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Abstract: As a stimulus-sensitive material, the difference in composition, fabrication process, and in-
fluencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape
memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA
wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire
with a 1 mm diameter and special element composition were tested under multi-working conditions,
which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical
properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical
results with the improved model of Graesser’s theory was verified by a comparison to the experi-
mental results. The experimental results show that the number of cycles has no significant effect on
the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the
loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective
elastic modulus and slope of the transformation stresses in the process of loading and unloading are
also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading
rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation
stresses in the process of loading is increased, while the effective elastic modulus and slope of the
transformation stresses in the process of unloading are decreased, and the maximum energy dissipa-
tion capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test
and numerical results is obtained by comparing with the hysteresis curves and energy dissipation
values, so the numerical model is useful to predict the stress–strain relations at different stages.
The test and numerical results will also provide a basis for the design of corresponding self-centering
steel dampers.

Keywords: shape memory alloy (SMA); strain amplitude; loading rate; initial strain; energy dissipa-
tion capacity

1. Introduction

Shape memory alloy (SMA) is a kind of smart materials that can return to their original
shape or original size after loading and unloading when subjected to cyclic loading, and this
transformation phenomenon existing in the Martensite and Austenite phases is known
as the shape memory effect [1,2]. After a number of preloading cycles, SMA can produce
ideal flag shape hysteresis without residual deformation [3]. The superelasticity of SMA
with strain recovery (up to 0.08 strain) is promoted spontaneously upon unloading without
any extra force, and the flag shape hysteresis obtained by SMA can dissipate the seismic
energy when under loading [4,5].

No collapse under rare earthquakes can be easily achieved in the structural
design [6–9], but the buildings still may be prone to plastic deformation and residual
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deformation after earthquakes, which will cause the repair work to be very difficult [10–13].
Due to the superelasticity and good energy dissipation, SMA has gained increasing atten-
tion in the field of civil engineering, and a variety of self-centering dampers with SMAs
that can reduce the residual deformations and increase the energy dissipation capacity of
buildings have been developed. Xue [14] investigated an innovative SMA incorporated
friction damper by combining the SMA wires with the friction damper. Ren [15] conducted
experimental studies on a new shape memory alloy friction damper, consisting of the
superelastic SMA element and the friction element. Qiu [4] proposed an SMA-based brace
with appealing superelasticity and energy dissipation capacity, which was utilized to con-
trol the seismic performance of steel frames. Liu [16] studied the mechanical property
of an innovative re-centering shape memory alloy shearing lead damper, consisting of
an SMA, shearing leads, and springs. Huang [17] developed an innovative re-centering
deformation-amplified SMA damper (RDASD) by utilizing the superelastic property of
the SMA materials. Hu [18] indicated that a new self-centering brace with low friction and
SMA can have excellent seismic performance. The mechanical property of the SMA wires
is one of the key factors to get the ideal energy dissipation capacity of the self-centering
dampers without residual deformations. However, as a sensitive material, the difference in
composition, fabrication process, and influencing factors for SMA wires will also have a
great effect on the mechanical properties.

The influencing factors of a specific SMA wire mainly include the number of cycles,
strain amplitude, loading rate, initial strain, and temperature, etc. For example, Ren [15]
studied the superelastic deformation behavior of a Ni-Ti SMA subjected to cyclic load-
ing under variable amplitudes; Lin [19] dealt with the effect of the number of cycles,
strain amplitude, and loading rate on the mechanical behaviors of SMA wires; Yan [20]
investigated the mechanical parameters of SMAs with the effects of number of cycles,
strain amplitude, and loading rate; Zhou [21] conducted a cyclic tension loading test of
the number of cycles, loading rate, and initial strain on a pre-tensioned 0.5-mm diameter
Ni-Ti SMA; and Lin [22] carried out the fatigue test of an SMA wire by changing the
temperature. In addition, the main elements of a superelastic Ni-Ti SMA wire are the
nickel element (Ni) and titanium element (Ti), but the SMA used in the previous analysis
may have a different composition for different manufactures, e.g., the atomic mass ratios
of the Ni and Ti were 55.800% and 44.200 [19], 55.980% and 43.906% [22], 56.050% and
43.95% [23], and 50.900% and 49.100% [24], respectively. The SMA with a difference in
composition would have a great effect on its mechanical properties [19,22–24]. In addition,
as a temperature-sensitive material, self-centering dampers with SMA 18 wires exhibited
different mechanical properties at different temperatures [22], and the SMA wires also
exhibited strong thermomechanical coupling while the state of the SMA wires was trans-
formed from Austenite to Mantensite or Mantensite to Austenite [25]. However, it should
be noted that the environmental temperatures of the self-centering dampers may have no
obvious change in a room, and the heat absorption from Austenite to Mantensite is almost
equal to the heat release from Mantensite to Austenite, so the effect of temperature on
SMA wires will not be addressed in this paper, which should also be investigated in future
research work.

