
Improving Transactional Data System Based on an Edge
Computing?Blockchain?Machine Learning Integrated Framework

Authors: 

Zeinab Shahbazi, Yung-Cheol Byun

Date Submitted: 2021-10-14

Keywords: Industrial Internet of Things, blockchain, Machine Learning, edge computing, smart manufacturing

Abstract: 

The modern industry, production, and manufacturing core is developing based on smart manufacturing (SM) systems and
digitalization. Smart manufacturing’s practical and meaningful design follows data, information, and operational technology through the
blockchain, edge computing, and machine learning to develop and facilitate the smart manufacturing system. This process’s proposed
smart manufacturing system considers the integration of blockchain, edge computing, and machine learning approaches. Edge
computing makes the computational workload balanced and similarly provides a timely response for the devices. Blockchain
technology utilizes the data transmission and the manufacturing system’s transactions, and the machine learning approach provides
advanced data analysis for a huge manufacturing dataset. Regarding smart manufacturing systems’ computational environments, the
model solves the problems using a swarm intelligence-based approach. The experimental results present the edge computing
mechanism and similarly improve the processing time of a large number of tasks in the manufacturing system.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0785
Citation (this specific file, latest version): LAPSE:2021.0785-1
Citation (this specific file, this version): LAPSE:2021.0785-1v1

DOI of Published Version:  https://doi.org/10.3390/pr9010092

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Improving Transactional Data System Based on an Edge
Computing–Blockchain–Machine Learning
Integrated Framework

Zeinab Shahbazi and Yung-Cheol Byun *

����������
�������

Citation: Shahbazi, Z.; Byun, Y.-C.

Improving Transactional Data System

Based on an Edge Computing–

Blockchain–Machine Learning

Integrated Framework. Processes 2021,

9, 92. https://doi.org/10.3390/

pr9010092

Received: 24 October 2020

Accepted: 30 December 2020

Published: 4 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; zeinab.sh@jejunu.ac.kr
* Correspondence: ycb@jejunu.ac.kr

Abstract: The modern industry, production, and manufacturing core is developing based on smart
manufacturing (SM) systems and digitalization. Smart manufacturing’s practical and meaningful
design follows data, information, and operational technology through the blockchain, edge computing,
and machine learning to develop and facilitate the smart manufacturing system. This process’s
proposed smart manufacturing system considers the integration of blockchain, edge computing,
and machine learning approaches. Edge computing makes the computational workload balanced
and similarly provides a timely response for the devices. Blockchain technology utilizes the data
transmission and the manufacturing system’s transactions, and the machine learning approach
provides advanced data analysis for a huge manufacturing dataset. Regarding smart manufacturing
systems’ computational environments, the model solves the problems using a swarm intelligence-
based approach. The experimental results present the edge computing mechanism and similarly
improve the processing time of a large number of tasks in the manufacturing system.

Keywords: smart manufacturing; edge computing; machine learning; blockchain; Industrial Internet
of Things

1. Introduction

The progress of industrialization has been changed and transformed from automation
to digitalization. Similarly, Industry 4.0 in Germany faces the same problems that originated
in different countries, such as the Internet industry in the United States made by China,
Japan Industry 4.1, and South Korea manufacturing Industry Innovation 3.0. The connection
of entities is based on two main features. Digitalization and identification are important
features for entity connection. From another perspective, the Internet of Things (IoT)
is determined for managing the identification problems, which mostly happen in the
Industrial Internet of Things (IIoT). The cyber-physical system is defined to solve the
entities’ connection problems.

In a recent development, smart manufacturing was named a core of modern production
in the manufacturing industry’s digitalization. Similarly, it is the smart factory’s
foundation [1]. The smart manufacturing process uses information technology (IT) to
connect the facilities and terminal devices that are digitalized [2]. The interactions between
the devices produce massive amounts of data, which causes multiple requirements for the
processing of data, e.g., unstructured, able to handle massive amounts, and less time delay.
Big data techniques, cloud computing techniques, and artificial intelligence techniques are
presented to simplify data processing, which is part of data technology (DT). Furthermore,
operational technology (OT) achievement is based on the combination of detailed control
machines and data computation, e.g., a distributed control system, programmable logic
controller, data acquisition, and supervisory control. Cloud manufacturing services are
applied for further processes of the inner performance of smart manufacturing. This section
presents a brief explanation of smart manufacturing and related techniques. There are
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three main topics discussed in this section—edge computing; blockchain; IoT, Industrial
Internet of Things (IIoT), Industry 4.0, and cyber-physical systems (CPS).

