-
fur removal systems in the methanation and methanol synthesis trains (as
done in [43]) that each operate in a smaller number of scenarios even though
the latter option eliminates the need for a dedicated COS hydrolysis reactor.

f o LT Dsweet_gas,i * RST * Meire,h
T Dsweet_gas,i,h —
MWTDsweet,gas

, Vie,Vhe{l,...,s} (1)

The clean tire-derived syngas stream is then split into three branches heading
to the methanation, gas turbine and methanol synthesis sections with the
corresponding stream split fractions in scenario h denoted by Srsne.n, Starh
and Stareom,n respectively. The mass balance constraints are presented in

Equation 2, where fryeru_feedin, fTar_feedin a0d frareon_peed,in denote the
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molar flow rates of component i in the tire-derived syngas stream heading
to the methanation, gas turbine and methanol synthesis sections in scenario
h respectively. We note that the bilinear terms in Equation 2 introduce
nonconvexities; the reformulation-linearization technique (RLT) is used to
generate a set of auxiliary mass balance constraints for the splitter that yield
tighter convex relaxations for the lower bounding problem as presented in
Section 3.1.6.

fTMETH feedijn = JTDsweet_gas,ih - STSNG,h, Vi € 1,V € {1,....s}
frar_feedin = frpsweet_gas,ih - Sterh, Yi € I,Vh € {1,...,s}
JTMEOH feedih = fTDsweet_gasih - STMeOH R, VI € 1, Vh € {1,...,s}
Srsna.h + Strarn + Stmeonn = 1.0,Yh € {1, ..., s}
(2)

3.1.3. Natural gas train

An analogous modeling approach is followed for the natural gas train:
The natural gas feedstock is split into three streams that head to the lique-
faction, gas turbine and methanol synthesis sections with the corresponding
split fractions given by Snagrigh, Snaer,n and Sngrern respectively. Mass
balance constraints of a similar form to Equation 2 together with auxil-
iary RLT constraints are implemented. For the natural gas stream head-
ing to the methanol synthesis section, a block termed “Aggregate Natural
Gas Converter” is defined that encompasses the natural gas pre-heater and
pre-reformer, the reformer, scrubber and compressor for natural gas-derived
syngas. Similar to the waste tire train, in this work we implement simpler
linear surrogate mass and energy balance models for the natural gas con-
version section by fixing the ratios of the converted natural gas stream and
the steam and oxygen flow rates fed to the reformer. This yields a natural
gas-derived syngas stream with a Hy/CO mole ratio of ~ 3.0.

3.1.4. Product synthesis trains

Tire-derived syngas heading to the methanation or methanol synthesis
sections can be upgraded using a water gas shift (WGS) reactor; the overall
conversion of CO in scenario h is an operational decision variable denoted
by CSNGWGS,h and CMecOHWGS,h respectively. Prior to methanation, C02 is
removed in a Selexol-based process. The Hy/CO mole ratio of the stream
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heading to the first methanation reactor is constrained to be ~ 3.0. The
produced synthetic natural gas stream is combined with the relevant natu-
ral gas branch prior to liquefaction to produce liquified natural gas (LNG).
Conversely, in the methanol synthesis train, the natural gas-derived syngas
stream is blended with the (upgraded) tire-derived syngas stream first before
heading to the CO5 removal and methanol synthesis sections. The Hy/CO
mole ratio of the stream heading to the methanol synthesis reactor is con-
strained to be ~ 2.0. Thus this correct ratio can be attained either by using
the appropriate tire and natural gas flow rates (and thereby exploiting syner-
gies between the two feedstocks) or by employing the WGS reactor. For each
scenario h, the produced methanol stream either heads to the DME synthe-
sis section, the MTO section or is directly sold as the final product with the
corresponding split fractions denoted by Spyen, Svuron and SyeowProd,h
respectively. This methanol splitter is modeled using a mass balance model
similar to Equation 2 together with auxiliary RLT constraints. We note that
with the exception of the stream splitter model, all other mass and energy
balance constraints in the methanation and methanol synthesis trains are
linear.