This paper presents a comprehensive experimental investigation of the mechanical
properties of 1.0 mm diameter SMA wires under different number of cycles, strain ampli-
tudes, loading rates, and initial strains, which were pretreated by first tensioning to the
0.06 strain amplitude for 40 cycles; so, the hysteresis curves, energy dissipation capacity,
transformation stress, and effective elastic modulus of the SMA wires will be investigated in
detail. Then, an improved Graesser model program in the SIMULINK toolbox of MATLAB
2016b is developed to simulate the hysteretic curves of the SMA wires, and the accuracy of
the numerical results is verified by comparison to the test results.
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2. SMA Wire Tests
2.1. Test Materials

The 1.0 mm diameter SMA wires used in the test were manufactured by Gao’an Shape
Memory Alloy Material Co., Ltd. (Yichun, Jiangxi, China). As reported from the manufac-
turer, the chemical composition of the SMA wires is shown in Table 1. The atomic mass
ratios of the nickel element (Ni) and titanium element (Ti) of the SMA wires are 55.9600%
and 43.9835%, respectively. In addition, the mass density is 6350 kg/m3, the upper plateau
stress is 480 MPa, and the residual elongation of the SMA wires is 0.09%. Based on the tested
results from a differential scanning calorimeter (DSC), the Martensite start temperature,
Ms, Martensite finish temperature, Mf, Austenite start temperature, As, and Austenite finish
temperature, Af, of the SMA wires are 28.9 ◦C, 7.3 ◦C, 16.7 ◦C, and 35.2 ◦C, respectively.

Table 1. Composition of the shape memory alloy (SMA).

Element Content/% Element Content/% Element Content/%

Ni 55.9600 Ti 43.9835 H 0.0005
Cr 0.0070 Co 0.0030 C 0.0050
Fe 0.0060 Cu 0.0060 Others 0.0290

2.2. Test Setup

The cyclic test of the SMA wires was carried out by a SANS electronic universal
testing machine (EUTM) in Nanchang University Engineering Mechanics Experiment
Center. The ends of the SMA wire, with the characteristics of having a small diameter
and being smooth, should be firmly embedded within a special fixture. The test setup
was composed of different parts, such as the sensor, upper fixture, lower fixture, long rod,
and SMA wire, as shown in Figure 1. The upper fixture was connected to the sensor,
and the lower fixture was coupled to the long rod. The initial gauge length of the SMA
wire in the test setup was 375 mm, which corresponds to the distance of the upper fixture
and lower fixture. The cyclic displacement loading protocol described in Section 2.3 was
performed to evaluate the mechanical properties of the SMA wire specimens, and the load
and displacement of each specimen were recorded directly by the sensor in the EUTM.
All the tests were conducted at room temperature (approximately 20–25 ◦C), and the
temperature was measured by a thermometer, which was fixed in the column of the EUTM.
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2.3. Test Cases

The cyclic loading–unloading test of eleven SMA wire specimens was performed to
consider the effect of the number of cycles, loading rate, and pre-tension. For the pretreated
cyclic loading, all the specimens were first tensioned to the 0.06 strain amplitude 24 for
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40 cycles. A single SMA wire specimen was subjected to each test case, and the test cases
mainly include the following contents:

1. Number of cycles. Only one test case studied the effect of number of cycles, and the
strain amplitude was 0.06 for 30 cycles, whereas the initial strain was zero at a
0.45 mm/s loading rate and 0.0012/s strain rate, as in Qian [24].