1.1. Edge Computing

In recent years, many researchers have focused on the edge computing issue regarding
intelligent manufacturing. To address some of the low latency and limited resources
of this system, Yin et al. [3] proposed a novel visualization service for task scheduling
based on fog computing and explored a new approach to the task scheduling algorithm
based on a container role. The proposed system is able to reduce the delay rate of
the tasks and improve the concurrent tasks on fog nodes. Lei et al. [4] presented the
architecture of adaptive transmission containing edge computing and software-defined
network (SDN) to solve the problem of data exchanging in IIoT and intelligent devices.
Suganuma et al. [5] proposed the Flexible and Advanced Internet of Things (FLEC) to
overcome the integration of traditional Internet of Things and edge computing problem
that focuses on user positioning adapting to the environment. Lin et al. [6] presented the
swarm optimization algorithm connected with a genetic algorithm to overcome the load
balancing problem in traditional data placement based on optimizing the transfer time.
To achieve detailed control of smart manufacturing systems, communication latency and a
reliable environment are required. The multi-access edge computing (MEC) provides all
the mentioned requirements. Similarly, cloud computing’s capabilities and information
technology provide environmental services on the edge network, despite the access
technology [7]. Chen et al. [8] proposed a multi-micro-controller structure, which is
the gateway for the Industrial Internet and combines the array-based programmable
gateway of hardware with multiple scalable micro-controllers. Li et al. [9] proposed
adaptive transmission architecture based on the centralized global support for am IIoT
edge computing network. Another approach presented by Yu et al. [10] is the survey
of edge computing performance on IoT applications—smart cities, smart farms, smart
transportation, etc. Porambage et al. [11] showed an MEC overview for IoT applications
realization and synergy.

1.2. Blockchain

Blockchain technology is one of the famous areas for trust and safety, which can apply
in any related topics to keep the information and data private. Similarly, it is a novel
technology for decentralized and distributed computing architecture that keeps the dataset
with encrypted blocks in a chain [12–14]. Digital information related to transactions, date
and time, amount, etc., which are elaborated in the transaction process, is all stored in blocks.
The saved data are available within the distributed network, containing nodes’ participants
to validate the transaction. All nodes throughout blockchain are linked with each other
and support the crypto and transaction codes. Another important feature in blockchain
technology is the mathematical algorithms, which are very strong in this network. It
provides block validation to minor nodes without any effect on data through the blockchain
network, which is why blockchain is secure and transparent [15–23]. There are many of
research requirements for addressing the security problems and recommendation systems
based on blockchain and knowledge discovery technology [24–29]. This process needs to
carry out the integration of blockchain and IoT. Similarly, the security issues which are
mentioned by many authors specify the blockchain as a good solution. In [30], blockchain’s
key features are defined as trust, security, programmability, etc. A blockchain can be
one of three different types—a public blockchain, a private blockchain, or a consortium
blockchain. The public blockchain is famous for digital currencies. The main objective
of a consortium blockchain is to combine the stakeholder and service trading entities.
Li et al. [31] presented the energy trading system based on a consortium blockchain.
Min [32] proposed to leverage blockchain methods to enhance supply chain flexibility
in risky situations. In a business trading system, blockchain technology can be assumed
for IoT applications for implementing private blockchains. In [33], an IoT-oriented data
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exchange system was designed based on the Hyperledger Fabric to overcome the automatic
maintenance of a distributed management system problem.

1.3. Internet of Things, Industrial Internet of Things, Industry 4.0, and Cyber-Physical Systems

The growth of the IoT system provides substantial support for the digitalization
environment. Furthermore, the IoT applications cover different perspectives—smart
farms, smart cities, traffic monitoring, etc. Similarly, the machine-to-machine (M2M)
techniques are also covered by IoT systems, which is a way forward of digitalizing the
manufacturing system [34]. The abstraction of Industry 4.0 becomes apparent when
IIoT meets the cyber-physical system (CPS), which is the best solution for improving
the efficiency of productivity in smart manufacturing. Yang et al. [35] presents the
IoT applications and issues in the smart manufacturing system. The conclusion of the
proposed work shows that IoT visualized the interconnection of the physical world and
cyberspace. On the other hand, in [36], a cyber-physical production system (CPPS) was
proposed to authorize the dataset efficiency transferring based on the intelligent network
and trustworthy communication technology. The Industrial Internet Consortium (IIC)
is one of the most famous techniques launched in US top five companies—GE, AT&T,
Cisco, Intel, and IBM. This technique mainly points to the standardization of network
innovations, applications, and constructions; data circulation growth; and industrial
digital transformation. The IIoT sub-concept was first launched in Germany by the
name of Industry 4.0 and globally partial CPS facts based on artificial intelligence in
smart manufacturing. In short, CPS shows the relationships between information and
the physical world, relying on the interconnection of things. The IoT technology selects
the interconnections between physical address objects to check if they are related to the
industry or not. Table 1 shows the studies related to smart manufacturing systems. Ten
studies are compared based on the industry sector, internal equipment, external equipment,
and concept of creation.