3.1.5. Power generation and COy capture trains

For the gas turbine section, energy balance constraints are implemented
by assuming a constant gas turbine efficiency such that the net work gen-
erated in each scenario is a linear function of the total thermal input (on
a LHV basis) of the relevant natural gas and tire-derived syngas streams.
A similar approach is used to determine the additional electricity generated
in the steam turbine utilizing waste heat from the flue gas. The flue gas
stream is either emitted or heads to a DGA-based postcombustion CO, cap-
ture unit with corresponding split fractions given by SpostEm,n O Spostccs,h
respectively. Similarly, the captured CO; streams from the Selexol units are
either emitted or head to the CO5 compression and liquefaction system with
corresponding split fractions given by Sprepm,n and Spreccosy respectively.
Both these splitters result in nonconvex mass balance constraints similar to
Equation 2 in addition to RLT constraints.

3.1.6. Auziliary Reformulation-Linearization Technique (RLT) constraints
The nonconvex bilinear terms introduced in Equation 2 potentially yield

weak convex relaxations when constructing the lower bounding problem.

This may result in slow convergence of the NGBD algorithm. Thus, it is
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essential to augment the optimization model with relevant reformulation-
linearization technique (RLT) constraints as detailed in [25] and [45]. These
are a set of constraints that are redundant for the original Problem (SP)
but are not redundant for its convex relaxation thereby yielding a tighter
lower bounding problem. For the specific case of bilinear terms, the RLT
constraints derived by Quesada and Grossmann are implemented which take
the form of Equation 3 (corresponding to the constraints of Equation 2) [46].
Similar RLT constraints are implemented for the other equations involving
bilinear terms. We note that Equation 3 has a physical interpretation as an
alternative formulation of the splitter mass balance constraints although this
is not always the case for other kinds of nonconvexities.

fTDsweet_gas;ih = FTMETH feedih + fTGT fecdih + JTMEOH feed,ihs
Vie I,Vh € {1,...,s}

(3)
3.2. Economic Model

3.2.1. Uncertainty Characterization

Table 3 presents the vector of uncertain parameters considered in this
work which consists of the following components: The market prices of the
six products, the waste tire tipping fees and the prevailing CO, tax rate. The
uncertain parameter vector is assumed to be a random vector belonging to a
normal distribution with the means and standard deviations listed in Table
3. The values for the means and standard deviations are determined from
historical data obtained from the sources listed. The uncertain parameter
vector (wy) is assumed to take on one of a finite number of scenarios s
sampled from the normal distribution according to the approach presented
by Li et al. [12]. Two different values of s are studied: 256 (2 scenarios for
each of the 8 uncertain parameters) and 864 (3 scenarios for Pgiecpy Prreom ns
Prjy., and only 2 scenarios for the other uncertain parameters so as solve
the problem in reasonable computation times). Furthermore, two cases are
studied in this work. Case 1 investigates the optimization under uncertainty
problem using the historical mean and standard deviation values presented
in Table 3. However, in the interest of investigating the influence of higher
volatility in market conditions, we also study an additional case (Case 2) in
which the uncertain parameters have the same mean values as Case 1 but
have higher standard deviations by 25%.
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3.2.2. Expected Net Present Value (NPV) calculation

The objective of the optimization problem is to maximize the expected
NPV of the flexible polygeneration plant as presented in Problem (FP). NPV
is calculated using the Discounted Cash Flow Rate of Return approach with
the assumptions made in [18] where Ryq,, 7, tg, and ;5 denote the income tax
rate, annual discount rate, depreciation time and project lifetime respectively.

Cap denotes the total capital cost. The polygeneration plant consists of
20 process sections (collected into a set U) and each section u can take on one
size out of a discrete set of section sizes as presented in Equation 4, where
S, is the j™ choice for size of the section, SEPP and SUBP are the lower
and upper bounds on the section size, and d is the number of equipment sizes
available (i.e., the cardinality of the discrete set of sizes) which is fixed to be
10 to keep the problem tractable.

—1
S,;=SLBD 4 L7 2

T (SUPP - SIPP) Vue U Vi€ {Ld)  (4)

The capital cost associated with each section size S, ; (denoted Cap,, ;) is
given by Equation 5, where Cap, o, S, and sf, denote the base cost, base
capacity and scaling factor of section wu.

