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Abstract: Spiking neural P (SN P) systems are models of computation inspired by spiking neurons
and part of the third generation of neuron models. SN P systems are equivalent to Turing machines
and are able to solve computationally hard problems using a space-time trade-off. Research in SN
P systems theory is especially active, more so in recent years as more efforts are directed towards
their real-world applications. Usually, SN P systems are represented visually as a directed graph and
simulated through mainly text-based simulations or tables. Thus, there is a need for tools that can
simulate and create SN P Systems in a visual and easy-to-use manner. Snapse is such a tool which
aims to hasten the speed and ease at which researchers may create and experiment with SN P systems.
Furthermore, visual tools such as Snapse can help further bring SN P systems outside of theoretical
computer science.

Keywords: membrane computing; spiking neural P systems; visual simulator

1. Introduction

The study of natural phenomena and their (potential) use in computer science and
in the field of natural computing is an active area of research. Some of these phenomena
gave birth to the branch known as membrane computing, giving rise to computing models
that mimic the architecture of cells, making use of compartments called membranes [1].
Membrane computing paved the way for the creation of new devices, known as P systems,
that may be used to improve current algorithms or techniques. One kind of P system is
the spiking neural P system (SN P system) introduced in [2]. SN P systems are inspired
by the workings of the human brain and models the way neurons work: they are mainly
characterized by the spiking of information, i.e., passing spikes from one neuron to another
through the connections known as synapses.

One advantage of P systems is their distributed and parallel nature, which membrane
computing shares with many other areas of natural computing, e.g., DNA, quantum [3].
P systems, as early as 2001, are known to be able to efficiently solve computationally hard
problems, by trading space or memory for time [4]. Another advantage of many P systems
is their discreteness, e.g., chemicals are represented as symbols, cells are illustrated as ovals,
which may contain inners cells or ovals, chemical reactions are represented as rewriting
rules u→ v. In this way, P systems are also transparent and scalable even for non-computer
scientists, for use in modelling and analyses, e.g., biology (including systems and synthetic),
ecology, economics, linguistics. A book for such applications as early as 2006 is in [5], with
a recent one in [6]. A handbook for theory and applications of P systems is in [7].

SN P systems, like other P systems, are Turing-complete [2] (i.e., they are algorithms)
and able to solve NP-complete, or computationally hard, problems [8]. There are also works
that focus on simulating SN P systems, as they are parallel in nature, in GPUs such as [9,10]
and more recently in [11–13]. Much theoretical work has been done on SN P systems, e.g.,
their normal forms [14–16], formal representations [17–19], and their relations to classical
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models of computation [20–25] with a short and recent survey in [26]. After much theoretical
work, more recently the work to apply SN P systems to real-world problems becomes even
more active, with some early works on image processing e.g., [27] and more recently in [28],
use for cryptography [29–31], use of evolutionary algorithms to design SN P systems [32–34],
in pattern recognition [35,36], computational biology [37], with a recent survey in [38].

In this paper, Snapse, a graphical user interface and visual simulator, is introduced.
A common problem that researchers face is the lack of a tool that eases the difficulty of
constructing and simulating SN P systems. In this paper and for the development of the
Snapse tool, we study the functionalities and interfaces of established tools in creating
Snapse for SN P Systems. In a survey on P-Lingua, a generic simulation framework
for P systems, in [39] it is said that “in order to provide [researchers] with more usable
mechanisms to experiment with models based on P systems, they would require more
visual elements to help them save time and clarify the evolution of the systems under
study”. It was noted in the same paper that membrane computing models proved to be
useful in fields outside of computer science, e.g., biology or economics. Researchers from
these fields are not necessarily familiar with P systems, which is why there is a need for
higher-level tools for such researchers without delving deeper into the more technical
details of P systems, i.e., graphical user interfaces can play an essential role.

Snapse aims to contribute to this role by focusing on a more user-oriented interface:
the design is simple enough to be understood by both new users and more experienced
researchers. For those experienced in SN P systems, they are presented an avenue to create,
edit, and simulate their own SN P systems with ease, providing them with a visual way to
study such systems. For those not familiar with P systems, they are given the ability to load
and modify models that other experts have developed to help understand the phenomena
they are focused on.

