Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics

Authors:
Juergen Hahn

Date Submitted: 2021-10-21

Keywords: autism spectrum disorder, fisher discriminant analysis, kernel partial least squares

Abstract:
Autism Spectrum Disorders (ASD) are a group of neurological disorders that present with limited social communication/interaction and restricted, repetitive behaviors/interests. The current estimate is that approximately 1.9% of children in the US are diagnosed with ASD. While this is a high prevalence and the economic burden by ASD is significant, there is still considerable debate regarding the underlying pathophysiology of ASD. Because of this lack of biological knowledge, autism diagnoses are restricted to observational behavioral and psychometric tools. This work takes a step towards the goal of incorporating bio-chemical data into ASD diagnosis by analyzing measurements of metabolite concentrations of the folate-dependent one-carbon metabolism and transulfuration pathways. Unlike traditional approaches that are based upon comparing differences in individual metabolite concentrations between children with and without an ASD diagnosis, we made use of multivariate classification via Fisher Discriminant Analysis and used Kernel Partial Least Squares regression to predict adaptive behavior. Although these results need to be replicated in independent studies, these analyses suggest combinations of metabolites in these pathways as potential biomarkers for ASD.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0787
Citation (this specific file, latest version): LAPSE:2021.0787-1
Citation (this specific file, this version): LAPSE:2021.0787-1v1

License: Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics

Juergen Hahn*

Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA

* Corresponding Author: hahnj@rpi.edu

ABSTRACT

Autism Spectrum Disorders (ASD) are a group of neurological disorders that present with limited social communication/interaction and restricted, repetitive behaviors/interests. The current estimate is that approximately 1.9% of children in the US are diagnosed with ASD. While this is a high prevalence and the economic burden by ASD is significant, there is still considerable debate regarding the underlying pathophysiology of ASD. Because of this lack of biological knowledge, autism diagnoses are restricted to observational behavioral and psychometric tools. This work takes a step towards the goal of incorporating biochemical data into ASD diagnosis by analyzing measurements of metabolite concentrations of the folate-dependent one-carbon metabolism and transulfuration pathways. Unlike traditional approaches that are based upon comparing differences in individual metabolite concentrations between children with and without an ASD diagnosis, we made use of multivariate classification via Fisher Discriminant Analysis and used Kernel Partial Least Squares regression to predict adaptive behavior. Although these results need to be replicated in independent studies, these analyses suggest combinations of metabolites in these pathways as potential biomarkers for ASD.

Keywords: autism spectrum disorder, fisher discriminant analysis, kernel partial least squares

INTRODUCTION

Autism Spectrum Disorders (ASD) are a group of neurological disorders that present with limited social communication and interaction and restricted, repetitive behaviors and interests [1]. The current estimate is that approximately 1.9% of children in the US are diagnosed with ASD [2]. While this is a high prevalence and the economic burden by ASD is significant [3], there is still considerable debate regarding the underlying pathophysiology of ASD. Because of this lack of biological knowledge, autism diagnoses are restricted to observational behavioral and psychometric tools. Subsequently, the average age at which children receive an ASD diagnosis is four years, while it is generally acknowledged that diagnosis between 18-24 months is possible [4]. Furthermore, disparities by race/ethnicity in estimated ASD prevalence as well as disparities in the age of earliest comprehensive evaluation and presence of a previous ASD diagnosis or classification, suggest that access to treatment and services might be lacking or delayed for some children. Thus, confirmation and expansion of the unique metabolic abnormalities in children with autism that accurately distinguishes them from typically developing children would not only strengthen diagnostic accuracy, but also provide insights into underlying pathophysiology and a personalized approach to treatment options.

METHODS

Stepping towards this goal of incorporating biochemical data into ASD diagnosis, we analyzed measurements of metabolite concentrations of the folate-dependent one-carbon metabolism and transulfuration pathways taken from blood samples of 83 participants with ASD and 76 age-matched typically developing peers. Fisher Discriminant Analysis enabled multivariate classification of the participants as on the spectrum or typically developing which results in 96.1% of all typically developing participants being correctly identified as such while still correctly identifying 97.6% of the ASD cohort [5]. Furthermore, kernel partial least squares was used to predict adaptive behavior, as measured by the Vineland Adaptive Behavior Composite score, where measurement of five metabolites of the pathways was sufficient to predict the Vineland score with an R^2 of 0.45 after cross-validation [5]. These results have been partially validated in a separate study involving 156 participants with an ASD diagnosis where over 88% of the participants were correctly identified as having an ASD diagnosis [6].
DISCUSSION

This computational study enhances the analysis obtained from traditional population-level statistics and suggest that folate-dependent one carbon metabolism and transsulfuration may play an integral role in ASD pathophysiology. Furthermore, the work highlights the contribution that systems approaches can make for clinical studies involving significant amount of data, some of which are often correlated and require multivariate analysis methods [7]. Although these results need to be replicated in independent studies, these analyses suggest combinations of metabolites in these pathways as potential biomarkers for ASD.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge partial financial support from the National Institutes of Health (Grant R01AI110642).

REFERENCES