Cap, ; = Capyp - <§U’J>Sfu, Yue U, Vje{l,..,d} (5)
u,0

For each section u, the binary first-stage decision variables y, ; represents
the choice of the j¥ size, with y denoting a vector of these variables. Thus,
the designed section size (5,) and the corresponding capital cost (Cap,) are
presented in Equations 6 and 7 respectively, with Equation 8 representing the
constraint that only one size can be chosen and Equation 9 giving the total
capital costs (where K and Ky are factors representing the additional
costs associated with purchasing land and working capital).

d

Sy = Z Su’j “Yu,j Yu e U (6)
j=1
d

C’apu = Z Capu,j *Yu,js VueU (7)
j=1
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d
> =1, VueU (8)
j=1

Cap = (K. + Kwo) - Z Cap, (9)

uelU

The linking (complicating) constraints are presented in Equation 10,
where the throughput for each section in scenario h (F, ;) is constrained
to be lower than the section’s capacity.

Fun<Su, YueU, Vhe{l,..s} (10)

Prope, denotes the annual net profit in scenario i which is the difference
between the annual revenues (from product sales and tipping fees) and the
annual operating costs (consisting of variable operating costs such as feed-
stock costs, CO, taxes, utility, solvent, catalyst and waste disposal costs,
and fixed operating costs including labor costs, operating overhead, property
taxes and insurance). Details on the data and sources used for the economic
model are presented in the Supplementary Material.

3.8. Summary of Optimization under Uncertainty Problem

Problem (FP) summarizes the flexible polygeneration problem which takes
the form of a two-stage stochastic nonconvex MINLP. Problem (FP) has 200
binary first-stage decision variables, 435s continuous second-stage variables,
20 first-stage equality constraints, 412s second-stage equality constraints
and 32s second-stage inequality constraints. We note that Problem (FP)
has more than 100,000 variables and constraints (for s = 256) and close to
400,000 variables and constraints (for s = 864). The complete formulation
of the optimization problem is presented in the Supplementary Material.
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Operational decision variable (x;) Description (for each scenario h € {1, ..., s}) Units LBD UBD
Waste tire train
Meire,h Mass flow rate of waste tire keg/s 0.0 26.3
STSNG.h Split fraction of tire-derived syngas sent to methanation 0.0 1.0
STMeOH I Split fraction of tire-derived syngas sent to methanol synthesis 0.0 1.0
Srerh Split fraction of tire-derived syngas sent to the gas turbine 0.0 1.0
Natural gas train
MNG,h Mass flow rate of natural gas keg/s 0.0 18.7
SNGRef.h Split fraction of natural gas sent to reformer 0.0 1.0
Sneerh Split fraction of natural gas sent to gas turbine 0.0 1.0
SNGLigh Split fraction of natural gas sent for liquefaction 0.0 1.0
Dowgstream product trains
CSNGWGS,h Overall conversion of CO in the WGS reactor prior to methanation 0.0 0.8
CMeOHWGS,h Overall conversion of CO in the WGS reactor prior to methanol synthesis 0.0 0.8
SMeOHProd.h Split fraction of methanol sold as product 0.0 1.0
SpMER Split fraction of methanol sent to DME synthesis 0.0 1.0
Smro.n Split fraction of methanol sent to MTO synthesis 0.0 1.0
CO; capture train
SpostcCS,h Split fraction of flue gas sent to the DGA-based postcombustion CCS 0.0 1.0
Spreccs,h Split fraction of CO, removed in other plant sections sent to sequestration 0.0 1.0
SPostEm.h Split fraction of flue gas sent to stack/emitted 0.0 1.0
SpPreEm,h Split fraction of CO5 removed in other plant sections sent to stack/emitted 0.0 1.0

Table 2: List of the 17 operating decision variables for the optimization problem



Uncertain parameter vector (wy,) Description Units Mean Standard deviation  Source

L1

Py ? Natural gas price $/MMBtu 5.5 3.0 [47]
Pgiee.n Hourly electricity price ~ $/MWh 96.1 22.1 48]
Pryeonn Methanol price $/tonne 500 200 [49]
Pouen DME price $/tonne 800 200 [50]
Pgihyiene,n Ethylene price $/tonne 1050 360 [51]
Ppyopylene.h Propylene price $/tonne 1000 400 [52]
Priven Waste tire tipping fee $/tonne 50 25 Assumed
Pco,.n CO, tax rate $/tonne 50 25 Assumed