Table 1. A taxonomy of smart manufacturing applications.

# Authors Industry Sectors Internal
Equipment

External
Equipment

Creation Concept
(Design, Production,

Test, Service)

1 Chen et al. (2018) [37] Automotive industry No No Yes

2 Zhou et al. (2017) [38] Energy industry No No Yes

3 Dutta et al. (2018) [39] Transportation equipment
manufacturing Yes No No

4 Weissenblock et al. (2014) [40] Chemical fibers
manufacturing No No Yes

5 Chen et al. (2017) [41] Food processing industry No No Yes

6 Amirkhanove et al. (2014) [42] Ordinary machinery
industry No No Yes

7 Zhou et al. (2011) [43] Iron and steel industry Yes No No

8 Wu et al. (2018) [44] Chemical industry No No Yes

9 Coffey et al. (2013) [45] Specialized equipment
manufacturing No No Yes

10 Millette et al. (2016) [46] Electronic equipment
manufacturing No Yes No

Table 2 presents the recent challenges on the integration of blockchain and IoT
technology in the smart manufacturing industry. The comparison shows the techniques
applied in this research, the main contributions of the presented methods, the usage of
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blockchain and IoT, the challenges of the proposed systems, and the limitations of the
research.

Table 2. Challenges of blockchain and IoT integrated methods.

# Authors Applied
Technique Contribution Blockchain Internet of

Things Challenges Limitations

1 Asutosh et al. [47]

Decentralized
and

cryptographical
platform

Avoiding the central
authority usage in
decentralized and

cryptographical platform
for verification and

connection

Yes Yes No
There is no

improvement on data
confidentiality

2 Marco et al. [48]

The technology
of full-stack

and view-point
of system level

Choosing 6G technology
based on view-point of

system-level in
communication models

No No Yes
No verification for

security
enhancement

3 Emanuel et al. [49] Transaction
Model

Improving the IoT
privacy based on

blockchain operations
Yes Yes No No reduction on

computational cost

4 Chao et al. [50] Structure of
Blockchain

Identifying the process
between IoT and

Blockchain
Yes Yes No No changes in level

of security

5 Bong et al. [51] IoT devices
security modul

Limit hacking based on
usage of blockchain Yes Yes Yes

Verification didn’t
improve the security

level

6 Yueyue et al. [52]
Secure and
intelligent

architecture

Applying deep
reinforcement learning to
increase the effectiveness
of system based on secure

and intelligent
architecture

Yes No Yes No improvement on
privacy level

7
Maroufi

Mohammad
et al. [53]

IoT and
Blockchain

Managing short comings
and limitations based on

high-level solution
technology

Yes Yes Yes

Exact issue not
designed with the

proposed
architecture

8 Alfonso et al. [54]
Integration of

IoT and
Blockchain

Testing the related
researches to IoT and

Blockchain
Yes Yes Yes

The level of
complexity didn’t

minimized

9 Lei et al. [55]
Blockchain and
IoT integrated

method

Integrated method secure
the sensing data. Yes Yes Yes

No reduction on
overheard

communication

10 Ishan et al. [56] Centralized
architecture

Reducing the over-head
computational based on
centralized architecture

Yes Yes Yes

Reduction of
computational

over-head has no
effect on energy

consumption
changes

The development of smart manufacturing underpins integrating information
technology, data technology, and operational systems. The ever-increasing facilities and
devices are leading to data processing and application challenges in existing technology.
To reduce this issue’s effectiveness, multi-access edge computing was extracted from cloud
technology as a solution for the mentioned problems and for its ability to simplify the
data processing in the Industrial Internet of Things and industrial cloud computing [57].
Another issue in the smart manufacturing system is the transmission of data and business
transactions. Blockchain technology is a suitable answer to overcome this issue, which
stabilizes data transmission and business transactions by using the distributed control
mechanism [58]. Smart manufacturing systems’ immense data processing causes the issues
mentioned in [59,60]—high dimensionality, feature space, etc. Deep learning allows the
data processing to automatically go through complex feature abstraction using multiple
layers, and similarly provides advanced data analysis for smart manufacturing. The
challenges mentioned above are being analyzed using state-of-the-art machine learning
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techniques and smart manufacturing applications. Figure 1 shows the data-driven role
in the smart manufacturing system. The data-driven process is divided into three main
layers named data-driven, manufacturing system, and benefits. The data-driven layer
contains machine learning, deep learning, artificial intelligence, the Internet of Things, big
data, and cloud computing techniques. After data-driven, the manufacturing system layer
contains three main steps, named technology in manufacturing, network, and advanced
analysis. This step’s important information includes the design, process, equipment,
records, customers, suppliers, parts, and workforce information. The last layer of the
data-driven system has the manufacturing system’s benefits: quality, energy, cycle time,
etc.