2. Strain amplitude. One test case studied the effect of strain amplitude, and the strain
amplitudes were 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, successively, whereas the
loading rate was 0.45 mm/s, and the test was loaded for one cycle at a zero ini-
tial strain.

3. Loading rate. Five test cases studied the effect of loading rate; a total of five SMA wire
specimens were set, which were 0.225 mm/s, 0.450 mm/s, 0.675 mm/s, 0.900 mm/s,
and 1.350 mm/s, respectively, whereas the strain amplitudes for each test case were
0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, successively, and all the tests were loaded
for one cycle at a zero initial strain.

4. Initial strain. Four test cases with four different initial strains studied the effect of the
pre-tensioning, and the initial strains were set as 0.0025, 0.0050, 0.0075, and 0.0100,
by applying a specified load, respectively, where the strain amplitudes for each test
case were 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, successively, and all the tests were
loaded for one cycle at a 0.45 mm/s loading rate.

3. Test Results

Figure 2 shows the stress–strain curve of the SMA wires, and the six parameters of the
key properties in a typical curve of the SMA wires are also illustrated in the Figure 2 [26];
i.e., the Austenite start transformation stress σAM

f , Austenite finish transformation stress

σAM
f , the Martensite start transformation stress σMA

s , Martensite finish transformation stress

σAM
f , maximum transformation strain εL, and initial elastic modulus EA. Based on the

reasonable test materials, test setup, and test cases, the mechanical properties of the SMA
wires considering the key factors will be accurately analyzed in detail. During the entire
loading process, the SMA wires will be in a mixed state between Austenite and Martensite.
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Figure 2. Stress–strain curve of the SMA wire [26].

3.1. Effect of the Number of Cycles and Strain Amplitude

Figure 3 shows the hysteresis curves, energy dissipation capacity, effective elastic
modulus, and transformation stresses of the SMA wire at the different number of cycles N
and strain amplitude. It clearly shows the superelastic behavior with near-zero residual
deformation at a maximum strain value of 0.06, and the corresponding maximum stress is
about 703 MPa. Figure 3a shows the hysteresis curves of the SMA wires at a 0.06 strain
for 30 cycles and strain amplitude for one cycle, as shown in test cases (1) and (2) in
Section 2.3, and the two curves are basically the same. The stress of the SMA wire will
slightly decrease with the N increasing, and a slight increment in stresses can be observed
at the location near σMA

s for one cycle.
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SMA wire.

The effective elastic modulus, Ee f f ,i, is an important parameter to evaluate the me-
chanical property of SMA wire, which can be defined as the diagonal modulus of the ith
cycle loading loop in Equation (1):

Ee f f ,i =
σmax,i − σmin,i

εmax,i − εmax,i
(1)

in which σmax,i and σmin,i are the maximum and minimum stress value of the ith cycle
loading, in which εmax,i and εmin,i are the maximum and minimum strain value of the ith
cycle loading.

Figure 3b shows the energy dissipation value and effective elastic modulus of SMA
wires under 30 loading cycles. The energy dissipation value, Ei, can be observed to
slightly decrease from 3.55 J to 3.50 J as the number of cycles N increases from 1 to 5;
then, the Ei gradually becomes stable with no obvious change as the number of cycles
increases. In addition, the effective elastic modulus, Eeff,i, will decrease from 11.51 GPa
to 11.38 GPa as the N increases to 15, and the Eeff,i is almost constant when the N ranges
from 16 to 30. Figure 3c shows the four transformation stresses illustrated in Figure 2,
and the effects of the number of cycles are also manifested. A slight decrement in the four
transformation stresses can be found for cycles 1 to 5, and as the number of cycles increases,
all the transformation stresses become stable.