The rest of the paper is structured as follows. Section 2 introduces some definitions
on SN P systems. Section 3 explains the functionalities of Snapse and gives an overview
of the syntax, technologies, simulation algorithms, and architecture used. In Section 4,
Snapse is compared with similar existing tools such as MeCoSim, P-Lingua, and the like.
Several examples of SN P Systems and how they are implemented in the program are then
presented in Section 5. Finally, conclusions and possible future work are laid out in Section 6.

2. Preliminaries
2.1. Spiking Neural P Systems

A spiking neural P system (or SN P System) is a system of neurons, where neurons
pass information among each other through the firing of spikes. Păun gives a tutorial on
SN P systems [40], describing them as follows.

Definition 1 (SN P system). A spiking neural P system, of degree m ≥ 1, is a construct of the
form Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi ;
(b) Ri is a finite set of rules of the following two forms:

i. E/ac → ap; d, where E is a regular expression over {a} and c ≥ p ≥ 1, d ≥ 0;
ii. as → λ, f or s ≥ 1, with the restriction that for each rule E/ac → ap; d of

type (i) from Ri, we have a s /∈ L(E);

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons, respectively.

Rules of type (i) are commonly known as firing or spiking rules and rules of type (ii)
are known as forgetting rules. SN P systems whose firing rules are only p = 1 are said to
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be standard SN P systems, firing only one spike when a firing rule is called. A firing rule
ri ∈ Ri can be used when a neuron σi contains k spikes, and ak ∈ L(E), where k ≥ c and
L(E) is the language of expression E. The firing rule consumes (removes) c spikes from
σi, leaving it with k− c spikes. At the same time, it fires p spikes to the neurons with a
synapse from neuron σi after a delay of d time steps. If d = 0, σi fires immediately. If d ≥ 1,
the neuron will be closed and it shall not receive spikes (all incoming spikes are lost) until it
fires at the t + d time step. A forgetting rule works under similar conditions as a firing rule:
when a neuron σi contains s spikes, then as → λ shall be used, removing all spikes from σi.

As elaborated in [2], much inspiration is taken from spiking and biological neurons.
The delay d ≥ 1 is inspired by the refractory period such that a neuron which applied a
rule with such a delay becomes closed, i.e., cannot fire or receive spikes. The constant c
takes inspiration from the spiking threshold, while forgetting rules are inspired by leakage
or decay of spikes in neurons over some duration of time. The constant p represents the
spike magnitude emitted by neuron σi, where rules with p = 1 and p > 1 are known as
standard and extended rules, respectively, as in [41].

It is important to note that the system assumes a global clock meaning that all applica-
ble rules shall be at the same time and all spikes fired simultaneously. There may be cases
where multiple rules in the same neuron are applicable. In that case, a rule is chosen in a
non-deterministic manner. Note that by definition, a firing rule and a forgetting rule can
not be applicable at the same time.

A configuration is a snapshot of the state of an SN P system for a given time step.
Each configuration describes the number of spikes in each neuron and the time steps needed
for each neuron to be open again. A configuration is of the form < r1/t1, . . . , rm/tm >
where ri denotes the number of spikes in the neuron and ti denotes the number of time steps,
with the initial configuration as < n1/0, . . . , nm/0 >, i.e., all neurons are initially open.

SN P systems may be generative (i.e., the output neuron fires spikes to the environ-
ment), accepting (i.e., the input neuron receives spikes from the environment), or both,
acting as a transducer [20]. Only the generative systems are considered in this paper,
while the others are considered for future work. The result of a computation in a generative
SN P system can be considered in various ways, halting or otherwise, e.g., the output is
some number n which is the difference between specific and consecutive spikes, or by con-
sidering spike trains, where a time step with or without a spike is considered for example
as a bit 0 or 1, respectively.