Data Driven Manufacturing System Benefits 

Technology of 
manufacturing

Network
Quality Raw material 

Machine 
learning

Deep 
learning

Artificial 
intelligence 

Internet of 
things

Big data

Cloud 
computing

Advance 
Analysis

Design

Process

Equipment 

Records

Customers 

Suppliers 

Parts 

Workforce 

Energy Cycle time

Causal analysis 
Equipment 
efficiency 

…

Driver Benefits

Figure 1. Smart manufacturing’s data-driven roles.

The main contributions of this paper are:

• Investigating the multi-access edge computing potential problems, blockchain, and
machine learning in the smart manufacturing system.

• The proposed approach’s conceptual scenario is the integration of multi-access edge
computing, blockchain, and machine learning.

• The multi-access edge computing changed the smart manufacturing architecture from
centralized management to decentralized style.

• Addressing the terminal device’s task assignment issue.
• Representing the allocation issue between the edge servers.
• Providing an optimization process by applying the swarm intelligence to the presented

smart manufacturing system.
• The main objectives of applying machine learning in this system are reducing the

manufacturing environment’s predicted values and improving the productivity rate.
• Securing the information of stored data in blocks based on blockchain technology.
• Improving the productivity and cost reduction using blockchain technology.

The rest of this paper is divided up as follows: Section 2 presents the proposed
integrated model’s conceptual scenario in smart manufacturing. Section 3 presents the
final result and validation of the system’s performance, and we conclude this paper in the
conclusion section.

2. System Architecture of the Proposed Smart Manufacturing Environment

The integration of edge computing, blockchain, and machine learning can simplify
data processing and transactions in s smart manufacturing system. The following steps
present the details of the proposed method in a smart manufacturing system.
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2.1. Prototype System Based on Edge Computing

The edge computing system’s main concept is to apply the computing technique as
close to a data source as possible. Figure 2 presents the edge computing architecture in
the smart manufacturing system. The local infrastructure is used to process the data in
an edge-computing system, and it takes the cloud server to the hardware. There are three
main layers in the edge computing system named the physical layer, network layer, and
application layer. The physical layer consists of sensors, robots, actuators, etc., organizing
the physical layer’s main components. The second layer contains the various edge servers,
which process the terminal devices for the third layer’s input. Unlike a cloud server, an
edge server provides a computational service limited to capacity and resources. The root of
enterprise-level applications is IIoT cloud server data processing, all done in the application
layer. Enterprise information systems (EIS), supply chain managements (SCM), and smart
contracts (SC) are some application layer examples. Applying edge computing in smart
manufacturing is far greater than cloud server supplementary resources. Edge computing’s
prosperity is highly based on virtualization technologies. Virtualization technology contains
virtual machines and containers. The main differences between them are the implementation
and level of isolation; in the virtual machine, the implementation needs hardware visualiza-
tion. In the virtual container, the performance is based on light-weight visualization.

Cloud Server Edge Server IIoT Devices

Massive-based data 
analysis

Long-term based 
data analysis

Long-term based 
data storage

Data pre-
processing 

Real-time data 
analysis

Real-time action 
response 

Micro-processor 

Sensor

Actuator 

Network LayerPhysical Layer

P2P 
Data 

Verification

Data 
Forwarding

Sensor

Actuator

Machine

Data 
Consensus

Robot

Converyor

Cobot

Application Layer

EIS

EAM

MES

QOS

STS

SCM

S.C

Colabo
ration

Co-
design

Data Layer

Data 
identification

Data block

Time 
stamp

Encryption

Figure 2. Overview of edge computing architecture.

2.2. Service Validation Based on Blockchain

The blockchain technology in smart manufacturing consists of two main contributions.
The first one is IIoT, and edge computing servers’ smart manufacturing changes from cloud-
centered to the distributed system architecture. In this process, the blockchain system is
applied to strengthen data integrity and decrease data transmission risk to authorize the
validation key and identification in a distributed manner. To avoid operation defectiveness,
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the data transactions should be time-stamped through the hash code and refrain from
positioning the fake data in the linked chain. The second one is the consensus mechanism,
which is used to decide whether adding a validated block into blockchain is possible or not.
Smart manufacturing digitalization recommends manufacturing virtualization, leading the
cloud manufacturing service from another point of view.