From the above test results, it can be confirmed that the number of cycles is one of
the factors for the hysteresis curve, energy dissipation capacity, effective elastic modu-
lus, and transformation stresses of SMA wires, but the influence is less clear, which is
same with the existing results obtained from Lin [19], Desroches [23], and Wang [27].
Therefore, only one cycle with strain amplitude will be used to analyze the effect of the
loading rate and initial strain on the SMA wire.
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3.2. Effect of Loading Rates

The hysteresis curves in Figure 4a are obtained from test case (3) in Section 2.3,
with five different loading rates, which have the same trend and preferable energy dis-
sipation capacity. As the loading rate increases, it can be seen that the maximum stress
is gradually increased, which are 690 MPa, 703 MPa, 712 MPa, 721 MPa, and 731 MPa at
the loading rates of 0.225 mm/s, 0.450 mm/s, 0.675 mm/s, 0.900 mm/s, and 1.350 mm/s,
respectively. However, the stresses at the unloading process after the ultimate strain am-
plitude will also slightly increase with the loading rate increasing, which indicates the
pinch phenomenon of the hysteresis curves; the energy dissipation value Ei need to be
further analyzed.
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Figure 4b shows the energy dissipation of the SMA wires with different loading rates,
and the Ei is the enclosed area of each of the loading–unloading curves. An increment in Ei
for the specimens with the increase in loading rate can be seen when the strain amplitude
is increased from 0.005 to 0.05; this is mainly due to the increment of the enclosed area at
the ultimate strain amplitude being larger than the pinch phenomenon of the hysteresis
curve. However, an increment of Ei at 0.06 strain can be observed when the loading
rate is increased from 0.225 mm/s to 0.675 mm/s; then, a gradual decrease will occur
as the loading rate increases to 1.350 mm/s, so the effect of the pinch phenomenon is
surely enlarged.

Figure 4c shows the transformation stresses of the SMA wires with different loading
rates. As the loading rate increases from 0.225 mm/s to 1.350 mm/s, the σAM

s slightly
increases from 490 MPa to 495 MPa, σAM

f increases from 690 MPa to 731 MPa, σMA
s increases

from 259 MPa to 306 MPa, and that of σMA
f correspondingly decrease from 119 MPa to

116 MPa. The transformation stresses results also demonstrate the pinch phenomenon
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of the hysteresis curves for loading rates. Figure 4d shows the effective elastic modulus
Eeff,i of the SMA wires with different loading rates, and the results indicate that the Eeff,i at
loading rates of 0.225 mm/s, 0.450 mm/s, 0.675 mm/s, 0.900 mm/s, and 1.350 mm/s is
11.43 GPa, 11.65 GPa, 11.77 GPa, 11.91 GPa, and 12.05 GPa, respectively. The Eeff,i increases
with increasing the loading rates, which is mainly caused by the change in σAM

f and σMA
f .

Based on the above discussion, it can be concluded that the loading rate is also one
of the factors affecting the mechanical properties of SMA wires. In addition, the energy
dissipation capacity and corresponding mechanical properties of the SMA wire are best
when the loading rate is 0.675 mm/s.

3.3. Effect of Initial Strain

By means of test case (4) in Section 2.3, the hysteresis curves of the pre-tensioned SMA
wires with different initial strains ∆ε are shown in Figure 5, which also have the same trend
and a good energy dissipation capacity with non-residual deformation. The maximum
stresses of the SMA wires are 742 MPa, 776 MPa, 807 MPa, and 813 MPa at the initial strains
of 0.0025, 0.0050, 0.0075, and 0.0100, respectively, which significantly increase with the
∆ε increasing. In addition, the Martensite finish transformation stress σMA

f is found to be
significantly increased with increasing the ∆ε; meanwhile, the stress–strain curve between
σAM

s and σMA
f becomes less steep, and the hysteresis area decreases progressively and little

energy is dissipated at locations near σMA
f .
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The different energy dissipations of the pre-tensioned SMA wires is shown in
Figure 6a. An increment of Ei for the SMA wires with an increase in ∆ε from 0.0025
to 0.0075 can be obviously observed under different strain amplitudes, which has mainly
been caused by the increment of the hysteresis areas. Then, the energy dissipation capabil-
ity for a 0.0075 initial strain is stronger than that of a 0.0100 initial strain; it can be concluded
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that the increment of hysteresis area at the 0.06 strain is smaller than the decrement of
the hysteresis area at the locations near σMA

f . Figure 6b shows the transformation stresses
of the SMA wires with different ∆ε. As the ∆ε increases from 0.0025 to 0.0100, with the
σAM

s significantly decreasing from 488 MPa to 434 MPa, σAM
f significantly increases from