2.2. Spiking Neural P Systems with Extended Rules

Introduced in [41] is the notion of having a more generalized format for the rules by
allowing both firing and forgetting rules to follow the format E/ac → ap; d. Formally, [41]
defines SN P systems with extended rules as:

Definition 2 (SN P systems with extended rules). A spiking neural P system with extended
rules of degree m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, i0), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi ;
(b) Ri is a finite set of rules of the form E/ac → ap; d, where E is a regular expression

over {a}, c ≥ 1, p ≥ 0, and d ≥ 0 with the restriction that c ≥ p;

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

4. i0 ∈ {1, 2, . . . , m} indicate the output neuron σi0 .

A rule E/ac → ap; d is applied as follows. If the neuron σi contains k spikes, and
ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming (removing) c
spikes (thus only k− c remain in σi) and producing p spikes, which will exit the neuron
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immediately. A global clock is assumed, marking the time for the whole system, hence the
functioning of the system is synchronized.

2.3. Matrix Representation of an SN P System

A representation of an SN P system through matrices is introduced by Zeng et al. [17].
It breaks down the different parts of an SN P system into vectors and matrices. Below are the
vectors and matrices defined by their work.

Definition 3 (Configuration Vector). Let Π be an SN P system with m neurons, for any k ∈ N,
the vector Ck = (n(k)

1 , n(k)
2 , . . . , n(k)

m ) is called the kth configuration vector of the system, where n(k)
i

is the amount of spikes in neuron σi, i = 1, 2,. . . ,m after the kth step of the computation. The initial
configuration is denoted by the vector C0 = (n1, n2, . . . , nm)

Definition 4 (Spiking Vector). Let Π be an SN P system with m neurons and n rules referred to
as r1, r2, . . . , rn. A spiking vector s(k) is defined as follows: s(k) = (r(k)1 , r(k)2 , . . . , r(k)n ), where:

r(k)i =


1 if the regular expression Ei of rule ri is satisfied by the number of spikes n(k)

j

(rule ri is in neuron σj ) and rule ri is chosen and applied;
0 otherwise.

The initial spiking vector is represented by s(0) = (r(0)1 , r(0)2 , . . . , r(0)n )

Definition 5 (Spiking Transition Matrix). Let Π be an SN P system with m neurons and n rules,
and d : 1, . . . , n be a total order given for all the n rules. The spiking transition matrix of the system
Π, is defined as MΠ = [aij]n×m, where:

aij=


-c if rule ri is in neuron σj and it is applied consuming c spikes;
p if rule ri is in neuron σs (s = j and (s, j) ∈ syn) and it is applied producing p spikes;
0 if rule ri is in neuron σs (s = j and (s, j) /∈ syn).

Definition 6 (Net Gain Vector). Let Π be an SN P system with m neurons and n rules, and Ck

= (n(k)
1 , n(k)

2 , . . . , n(k)
m ) be the kth configuration vector of Π. The transition net gain vector at step k

is defined as NG(k) = Ck+1 − Ck.

2.4. Further Representations of SN P Systems

Further research on representing them in a non-visual way in CUDA is presented
here [10]. Note that the representation in [10] is designed towards a parallel and GPU
implementation. Snapse may be extended to include GPU computation which is discussed
in Section 6.

Definition 7 (Status Vector). The kth status vector is denoted by St(k) = <st1, . . . , stm> where
for each i ∈ {1, 2, . . . , m},

sti =

{
1 if neuron i is open,
0 if neuron i is closed.

Definition 8 (Rule Representation). R(k) = <r1, . . . , rn> where for each i = 1, . . . , n, ri = (E, j, d′, c)
where E is the regular expression for rule i, j is the neuron that contains the rule ri,

d′ =


−1 if the rule is not fired,
0 if the rule is fired,
≥ 1 if the rule is currently on delay (i.e., neuron is closed).
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3. Snapse: A Graphical User Interface for Simulating and Creating Spiking
Neural P Systems
3.1. Basic Functionalities and Limitations

The Snapse interface is shown in Figure 1 with labels for each section and presents the
following elements:

Figure 1. The basic Snapse interface.

• Workspace (labelled A): contains the entire SN P system.
• Neuron Editing Options (labelled B): contains all the buttons that are useful in modify-

ing the SN P systems. This includes adding new neurons, output neurons, and synapses;
removing neurons and synapses; modifying rules and spikes for each neuron.