Table 3: Prices and CO, tax rate parameters for the scenarios. 'A fixed premium of 65% is assumed for the price of LNG
over the price of natural gas based on data from [47]



r}?t::p . (1 B (1 —|—17’)tdp>}

max E,[NPV] = Cap(y) - [ -1+

YiX15.-5Xs

+ iph + Pronet(Xn, wh) [% ' (1 - Wﬂ

h=1
s.t. First-stage constraints: Capital cost model,
Second-stage constraints: Mass and energy balance model, Vh € {1, ..., s},
Annual net profit model, Scale constraints, Vh € {1, ..., s},

Linking constraints: Throughput, < Equipment Capacity, Vh € {1,...,s},
(FP)

4. Results and Discussion

4.1. Case 1: Using historical means and standard deviations

Table 4 presents the capital costs and expected operational characteristics
of two proposed flexible polygeneration processes corresponding to the two
characterizations of uncertainty studied (i.e., with 256 and 864 scenarios).
For comparison, the results of the nominal design in which all uncertain
parameters are assumed to take on their mean values are also presented. In
the nominal (inflexible) design, methanol is favored as a primary product
together with a small amount of electricity produced from combustion of off-
gases and waste heat recovery. Both waste tire and natural gas are utilized
as a feedstock with the syngas upgraded using a water gas shift reactor. We
note that this outcome of production of only a single primary product by an
inflexible design is consistent with previous empirical results [2, 4, 43, 18] as
well as Proposition 1 of Farhat and Reichelstein [17].

In Flexible design 1, four products are produced in changing quantities
over the plant life time: Liquified (S)NG, electricity, methanol and dimethyl
ether. Thus, the operating conditions of the plant are adjusted in response
to market conditions in order to produce the most profitable product port-
folio at a given time. Higher capital investments are made at the design
stage in order to provide this operational flexibility. In order to provide a
fair comparison between the flexible and nominal design, the value of the
stochastic solution (VSS as detailed in [20]) is calculated using Equation 11,
where E,[NPV gjezine] denotes the expected NPV of the flexible design and
E,[NPV gy p| denotes the expected NPV of the expected value problem (also
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termed the expectation of the expected value problem). The expected value
problem is formulated by fixing the first-stage design variables to those ob-
tained with the nominal design; the stochastic program is then run with the
same uncertainty characterization as the flexible design. Thus, the expecta-
tion of the expected value problem gives the NPV that would be obtained
if the nominal design faces uncertainty belonging to the same distribution
as that faced by the flexible design. Table 4 shows that implementing flex-
ible designs gives a substantial VSS highlighting the importance of taking
uncertainty into account.

VSS — ]Ew [NPVFlea:ible] - ]Ew [NPVEVP] (11)

The expected product portfolio and operational characteristics are also
presented which corresponds to the weighted average (by probability) over all
scenarios of the values of the given operational variable. For each product,
the terms in parenthesis denote the percentage of scenarios (weighted by
probability) in which the product is produced. For instance, for Flexible
design 1, this implies that electricity is produced in all scenarios, liquified
(S)NG is produced in only 12.5 % of scenarios while methanol and DME are
produced in half of all scenarios. We note that this implies that there exist
certain scenarios in which liquified (S)NG is produced together with one of
methanol or DME. Such a product portfolio may be attained in a scenario
that primarily favors methanol (or DME) which is produced using most of the
feedstock (by thermal input). However, given the discrete set of equipment
sizes, a small amount of natural gas (corresponding to the difference between
the maximum allowable thermal input and the thermal input used to produce
methanol or DME) may head to the relatively cheap liquefaction section.

4.2. Case 2: Assuming 25 % higher standard deviations

Table 5 presents the corresponding results for the case with higher as-
sumed variances (i.e., higher volatility) for all uncertain parameters. We
note that the mean values of the uncertain parameters are unchanged thus
the nominal design is identical to Case 1.