742 MPa to 813 MPa, σMA
s decreases from 288 MPa to 259 MPa, and that of σMA

f increases
from 119 MPa to 157 MPa. The transformation stress results indicate that the slope of
the stress–strain curve between σMA

s and σAM
f gradually increases while the slope of the

stress–strain curve between σMA
s and σMA

f decreases. Figure 6 c shows the Eeff,i of the SMA
wires with different ∆ε, and the Eeff,i at ∆ε of 0.0025, 0.0050, 0.0075, and 0.0100 is 12.21 GPa,
12.15 GPa, 11.73 GPa, and 10.77 GPa, respectively. The Eeff,i decreases with increasing the
∆ε due to the increased difference between σAM

f and σMA
f .
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Based on the above description, it can be seen that the ∆ε is also one of the main
factors for determining the mechanical properties of SMA wires, and the energy dissipation
capacity of the SMA wire is best when the ∆ε is 0.0075.

4. Numerical Results

A numerical analysis using the improved Graesser model was conducted to investigate
the mechanical properties of an SMA wire based on the SIMULINK toolbox of MATLAB,
and the numerical results were compared to those of the test results.

4.1. Numerical Model of the SMA Wire

The force of the SMA wire can be expressed by Equation (2):

FSMA = σSMA As (2)
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where As is the cross-sectional area of the SMA wire, and σSMA is the stress of the SMA
wire. Based on the Graesser model [28], the time derivative of σSMA,

.
σ, can be described by

Equation (3):

σ = E
[

.
ε−

∣∣ .
ε
∣∣(σ− β

Y

)n]
(3)

where
.
ε is the time derivative of ε, ε is equal to ∆L/L, ∆L is the relative displacement,

and L is the initial length of the SMA wire; E is the elastic modulus and Y is the yield
stress of the SMA wire; n is a constant controlling the sharpness of the transition from the
elastic&#13; state to phase transformation; and β is the one dimensional back stress and
can be expressed by Equation (4):

β = Eα
{

εin −
σ

E
+ fT |ε|cerf(aε)

[
u
(
−ε

.
ε
)]}

(4)

where α is equal to Ey/(E− Ey), and Ey is the slope of the stress–strain curve after the elastic
range; εin is the inelastic strain, which is equal to εin = ε − σ/E; fT is the material constant
controlling the type and size of the hysteresis; a is the constant controlling the amount of
elastic recovery; and c is the constant controlling the slop of the unloading stress plateau.
In addition, erf (x) is the error function, and u(x) is the Heaviside function, which can be
expressed by Equation (5) and (6):

er f (x) =
2√
x

∫ x

0
e−t2

dt (5)

u(x) =

{
1 (x ≥ 0)
0 (x < 0)

(6)

An improved Graesser model, considering the mechanical behavior under large
deformation, was proposed by Qian [24], which can be expressed by Equations (7) and (8):

σ = E

[
.
ε−

∣∣ .
ε
∣∣(σ− β

Y

)n−1(σ− β

Y

)]
(7)

β = Eα
{

εin − σ
E + fT |ε|cer f (aε)

[
u
(
−ε

.
ε
)]

+ fM

[
ε− εM f sgn(ε)

]m[
u
(
ε

.
ε
)][

u
(
|ε| − εM f

)]}
(8)

where εMf is the Martensite finish transformation strain; and fM and m are the constants
controlling the Martensite hardening curve. sgn(x) is the symbolic function, which is
expressed by Equation (9):

sgn(x) =


+1 x > 0
0 x = 0
−1 x < 0

(9)

By combing Equations (7) and (8), the stress–strain relation of the SMA wires will be
revealed in detail using the numerical analysis.

4.2. Comparison of the Test and Numerical Results

Based on the SMA wire testing results in Section 3, the numerical model factors men-
tioned in Section 4.2.1 for SMA wire with different influencing factors can be determined;
c = 0.001, n = 3, and m = 3, with the other model parameters listed in Table 2.
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Table 2. The parameters for each mechanical model.