Figure 3 presents the manufacturing system based on two main fields, contents and
metadata: identify the unique service and give a detailed description of the process. The
service block was created based on the manufacturing system abstraction, and similarly
broadcasting the distributed manufacturing in-network service to further validate network
entities. The service transaction block creation is based on purchasing and querying the
manufacturing service. The transaction block is in the same manufacturing system network,
and validates based on the other peer-to-peer entities. Similarly, the transaction block adds
to the blockchain transaction system too. In contrast, blockchain’s transaction process
organizes the smart contract between the business partners, facilitates the inner protocols,
and verifies a contract’s performance.

Blockchain Transaction System 

Blockchain Service 

Representing 
Service 

Creating Blocks Broadcasting 
Approving 

Service
Adding Service 

to Chain

Distributed Network 

Hash Block

Block n, Block n-1, Block n-2, Block ...

Data Transaction

Adding to chain Approving Broadcasting Block Creating

Digitalization Service

 

Enterprise A
. 
.
.

Enterprise N 

Meta-data

Price
Function

.

.

Contents

Input
Output
Process

.

.

Figure 3. Overview of a blockchain service.

2.3. Machine Learning-Based Smart Manufacturing

Based on the recent new technologies—big data, IoT, etc.—smart facilities are positively
developing intelligence manufacturing to impact the cross-organization in smart
manufacturing systems. The manufacturing system is experiencing an unexampled data
extension based on the data collection from sensors in various formats, structures, and
semantics. Data collection is based on the multiple manufacturing systems, e.g., lines of
product, manufacturing equipment, processes, etc. Hug data in the manufacturing system
need data modeling and analysis to handle the high-volume dataset growth and support
the real-time data-processing. Machine learning techniques contain some advantages
for improving smart manufacturing: cost reduction, security, fault reduction, increasing
production, operator safety, etc. These advantages include a great and strong bond for
the operating procedure. Furthermore, the system’s fault detection is one of the decisive
components for predictive preservation, and it is essential in the case of industry. Figure 4
presents the overall architecture of smart manufacturing based on the integration of edge
computing, blockchain, and machine learning. Each of these methods is well-known, but
the integration between them has a huge effect on the manufacturing industry regarding
safety, cost reduction, increasing production, etc. The edge computing section is based on
the physical, network, and application layers. The physical layer provides the smart sensors
connected to the IoT platform for real-time data collection and monitoring. Similarly, in



Processes 2021, 9, 92 8 of 20

this layer, the ability to check the condition of machines is also available. The network
layer updates the information and tracks the dataset over time. The application layer
corresponds and reviews the data quality, and finally measures and reports the monitoring
results. The edge computing process’s final report moves to a blockchain service for
securing the collected information in blocks. This information is in terms of assets, design,
and block security. The process moves to the machine learning section to control the
quality of the service and fault rate prediction. In this section, there is a various level of
data analysis. This process contains predictive analysis, diagnostic analysis, descriptive
analysis, and prescriptive analysis. The main goal of descriptive analysis is to give the
product manufacturing process and operation information, capturing the environmental
conditions and parameters. If the product’s performance decreases, the diagnosis analysis
examines the issue and presents the reason for the problem. The predictive analysis
operates the statistical models and predicts the possible future equipment and products
based on a historical dataset. The final analysis is the prescriptive analysis, which further
recommends actions and measures the identification to improve the rates of outcomes,
solve the problems, and present each final decision outcome. Based on the advanced
machine learning analysis, the smart facilities are highly optimized. This process’s benefits
are reducing the costs of operation, meeting changing consumer demands, improving
productivity, and reducing downtime.

Equations (1) and (2) present the evaluation of cost reduction in manufacturing
industry based on machine learning prediction process. In the first step is a derivation
function applied to decrease the error of cost function. The cost function is evaluated below:

B =
1
m

m

∑
n=0

(gn − (xhn + d))2 (1)

where gn is the predicted value and xhn is the actual value of the cost prediction process.
α

αx represent the partial derivative values. d and e are representing the intercept, and x
represents the slope of the evaluation.

α

αx
=

2
M

M

∑
n=1
−hn(gn − (xhn) + e) (2)

The predictive accuracy evaluation is based on two main metrics: mean absolute
prediction error (MAPE) and normalized root mean square error (NRMSE). Equations (3)
and (4) present the MAPE and NRMSE evaluations.

MAPE =
1
m

m

∑
n=1
| gn − ĝn

gn
| (3)

NRMSE =
1
m

√
m

∑
n=0

(
gn − ĝn

gn
)2 (4)

The MAPE evaluates the prediction’s total error compared with initial values, and
NRMSE evaluates the normalized squared errors.