• Saving and Loading (labeled C): contains buttons to save and load work.
• Choice History Window (labelled D): Opens the choice history window which lists all

non-deterministic choices made.
• Viewing Options (labelled E): contains all the buttons that help in navigating through

the SN P System. This includes panning, zooming in and out.
• Status Indicators (labelled F): a status bar that shows through text the current process

undertaken by the program.
• Firing Options (labelled G): contains the buttons that control the firing of neurons.

This includes continuous firing, moving forward one time step, and moving backward
one time step.

• Settings (labelled H): Contains simulation modes and hide/view options for rules,
labels, and animations.

• About/Help (labelled I): Contains useful information such as keyboard shortcuts and
the output path.

• Hide interface (labelled J): Toggles the visibility of all unnecessary buttons surrounding
the workspace to reduce clutter.

Snapse allows users to simulate and visualize SN P systems with delays and extended
rules (see Definition 2) through the CPU. Section 6 makes recommendations on how to
expand this scope.
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To deal with non-determinism, Snapse employs two simulation modes: guided and
pseudorandom. In guided mode, the user is given the freedom to choose between any
number of applicable rules while in pseudorandom mode, Snapse automatically chooses
the rule in a pseudorandom manner. Additionally, a history of all the rules chosen may be
viewed in a window through the Choice History window.

3.2. Neuron and Output Representation

SN P Systems in Snapse are represented much like their usual graphical representation,
through nodes and synapses. Each node contains a number of spikes, the rules they contain
(which may be shown or hidden to reduce clutter), and their labels (See W, X, and Y in
Figure 1). Neurons also change to a darker colour upon closing and return to normal
colouring upon opening. Each group of spikes fired are represented by an animated signal
in yellow colour, travelling along the synapse from the source neuron to the target neuron.
They can be seen in the workspace in Figure 1 (See U and V).

Outputs are presented through both an output bitstring and the number of spikes
received by the output neuron. As stated in Paun’s tutorial in [40], the output can be
interpreted differently for each SN P system. Some of the more classical ways to interpret
the output include counting the distance between spikes, converting it to an integer,
or looking at the spikes it receives. Outputs are displayed inside the workspace in Figure 1
(See Z) and can also be accessed in a text file stored by the application.

3.3. Rule Syntax

Snapse takes its syntax for its rules (both firing and forgetting) on the syntax used
for SN P systems with extended rules defined in, i.e., for rules, the basic syntax is
E/c→ p; d. For example, a(aa)*/aaa -> aa;2 is a valid rule while a(aa)*/a^3 -> a^2;2
and a(aa)*/a3 -> a2;2 are not. This Snapse syntax is a result of keeping the format of
the rules compatible with the syntax of regular expressions specified in [42].

The syntax also allows for the use of the inclusive disjunction or alternation oper-
ator “|” for example the rule, a|aa|aaa/a->a;0, will fire when the neuron either has 1,
2 or 3 spikes, this allows the users to check against any number of regular expressions.

A forgetting rule is specified by having p as 0 in the rule specification. Therefore
the syntax is E/c → 0; 0. Rule a(aa)*/aaa → 0; 0 is an example of a valid forgetting rule.
Note that all forgetting rules have a delay of 0. This syntax follows from the rule definition
E/ac → ap; d in Definition 2, where forgetting rules are a special case of firing rules herein
p = 0.

3.4. Configuration Syntax

Snapse also has configuration files it uses to save and load SN P systems. As a way to
import SN P systems that were not created with Snapse, they are stored in a human-readable
format. The first line is a list of all neurons, written as neurons = [<name1>,<name2>,. . . ,
<namen>] where each element is a neuron name. Names are a combination of a letter and
a number. The letter could be either an N or an O while the number should be an integer
starting from 0 and increasing by increments of 1. N represents a normal, i.e., non-output,
neuron while O represents an output neuron. The rest of the file is followed by the details
of a neuron. Each neuron has the following syntax and attributes:

<name>{
spikes = <int>:
rules = {<rule1>, <rule2>,\dots, <rulen>}:
outsynapses = [<name1>, <name2>, <name3>]:
delay = <int>:
storedGive = <int> <(default:0)>:
storedConsume = <int> <(default:0)>:
outputNeuron = <boolean>:
position = (<float>,<float>,<float>) <(default: (0, 0, 0))>:
}
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spikes indicate the number of spikes in the neuron. Rules are stored in a list, named
rules, with each rule following the Rule Syntax in Section 3.3. outsynapses contains the
list of the names of each neuron it has a directed synapse to. delay is an integer that
specifies the number of computation steps before a closed neuron fires and becomes open,
with -1 as the default value if the neuron is open. storedGive is an integer that specifies the
number of spikes a closed neuron produces when it fires (storedGive = 0 if the neuron
is open). storedConsume is an integer that specifies the number of spikes a closed neuron
consumes when it fires (storedConsume = 0 if the neuron is open). outputNeuron is a
boolean that specifies whether the neuron is an output neuron or not; True makes it an
output neuron and False makes it a normal neuron. position is the desired position of
the neuron in a 3-dimensional coordinate system, the default representation for position
in Unity3D. It should be noted that the z-axis only serves to position its “depth” or how
close an object is to the user. An element with a lower z-axis coordinate would appear
on top of an element with a higher z-axis coordinate. An example will be provided in
Section 5. The configuration is designed to be human-readable so users could create
SN P systems outside of the graphical editor. The non-optional attributes of the neuron
(spikes, rules, outsynapses, delay, outputNeuron) are for specifying the elements
of the system. The optional attributes, storedGive and storedConsume, are added to
support saving the configuration of an SN P system, allowing users to save their work
at any point in the simulation. The position attribute is for allowing the user to lay out
the system how they see fit, it is also used to save the positions of the neurons so users
do not need to re-position the neurons every time they load their work. The syntax took
inspiration from P-Lingua and the matrix representation of SN P systems as in Section 2.3.

3.5. Graphical User Interface

The graphical interface is mainly influenced by the programs Java Formal Languages
and Automata Package (JFLAP) and Snoopy. JFLAP inspired the display of the neurons
and synapses, and drove the decision for the drag-and-drop functionality for the neurons.
The idea for animating the spikes as they travel across the synapses came from Snoopy.
The buttons were laid out with their functionalities in mind. Buttons performing similar
functionalities, e.g., New Neuron and New Synapse, were placed next to each other.
A button for hiding other buttons was also added to help maximize screen space for the
SN P system.

Choice History UI

The application also tracks the rule choices made, per neuron, during points of non-
determinism during the course of the system’s simulation at each timestep. The history
also tracks the other applicable rules that were not applied.

For example, we can have the SN P system in Figure 2 from [2]. This is an SN P system
that can generate natural numbers greater than one (which will be discussed in further
detail in Section 5).

Figure 2. A spiking neural P (SN P) system that generates all natural numbers greater than one.
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It can be seen that there is only one point of non-determinism in this SN P system,
which is at neuron 2. If we wanted to get the output string 10001, we would need to choose
the rule a→ a; 0 at t = 1 and t = 2 and then choose the rule a→ a; 1 at t = 3.

Figure 3 shows us exactly the history of all nondeterministic choices made. We are
presented with the time step when a choice is made (labelled B), the Neuron that made
this choice (labelled C), the rule that was chosen (labelled D), and the rule/s that were not
chosen (labelled E) and a button (labelled A) to go back to the original configuration or
t = 0. Clearly we can see that at t = 1 and t = 2, neuron N1 fires the rule a/a → a; 0 and
ignores the rule a/a→ a; 1 (by convention, we have neuron 1 as N0, neuron 2 as N1, and so
on). At t = 3, we see neuron N1 choose the rule a/a→ a; 1 and ignore the rule a/a→ a; 0.

Figure 3. Choice history.

In general, the choice history logs all non-deterministic choices for both guided and
pseudorandom non-determinism. Choice history logs all choices until some timestep t.
An example of the choice history reaching a relatively large timestep is shown in Figure 4.
The choice history does not take into account whether the choice was made by guided or by
pseudorandom non-determinism. The interface will look the same regardless of the setting
used. In Figure 5, we changed the setting from pseudorandom to guided non-determinism
at timestep t = 3 and we reproduced the same interface when done, and vice versa.
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Figure 4. Choice history at timestep t = 102.