For Flexible design 1, the same design as in Case 1 is proposed but the
plant attains a higher expected NPV. This can be explained as follows: For
a scenario in which one product experiences an unusually high price, that
product is favored. However, if that product experiences an unusually low
price, operating conditions are adjusted to favor a different product in the
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portfolio. For Flexible design 2, the solution favors implementing a larger
aggregate waste tire converter to provide additional operational flexibility:.
This results in a higher expected production of electricity relative to Case 1.
In Case 2, Flexible designs 1 and 2 result in a higher expected NPV compared
to the corresponding flexible designs in Case 1. We note that this result of
attaining a higher expected NPV with increasing price volatility (around the
same mean) is consistent with Proposition 2a of Farhat and Reichelstein [17].
The VSS also increases compared to Case 1.
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Case 1 Nominal design Flexible design 1  Flexible design 2
Number of scenarios s 1 256 864
Capital costs
Aggregate Waste Tire Converter M$ 198.2 198.2 198.2
Aggregate Natural Gas Converter M$ 60.0 60.0 60.0
Liquified (Synthetic) Natural Gas train
Water Gas Shift 1 M$ 0.0 0.0 0.0
CO, removal M$ 0.0 0.0 0.0
Methanation M$ 0.0 0.0 0.0
Liquefaction M$ 0.0 24.9 0.0
Methanol train
Water Gas Shift 2 M$ 9.7 9.7 9.7
CO; removal M$ 13.7 13.7 13.7
Methanol synthesis M$ 81.2 81.2 81.2
Dimethyl Ether (DME) synthesis M$ 0.0 100.5 100.5
Methanol-To-Olefins (MTO) process M$ 0.0 0.0 0.0
Power system ! M$ 110.2 110.2 110.2
Post-combustion CO, capture M$ 0.0 0.0 0.0
CO; compression & sequestration M$ 4.6 4.6 4.6
Air Separation Unit M$ 164.6 164.6 164.6
Water systems M$ 63.2 774 774
Miscellaneous 2 M$ 52.6 52.6 52.6
Total capital costs (Cap) M$ 758.0 897.5 872.6
Expected product portfolio®
Liquefied (S)NG kg/s 0.0 1.4 (12.5 %) 0.0
Electricity MW 14.2 (100 %) *  20.4 (100.0 %) 17.8 (100.0 %)
Methanol kg/s 28.2 (100 %) 14.2 (50.0 %) 14.2 (50.0 %
Dimethyl Ether kg /s 0.0 7.0 (50.0 %) 8.2 (50.0 %)
Ethylene kg/s 0.0 0.0 0.0
Propylene keg/s 0.0 0.0 0.0
Expected process operation
Waste tire used kg/s 10.0 9.2 9.1
Natural gas used kg/s 11.6 12.1 11.8
Direct COy emissions kg/s 5.1 11.9 10.7
CO; sequestered keg/s 13.8 6.2 7.3
Annual Net Profit M$/year 155.4 231.8 214.4
Net Present Value (NPV) M$ 485.6 931.5 824.4
Expectation of expected value problem M$ - 613.4 564.2
Value of the Stochastic Solution (VSS) M$ - 318.1 260.2
Total wall time (NGBD) s 155.2 3033.7 3219.6
Total wall time (ANTIGONE) $ 1.5 > >

Table 4: Capital costs and expected operational characteristics of the two proposed flexible polygeneration processes compared
with the nominal design for uncertainty characterized using historical means and standard deviations. ' Includes the Gas
Turbine, HRSG, Steam Turbine and Electricity accessory costs. 2 Miscellaneous includes Instrumentation & Control, Site
preparation & improvement and Building & Structures. 3 The expected operational characteristic corresponds to the weighted
average (by probability) over all scenarios of the values of the given operational variable. # The terms in parenthesis denote
the percentage of scenarios (weighted by probability) in which the corresponding product is produced. > ANTIGONE was
unable to provide a solution in 15,000 s.
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Case 2 Nominal design ¢ Flexible design 1 Flexible design 2
Number of scenarios s 1 256 864
Capital costs
Aggregate Waste Tire Converter M$ 198.2 198.2 322.0
Aggregate Natural Gas Converter M$ 60.0 60.0 60.0
Liquified (Synthetic) Natural Gas train
Water Gas Shift 1 M$ 0.0 0.0 0.0
CO; removal M$ 0.0 0.0 0.0
Methanation M$ 0.0 0.0 0.0
Liquefaction M$ 0.0 24.9 0.0
Methanol train
Water Gas Shift 2 M$ 9.7 9.7 9.7
COy removal MS$ 13.7 13.7 22.3
Methanol synthesis MS$ 81.2 81.2 81.2
Dimethyl Ether (DME) synthesis M$ 0.0 100.5 100.5
Methanol-To-Olefins (MTO) process M$ 0.0 0.0 0.0
Power system ! M$ 110.2 110.2 110.2
Post-combustion CO, capture M$ 0.0 0.0 0.0
CO3 compression & sequestration M$ 4.6 4.6 5.8
Air Separation Unit M$ 164.6 164.6 164.6
Water systems M$ 63.2 774 77.4
Miscellaneous 2 M$ 52.6 52.6 52.6
Total capital costs (Cap) M$ 758.0 897.5 1006.2
Expected product portfolio®
Liquefied (S)NG kg/s 0.0 1.5 (12.5 %) 0.0
Electricity MW 142 (100 %)% 20.8 (100 %) 22.6 (100 %)
Methanol ke /s 28.2 (100 %) 14.2 (50.0 %) 13.3 (50.0 %
Dimethyl Ether kg/s 0.0 6.9 (50.0 %) 7.9 (50.0 %)
Ethylene kg /s 0.0 0.0 0.0
Propylene kg/s 0.0 0.0 0.0
Expected process operation
Waste tire used kg/s 10.0 9.1 14.0
Natural gas used kg/s 11.6 12.2 8.5
Direct CO, emissions kg/s 5.1 11.9 15.0
COg sequestered kg/s 13.8 6.0 9.4
Annual Net Profit MS$/year 155.4 254.9 248.3
Net Present Value (NPV) M$ 485.6 1,104.6 958.2
Expectation of expected value problem M$ - 699.7 627.3
Value of the Stochastic Solution (VSS) M$ - 404.9 330.9
Total wall time (NGBD) s 155.2 2277.2 2955.4
Total wall time (ANTIGONE) s 1.5 > 5