Processes 2021, 9, 92 9 of 20

E
d

ge
 C

o
m

p
u

ti
n

g
 

B
lo

ck
ch

ai
n

 
M

ac
h

in
e 

L
ea

rn
in

g

Physical Layer Network Layer Application Layer 

1. Sensor installation
2. Connection to IoT platform
3. Real-time data monitoring 
4. Checking the machines 
conditions

Smart Sensors Real-Time Monitoring Data Monitoring

1. update information
2. Tracking data 
overtime

1. Review the data 
quality
2. Measuring data
3. Reporting data

Steps which done in edge computing 
layer is:
1. Generating the sensor data
2. The insights extracted from data
3. Actions which will perform to process

Securing the collected dataset

Block Structure Construction 

Index Timestamp 

Previous 
Hash 

Dataset 

Creating the 
Data Blocks

Index

Index

Index

Index

Adding into blockchain

Blockchain

Blockchain Evaporation 

Genesis Block Ending Block

G E

...

What is happening? Why it's happening? What will happen?
Which decision is 

right?

Description

Capturing the 
operation and 
environment 

Diagnose 

Examining the 
performance

Prediction

Predicting the 
quality 

Prescriptive

Measure 
identification to 

improve outcomes

Quality Control 

Steps which done in machine learning 
layer is:
1. Enterprise the maintenance future 
need
2. Predicting the fault rate

Steps which done in blockchain layer is:
1. tracking assets 
2. checking products design
3. securing data in blocks

Figure 4. Smart manufacturing overall architecture based on an integrated system.

2.4. Fault Assessment Diagnostic Analysis

Generally, the manufacturing system faces failures based on abnormal and degradation
operations. The failing causes high costs, disqualifies the product, and causes lower
productivity. Based on the implementation of a smart manufacturing system, it is necessary
for smart factories to monitor the condition of machines, identify the primary defects,
recognize the root causes of failures, and finally combine the information for manufacturing
system production [61]. Based on the data collected from sensors, there are many machine
learning algorithms to investigate the fault diagnosis and classification [62]. The convolu-
tional neural network (CNN) combines feature learning and identification into one model
and has been applied in many sectors— wind generator [63], rotor [64], bearing [65–68], etc.

3. Results

In this section, a brief explanation of the results is provided. Section 3.1 presents the
process of data collection and dataset information. Section 3.2 presents the performance
evaluation of the proposed system. Section 3.3 presents smart manufacturing challenges
and opportunities.
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3.1. Implementation Environment

The implementation of the proposed system structure and environment is presented
in this section. Table 3 summarizes the purposed system experimental setup. All the
experiments were done on an Intel(R) Core(TM) i7-8700 @3.20 GHz processor with 32 GB
memory. Moreover, the docker environment was processed in the 18.06.1-ce version,
and the container configuration in the virtual machine was processed based on the
docker composer 1.13.0 version. The Hyperledger Fabric framework project is from the
Linux Foundation.

Table 3. Development environment of the proposed system.

Component Description

IDE Composer-Playground
Memory 32 GB
CPU Intel(R) Core(TM) i7-8700 @3.20 GHz
Python 3.6.2
Operating System Ubuntu Linux 18.04.1 LTS
Docker Engine Version 18.06.1-ce
Docker Composer Version 1.13.0
Hyperledger Fabric V1.2
CLI Tool Composer REST Server
Node V8.11.4

Figure 5 shows the operation of the transaction process function. For improving the
assets and participants, create, delete, update, and other functions were defined in the
blockchain network. The functions of the transaction processor were implemented in
JavaScript and defined as a smart contract. The specified ShareRecord function is used to
update the manufacturing records based on the events and registry.

Figure 5. Transaction processor function in a manufacturing blockchain platform in the proposed manufacturing system.

To control the domain model elements, the access control language (ACL) is needed.
ACL provides the ability to define rules to specify the roles and users, which are authorized
to make changes in the business network domain. Figure 6 shows the ACL rules defined in
this network that give participants access to make changes in the network.
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Figure 6. Access control definition in the proposed manufacturing system.

3.2. Dataset Management

The smart manufacturing system’s data increase in volume based on the traditional
algorithms’ ability, mostly when the user wants to extract useful information from the
collected dataset. High sample volume in a large dataset, when the records are not similar,
needs the consolidation and isolation algorithms for implementation and knowledge
utilization. In this research, the data were collected from various sources related to IoT;
the production equipment was collected from various sensors to monitor the product
in real-time—e.g., the built-in sensors measured, monitored, and reported the status of
manufacturing equipment and product based on the temperature, humidity, pressure, etc.
Figure 7 shows the data-driven process in smart manufacturing.