Figure 5. Choice history interface with different settings.



Processes 2021, 9, 72 10 of 24

3.6. Architecture

An SN P system with extended rules as defined in Definition 2 must have (1) a
singleton alphabet, (2) neurons where each neuron contains an initial number of spikes
and a finite set of rules, (3) synapses, and (4) input and output neurons. There are a few
important elements to take note of to simulate a time step in terms of Snapse’s architecture.
The program uses a controller that communicates with the neurons and the user through the
interface. The controller stores all synapses, neurons, and rules to be applied. Each neuron
stores its own spikes and rules. At the start of a firing step, the controller notifies all neurons
that it must check for applicable rules. All applicable rules are stored in the rules storage of
the controller or immediately in the neuron if the rule is deterministic or if Snapse is in a
pseudo-random mode. The rules storage tells the controller to wait for choices when not all
neurons have a chosen rule in which case, the controller must wait for user input. Once the
user has chosen rules for all non-deterministic choices in guided mode, the controller
notifies all neurons to simultaneously fire their chosen rules. For a graphical representation
of this description, see Figure 6. This architecture applies to all software builds of Snapse,
i.e., the Windows and Linux builds.

Controller

rulesStorage

WaitForChoices()

GUI

User

Neuron

CheckRules()storeChosen

Figure 6. Snapse simulation architecture.

3.7. Simulation Algorithm

To simulate a time step for the SN P System, Snapse goes through each neuron that has
an outward synapse (outsynapse) and checks the neuron for applicable rules. The rules
are stored in a controller. When all neurons are checked, all chosen rules will be fired. In the
case that guidedMode is set to true, the program is forced to wait for all the rule choices of
the user. See Algorithm 1 for reference.

We also take a few representations of SN P systems from Sections 2.3 and 2.4. However,
we break up most of these vectors and matrices between the controller and the neurons.
For example, we split the configuration vector (Definition 3) into the neurons with each
one holding their own spikes instead. This is done because it is much simpler to hold these
values within each neuron. In Unity (the main technology used), neurons are represented
by objects and contain their own attributes. In this way, a neuron can simply reference its
own attributes when updating its interface.

In line 1 of Algorithm 1, we subtract from the neuron’s internal timer. In lines 2 and 13,
we check the neuron’s internal timer which takes inspiration from the rule representation
(Definition 8) in Section 2.4 and the status vector (Definition 7). This timer serves as the
refractory period of the neuron. While the timer is greater than 1, the neuron remains
closed (i.e., cannot apply any rule or receive any spikes), a timer less than −1 signifies that
the neuron can apply a rule, and 0 means the neuron should fire. In Line 4, we check all
rules and store them in matchedRules that we shall later pass back to the controller. In Lines
6 to 10, we emulate deterministic choices and pseudorandom mode by immediately storing
the rule. Line 9 tells the neuron to wait for all neurons to select their rules before firing so
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that the system fires all spikes “simultaneously”. The whole algorithm returns the matched
rules, the chosen rule, and the neuron name to the controller.

Algorithm 1 Snapse Rule Checking Algorithm.

Processes 2021, 1, 0 11 of 24

Algorithm 1: Snapse Rule Checking Algorithm.

1 neuron.timer = neuron.timer− 1;
2 if neuron.timer <= −1 then
3 if neuron.hasOutSynpase then
4 matchedRules = neuron.checkRules();
5 if !guidedMode or matchedRules.Count == 1 then
6 chosenRule← RandomIn(matchedRules);

(consume, give, delay)← parse(chosenRule);
7 neuron.timer ← delay

if delay == 0 then
8 neuron.spikes = neuron.spikes− consume
9 waitForEnd()

10 end
11 end
12 end
13 end
14 if neuron.timer == 0 then
15 neuron.spikes = neuron.spikes− consume
16 neuron.Fire(targets, give)
17 end
18 return (matchedRules, chosenRule, neuronName)

Table 1. Comparison of Snapse with other tools.