Table 5: Capital costs and expected operational characteristics of the two proposed flexible polygeneration processes compared
with the nominal design for uncertainty characterized using historical means but with standard deviations assumed to be 25
% higher than average. ' Includes the Gas Turbine, HRSG, Steam Turbine and Electricity accessory costs. 2 Miscellaneous
includes Instrumentation & Control, Site preparation & improvement and Building & Structures. * The expected operational
characteristics correspond to the weighted average (by probability) over all scenarios of the values of the given operational
variable. # The terms in parenthesis denote the percentage of scenarios (weighted by probability) in which the corresponding
product is produced. ® ANTIGONE was unable to provide a solution in 15,000 s. © The nominal design is identical to that of
Case 1.
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Figure 2: Scaling of solution times of NGBD and ANTIGONE with the number of scenarios

4.3. Computational Performance

Figure 2 presents the scaling of solution times of NGBD and ANTIGONE
with number of scenarios. The procedure to generate these scenarios is pre-
sented in the Supplementary Material. When more than 128 scenarios are
considered, ANTIGONE is unable to locate the global optimum within 15,000
s. Thus, NGBD scales favorably compared to ANTIGONE as the optimiza-
tion under uncertainty problem becomes larger. However, NGBD performs
worse than ANTIGONE for a smaller number of scenarios as the set of fea-
sible candidate solutions of the first-stage binary variables does not shrink
sufficiently quickly. We note that implementing RLT constraints was essen-
tial for convergence of NGBD in reasonable time.

5. Conclusions

The optimal design and operation under uncertainty of a hybrid feed-
stock flexible polygeneration system with a product portfolio consisting of
electricity, methanol, dimethyl ether, olefins or liquefied (synthetic) natural
gas is studied. The optimization problem is formulated as a recourse-based
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two-stage stochastic nonconvex MINLP with first-stage variables correspond-
ing to design decisions and second-stage variables to operational decisions.
The recently developed GOSSIP software framework is used to model and
efficiently solve the resulting formulations using the NGBD algorithm.

Two different characterizations of uncertainty are studied: In the first
case study, the uncertain parameters are assumed to belong to independent
normal distributions with means and standard deviations estimated using
historical data. In the second case study, the standard deviations of the un-
certain parameters are increased by 25 % in order to evaluate the impact of
higher volatility. For each of these two cases, two flexible designs are devel-
oped based on a different number of scenarios. Implementing flexible designs
is shown to result in an increase of expected net present value (compared to
a nominal inflexible design) as well as a value of the stochastic solution in the
range of 260 - 405 M$ for a scale of approximately 893 MW of thermal energy
input. Price volatility around the same mean is shown to result in higher
expected net present value and value of the stochastic solution as operational
flexibility allows for asymmetric exploitation of price peaks.
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