Cloud data center

Pre-
processing

Analyzing

Collecting Visualizing

Integrating 

Smart Design

 

Optimization Process

Manufacturing Process

Quality Control 

Equipment Maintenance

Transaction data

User behavior 
data 

Technological 
process data

Historical process 
data

Equipment 
supervision 

Capacity balance 

Quality tracing 

Quality balancing 

Fault prediction 

Figure 7. Data-driven process.
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Table 4 presents the configuration of IoT devices and sensors for real-time data
collection. During the smart manufacturing (SM) cycle, the IoT devices are located in
the main areas of manufacturing resources at various levels, e.g., machines, factories, etc.
The radio-frequency identification (RFID) tags are mainly configured enough in practical
documents to report important machines’ quality, design, and production procedures in
the manufacturing process.

Table 4. IoT device configuration information for data usage in smart manufacturing.

IoT Devices Type of Device Monitoring Resources Purpose

Smart Sensors Temperature SM machine Temperature data monitoring
Smart Sensors Humidity SM machine Humidity data monitoring
Smart Sensors Pressure SM machine Pressure data monitoring

RFID Tags Ultra high frequency Drawing, model, material Trace and monitor real-time data
RFID Tags Ultra high frequency Operate, product, etc Trace and monitor real-time data

RFID Reader Ultra high frequency Material, maintenance Identify and track components

3.3. Optimization

Smart manufacturing based on the edge computing system has high scalability and
huge IIoT devices, which is suitable based on the expansion potentiality. Data analysis and
transmission are considered computational tasks. They are supposed to allocate data on
an edge server or cloud to recognize the suitable task assignment for reducing the process
time of the incoming task. There are X defined device terminals, Y edge nodes, and one
industrial server for the cloud to design this issue in smart manufacturing. Within the
manufacturing process, the requests from terminal devices are managed by a cloud or
edge server. The process timing for the tasks in edge server requires two main components
called computation time θ

y
i,c and data transmission time θ

y
i,d; see Equation (5).

β
y
i = θ

y
i,c + θ

y
i,d (5)

The task computation time in an edge server is evaluated based on Equation (6).

θ
y
i,c = Li/Σni

max
n=1 ay

i,n (6)

y is defined as the edge server, i represents the task computation time, and ay
i,n represents

the edge server’s computational resources through the n period of maintaining tasks. L is
defined as the length of the tasks. The task processing time in a cloud server is evaluated
as it was presented in Equation (7):

βt
i = θt

i,c + θ
y
i,d + θ

y,t
i,d (7)

The computation time in the cloud is defined as θt
i,c. Data transmission between the

edge and device is defined as θ
y
i,d. The transmission time from the edge server to cloud

is defined as θ
y,t
i,d . The task assignment’s presented issue is the deployment of a parallel

mechanism and heterogeneous units’ processing in the computational task assignment
issue. Accordingly, the swarm intelligence approach is applied in this process.

Swarm Intelligence

Generally, the swarm intelligence (SI) approach is a famous process among artificial
intelligence algorithms. Two main strategies follow based on this algorithm named
approximate and non-deterministic to consider and utilize the searching spaces to find
the near-optimal solutions [69]. SI contains various approaches; among them, the artificial
bee colony (ABC) algorithm demonstrates SI’s classic features. The importance and
required process for intelligence performance, self-organization, collective behavior, and
decentralization of SI are sufficient [70]. Moreover, the mentioned three features contain
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the simple mechanism control, which is tuned with only two parameters. The bee colony’s
size determines whether the solution can be dropped or whether there is no need to drop
it. Figure 8 shows the process of solving the computational task problem based on the
artificial bee colony workflow.

Set the ABC colony 
algorithm parameters

Edge server, Cloud 
server, Task

Search the iterations

Find proper references
Interact chosen reference
Update the new solution

If update times >= 
predetermined 

criterion 

Employ bee phase

Reinitialized solution 

start

End

If probability >= 
random number 

Yes

Yes

No

No

Figure 8. Artificial bee colony workflow.

3.4. Performance Evaluation

The test models are generated based on the following patterns. The task length follows
a uniform distribution in the range of [1, 10] million specifications. The data volume is
defined as 100 KB to 10 MB. The time delay is 100 milliseconds to 10 s. The average
processing performance based on the edge server is defined as 10 million instructions
per second (MIPS). The cloud volume is 1000 MIPS. Edge server and device connections
work through wireless communication. The edge server and cloud connections go through
broadband. Tasks are specified to the evident edge server, which forwards the information
to the cloud. This causes the edge server to be limited to processing enough resources for
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the under-processed task during the delay time. Figures 9 and 10 present the analysis of
parameters for abandonment and solution number (SN) criteria of α for incoming tasks
(200).
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Figure 9. Performance evaluation of various solution number (SN) settings.
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Figure 10. Performance evaluation of various α settings.