Snapse PLingua JFLAP Snoopy MeCoSim UPSimulator

Simulate SN P
Systems

General Solution to
P Systems
Graphical

Presentation
Graphical Design
Pseudorandom mode

Guided mode
Animation

4.1. P-Lingua

P-Lingua is a programming language for membrane computing which aims to be a
standard to define P systems. It and its associated tools have been developed by members
of the Research Group on Natural Computing, at the University of Seville, Spain. P-Lingua
was first introduced by Diaz-Pernil in [43]. It started from the idea of creating a uniform
simulation framework for most (if not all) P systems. Now, it has developed to be a
flexible framework that may be extended to include newer simulators. It makes use of a
programming language through which users can input information on their models to be
simulated. P-Lingua [44] partly inspired the syntax for the configuration files for the SN
P systems.

4.2. JFLAP

Java Formal Languages and Automata Package (JFLAP) [45] is an interactive edu-
cational software written in Java for experimenting with topics in the computer science
area of formal languages and automata theory. JFLAP allows its users to create and simu-
late structures, such as programming a finite state machine, and experiment with proofs,

4. Comparison with Other Tools

This section is dedicated to discussing the nature and the important functionalities
of similar software. These technologies include visual simulators made specifically for P
Systems and also graphical tools that focus on designing and animating systems using
other models. To illustrate the innovations of Snapse, Table 1 is an overview and compares
the functionalities of each tool discussed in this section to Snapse.

Table 1. Comparison of Snapse with other tools.

Snapse PLingua JFLAP Snoopy MeCoSim UPSimulator

Simulate SN P Systems
General Solution to P

Systems
Graphical Presentation

Graphical Design
Pseudorandom mode

Guided mode
Animation

4.1. P-Lingua

P-Lingua is a programming language for membrane computing which aims to be a
standard to define P systems. It and its associated tools have been developed by members
of the Research Group on Natural Computing, at the University of Seville, Spain. P-Lingua
was first introduced by Diaz-Pernil in [43]. It started from the idea of creating a uniform
simulation framework for most (if not all) P systems. Now, it has developed to be a
flexible framework that may be extended to include newer simulators. It makes use of a
programming language through which users can input information on their models to be
simulated. P-Lingua [44] partly inspired the syntax for the configuration files for the SN
P systems.
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4.2. JFLAP

Java Formal Languages and Automata Package (JFLAP) [45] is an interactive edu-
cational software written in Java for experimenting with topics in the computer science
area of formal languages and automata theory. JFLAP allows its users to create and simu-
late structures, such as programming a finite state machine, and experiment with proofs,
such as converting a nondeterministic finite automaton (NFA) to a deterministic finite
automaton (DFA).

JFLAP features a drag and drop interface allowing the creation of deterministic finite
automata (DFA) and nondeterministic finite automata (NFA) among other structures.
The application allows the user to create nodes and edges. The application also allows the
user to set an initial and final node by right-clicking a node.

The user has various options for simulation. The user can go through the simulation
step-by-step and the state of the automaton is shown in the interface. As the simulations
goes through the states of the automaton, the states are shown as a series of still images.
The user also has the option to make a “Fast Run” that does not go through the steps of
the simulation and informs the user whether the automaton accepts or rejects the input
given by the user. When a NFA is simulated, the simulator selects—in a pseudorandom
manner—the series of rules to apply to reach an accepted solution, the simulator then
gives the user an option to look for other paths until the accepting paths are exhausted.
JFLAP partly inspired the program’s interface and the pseudorandom simulation mode.

4.3. Snoopy

Snoopy [46] is a software tool to design and animate hierarchical graphs, among
others Petri nets. The tool has been developed at the University of Technology in Cot-
tbus, Dept. of Computer Science, “Data Structures and Software Dependability”. The tool
is in use for the verification of technical systems, especially software-based systems,
as well as for the validation of natural systems, i.e., biochemical networks as metabolic,
signal transduction, gene regulatory networks. Snoopy inspired the program’s animation
of the spikes fired from the neurons.