Influencing Factor Value E Y α f T a εMf f M

Strain amplitude 0.005–0.06 45,000 480 0.0190 0.77 250 0.040 42,500

Loading rate/mm/s

0.225 45,000 470 0.0190 0.78 280 0.040 42,500
0.450 47,000 480 0.0190 0.74 275 0.040 42,500
0.675 49,000 500 0.0190 0.71 270 0.040 42,500
0.900 50,000 500 0.0200 0.67 265 0.040 42,500
1.350 51,000 500 0.0210 0.63 255 0.040 42,500

Pre-tensioned

0.0025 50,000 530 0.0200 0.70 282 0.040 42,500
0.0050 51,000 520 0.0190 0.72 290 0.040 42,500
0.0075 52,000 508 0.0164 0.08 300 0.036 33,500
0.0100 53,000 500 0.0150 0.87 310 0.036 33,300

4.2.1. Strain Amplitude

The improved Graesser model programs in the SIMULINK toolbox of MATLAB were
developed to simulate the hysteretic curve of the SMA wires, and Figure 7 displays the
comparisons between the test results in Figure 3a and numerical results under strain
amplitude for one cycle. A significant difference in hysteretic curves between the test and
numerical results is found at the 0.005 strain, which may be explained by the existence
of a minute initial strain of the SMA wire in the test result. Then, the comparison of both
results is made for the strain from 0.01 to 0.04, and it shows good agreement. When the
strain reaches 0.05 and 0.06, the maximum stresses of the SMA wire for both results are
very close, but little difference in stresses between the test and numerical results for the
0.05 and 0.06 strains are found at the location near σMA

s .
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Figure 7. Comparison of the test and numerical curves under strain amplitude.

The errors of ∆iE and ∆iF between the experimental and numerical values of energy
dissipation value Ei and ultimate force Fi can be expressed by Equation (10):{

∆iE = (EiT − EiN)/EiT
∆iF = (FiT − FiN)/FiT

(10)

where EiT and EiN are the experimental and numerical energy dissipation value,
respectively; FiT and FiN are the experimental and numerical ultimate force, respectively.

The energy dissipation value Ei and ultimate force Fi were then calculated from the
hysteresis curves to further validate the effectiveness of the presented numerical analysis
method, as given in Table 3. The maximum errors of the Ei and Fi are 39.73% and −12.10%
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at a strain of 0.005, respectively, and the reason has been explained in the difference between
the hysteresis curves. As the strain increases from 0.01 to 0.06, the maximum errors of Ei and
Fi between the test and numerical results are −8.65% and 5.26%, respectively, from which
it can be confirmed that both indices are very close, so the presented numerical model can
be used to simulate the hysteresis curves of the SMA wires under strain amplitudes.

Table 3. Comparison of results under the strain amplitude.

Step/N Energy Dissipation Value Ei/(J) Ultimate Force Fi/(N)

Test Numerical ∆iE/% Test Numerical ∆iF/%

1 0.017 0.010 39.73 327.23 366.82 −12.10
2 0.097 0.089 7.69 362.55 381.64 −5.26
3 0.68 0.64 4.77 462.36 478.06 −3.39
4 1.43 1.39 3.43 495.45 492.88 0.52
5 2.20 2.24 −2.24 513.20 501.66 2.25
6 2.84 3.08 −8.65 549.94 525.58 4.43
7 3.56 3.77 −6.04 703.70 682.69 2.98

4.2.2. Loading Rate

Figure 8a–e show the comparisons between the test results in Figure 4a and numerical
results under different loading rates, and in order to improve the calculation efficiency,
all the loading strains can only be set as 0.06 due to the accuracy of the strain amplitude
for Steps 1–7 in Table 3. As the loading rate increases from 0.225 mm/s to 1.350 mm/s,
the hysteresis curves obtained by the test results all show close agreement with the numeri-
cal predictions. However, the minute initial strain of the SMA wires also influences the
test curve at the beginning of loading, and the difference in stress between the test and
numerical results increases with the increasing of the loading rate at the location near σMA

s .
For the different loading rates, the Ei and Fi of the SMA wires calculated from test and

numerical analysis are shown in Table 4. As the loading rate increases from 0.225 mm/s
to 1.350 mm/s, the error of Ei between the test and numerical results gradually increases,
and the maximum value is −13.69%. The major reason for the error may due to the
difference in stress at the location near σMA

s . Meanwhile, the maximum error Fi for the
different loading rates is only 0.48%, which has good accuracy. Therefore, the presented
numerical model can also be used to simulate the mechanical performance of the SMA
wires under different loading rates.