To show edge computing’s effectiveness in the system of smart manufacturing,
Figure 11 shows a various number of incomes based on three main frameworks, i.e., cloud,
edge, and mixed-mode. The meanings of these three scenarios show the computational
task between them. As shown in Figure 11, the mixed-mode shows the combined outperfor-
mance of edge and cloud. Similarly, it is increasing the number of tasks along with the
cloud mode’s average processing time. When the tasks are less than the cloud server’s
capacity, there is a decrease at a certain level; on the other hand, if the number of functions
increases, then the edge server does not modify the processing time appropriately.
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Figure 11. Performance evaluation of various scenarios.

Figures 12 and 13 present the machine learning techniques applied in this process:
k-means clustering algorithm (IKCD), k-means clustered deployment (KCD), and random
deployment (RD). Figure 12 shows each algorithm’s delay rate in different edge computing
nodes (ECNs). When the number of nodes increases in the edge computing system, the
amount of equipment production also reduces due to the network’s delay reduction. Based
on the presented results, the network delay in the IKCD process is the shortest one, and
RD is the worst among the compared methods. Based on the ECNs in the system, when
there are between 1 and 3, the IKCD method is better than KCD, and when the number of
ECNs is more than three, based on the network latency, the differences between IKCD and
KCD decrease.

Figure 13 presents the system cost deployment differences for the ECNs. We can see the
ECNs incurred greater costs based on the system node increases. Based on the deployment
of ECNs for the higher costs, the costs for all three methods increased. Comparing the three
methods, IKCD had the highest and most outstanding performance. The RD method’s
deployment used a number of ECNs randomly and did not deploy any node in the
production node. This process caused the node to be chosen without consideration and
constraints. The deployed nodes recorded in the KCD process are based on the Euclidean
distance between the devices, which is not sensible and causes the network delay and
access time communication for data processing in real-time requirements.
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Figure 12. Changes of network nodes based on edge computing.

0

2000

4000

6000

8000

10,000

12,000

1 2 3 4

C
o
st

 o
f 

D
ep

lo
y

m
en

t 

Edge Computing Nodes

IKCD

KCD

RD

Linear (IKCD)
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Figure 14 presents the relationship between system cost and edge computing nodes
based on the compared methods.
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The results show the advantages of the IKCD method, and similarly, show the
reduction of network delay based on the ECNs and increasing the computing cost of
ECNs. The sum of the process decreases at the start and then increases.

3.5. Challenges and Opportunities of the Smart Manufacturing System

Data management, performance evaluation, and standardization of edge computing
in the IIoT system are briefly explained in the above sections. Analyzing the proposed
system based on the integrated methods reveals great opportunities and challenges for edge
networks, data processing, security, etc., in IIoT technology related to edge computing. The
below information explains several challenges and opportunities for smart
manufacturing systems.

• Data offloading and load balancing: The IIoT system having various devices, which
are important in data offloading among the large servers and devices. The IIoT
system, based on edge computing, reflecting on data processing, increases this
process’s difficulty.

• Edge intelligence: In a recent IIoT system designed based on edge computing, the
devices could only accomplish the light-weight tasks. To make the system intelligent,
edge intelligence (EI) must be applied to the process.

• Data sharing security: One of the IIoT system’s advantages is the huge amount of data
in real-time devices, websites, etc., which is efficient to improve industrial production.

4. Conclusions and Future Research

Smart manufacturing is a favorable movement for the evolution of the manufacturing
industry and production in a new industry. The manufacturing system’s implementation
causes the support of data technology, information technology, and operational technology,
surrounded by the development of integrated edge computing, blockchain, and machine
learning based on the Industrial Internet for operational processes in the manufacturing
environment. This paper’s proposed system was designed based on integrating edge
computing, blockchain technology, and machine learning to support the manufacturing
system’s design. The assignment problem of the system was formulated based on the
optimization model. Unlike other research in edge computing and IIoT, the presented
method’s stresses illuminate the integration method’s importance in future developments.
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The future research plan is to improve the manufacturing system more and analyze it in
more detail. The blockchain system’s applications can be quantified and further analyzed.
Other technologies can be incorporated to enhance the development of the manufacturing
system. The experiments and results can be analyzed with an on-site dataset to identify the
possible impact factors and regulate the proposed model’s configured parameters.
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