Table 4. Comparison of results under different loading rates.

Loading
Rate/(mm·s−1)

Energy Dissipation Value Ei/(J) Ultimate Force Fi/(N)

Test Numerical ∆iE/% Test Numerical ∆iF/%

0.225 3.50 3.70 −5.72 685.90 693.53 −0.48
0.450 3.56 3.81 −7.04 690.19 701.73 0.28
0.675 3.57 4.04 −13.25 703.70 712.10 0.02
0.900 3.54 4.01 −13.38 712.23 718.97 0.26
1.350 3.50 3.98 −13.69 720.81 727.98 0.44
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4.2.3. Initial Strain

Figure 9a–d show the comparisons between the test and numerical results under
different initial strains of the pre-tensioned SMA wire at the 0.06 strain. The hysteresis curve
at 0.0025 initial strain obtained by the test result is consistent with that of the numerical
curve. As the initial strain continues to increase from 0.0050 to 0.0100, the numerical results
agree well with the test date, but there are two differences in the location near σMA

s and
σAM

f , which increases with the increasing of the initial strain. In addition, owing to the
pre-strain applied before loading, no relaxation phenomenon and residual deformation are
found in all the results.
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SMA wire.

For the different initial strains, the Ei and Fi of the pre-tensioned SMA wires obtained
from test and numerical analysis are shown in Table 5. As the initial strain increases from
0.0025 to 0.0100, the maximum error of Ei between the test and numerical is only −3.03%,
and the hysteresis area increasing at the location near σMA

s is almost the same as the
hysteresis area decreasing at the location near σAM

f for all the pre-tensioned SMA wires.
The maximum error Ei for the different initial strains is only 1.29%, which also has good
agreement. However, investigations are still needed to modify the improved Graesser
model of a pre-tensioned SMA wire under large deformation.

Table 5. Comparison of the results under different pre-tensions.

Pre-Tension
Energy Dissipation Value Ei/(J) Ultimate Force Fi/(N)

Test Numerical ∆iE/% Test Numerical ∆iF/%

0.0025 4.04 4.19 −3.80 742.09 736.78 0.72
0.0050 4.17 4.23 −1.41 776.71 772.45 0.55
0.0075 4.47 4.60 −3.03 806.93 799.51 0.92
0.0100 4.38 4.37 0.33 812.87 802.39 1.29

5. Conclusions

The mechanical properties of the pretreated SMA wires with a different number
of cycles, strain amplitudes, loading rates, and initial strains are investigated in this
study, and the hysteresis curves, energy dissipation capacity, effective elastic modulus,
and transformation stresses of the SMA wires with a consideration of many influencing
factors are evaluated by experimental and numerical analysis. The following conclusions
can be drawn from this study:
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1. Number of cycles and strain amplitude. The mechanical properties of the SMA wires
obtained by only one loading cycle with strain amplitude shows great agreement
with that of 30 loading cycles at 0.06 strain, which exhibits a stable performance.

2. Loading rate. The pinch effect of the hysteresis curves of the SMA wires will be
enlarged with the increasing loading rates; meanwhile, the Eeff,i and slope of transfor-
mation stresses are also increased during the cyclic tensile test. The maximum Ei of
the SMA wires appears at a loading rate of 0.675 mm/s.

3. Initial strain. As the initial strain increases, the slope of the transformation curve
between σAM

s and σAM
f gradually increases, while the Eeff,i and slope of the transfor-

mation curve between σMA
s and σMA

f decreases. The maximum Ei of the pre-tensioned
SMA wires appears on the initial strain of 0.0075.

4. The improved Graesser model programs in the SIMULINK toolbox of MATLAB
can be used to simulate the mechanical property of the SMA wires with a different
number of cycles, strain amplitudes, loading rates, and initial strains, but it also needs
to study the improved numerical model of the pre-tensioned SMA wire under large
deformation in the future.
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