4.4. MeCoSim

Membrane Computing Simulator (MeCoSim) [47] is a software developed in the
University of Seville that offers the users a general purpose application to model, design,
simulate, analyze and verify different types of models based on P systems. It uses P-Lingua
to represent P systems. MeCoSim allows viewing of graphs for verification purposes.
The graph must be created via a configuration file then imported to the application to view
it. The program implemented the graphic editor as an alternative to creating SN P systems
using configuration file as it is more accessible for users who have not much experience
working with computers. Users who prefer to create SN P systems by writing configuration
files can still do so.

4.5. UPSimulator

UPSimulator [48] is a general P systems simulator developed in Chongqing University
in China. The simulator extends from P-Lingua. The simulator uses its own language
called UPLanguage to represent P systems. The simulator supports cell-like, tissue-like,
and neuron-like P systems. The simulator however does not support graphic visualization
for the P systems.

5. A Few Examples

To better illustrate how Snapse works, a few examples are presented in this sec-
tion using the program. For reference, all examples discussed here are available in
the github repository (https://github.com/reysterf/SNP-Editor). An SN P system in
Figure 2 from [2] generates all natural numbers greater than 1. As discussed in Section 3.4,
the configuration file should start with the neurons. In Figure 2, there are three neurons
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in the system. However, we add another neuron to emulate the environment which we
designate as the output neuron. As such, the first line of the configuration file should
be neurons = [N0, N1, N2, O3]: with N0, N1, N2 as the three neurons and O3 as our
environment or output neuron.

Following the configuration syntax presented earlier, each neuron should have spikes,
rules, outsynapses, delay, storedGive, storedConsume, outputNeuron, and
position. spikes must be equal to the number of initial spikes in the system (which
for N0 is 2) so we write spikes = 2:. rules should cover all the rules in the neuron. In N0,
those are a2/a→ a; 0 and a→ λ. The rule syntax in Section 3.3 reformats spike representa-
tions ap into a string over the alphabet {a} whose length is equal to the number of spikes p.
We write the rules of N0 as rules = {[aa/a->a;0], [a/a->;0]}. outsynapses should
contain all the neurons the current neuron has a synapse directed towards (in the case of
N0, that is N1 and N2) which is written as outsynapses = [N1, N2]. delay, storedGive,
and storedConsume are set to their default values as shown in Section 3.4. outputNeuron
should be set to false for all non-output neurons (in this example: N0, N1, and N2). position
could be set to the default (0, 0, 0) for all neurons. Alternatively, it could be set to any
reasonable 3-dimensional coordinate to avoid overlapping. This could be done for both
N1 and N2, as well. Snapse uses 3-dimensional coordinates, as opposed to 2-dimensional
coordinates, because it matches how Unity represents positions internally.

While all of the attributes of a neuron are also present in the output neuron, there are
a few key differences. Since N3 is an output neuron, outputNeuron should be set to
True. Additionally, we add the lines storedReceived = 0 and bitstring = null: before
position and after outputNeuron. A sample configuration file for the SN P system in
Figure 2 is as follows:

In Snapse, this SN P system would look something like Figure 7. In the first step,
N2 will fire a spike towards the output neuron, giving it a 1. At each time step, N0 and N2
will send a spike to N2 which will be forgotten because of the rule aa/aa->0;0. As long as
N1 chooses the rule a/a->a;0, no spike will be sent to the output neuron. When N1 chooses
the rule a/a->a;1, only one spike will be sent to N2, which will close N2. The spike that
will be sent by N1 in the next step will not be received since N2 is closed. Finally, N2 will
release its spike.

To interpret the output of this specific example, we must look at the output bitstring
at the end of the simulation. For this example, in particular, the number can be gathered
from taking the distance between the first two “1” symbols in the output bitstring. If at the
first step N1 chooses the rule a/a->a;1, the resulting bitstring will be 101, i.e., the distance
between the two “1” symbols and the result is the number 2. This can be seen in the
Appendix in Figure A3. If N1 chooses the rule a/a->a;1 at t=2 instead, the resulting
bitstring is 1001, i.e., the result is the number 3. Alternatively, if N1 chooses the rule
a/a->a;1 at time step 3, the resulting bitstring is 10001, i.e., the result is 4, and so on. Thus,
the SN P sytem can generate any natural number greater than or equal to 2. A more detailed
description is laid out by Ionescu et al in [2]. Screenshots of Snapse for this example can be
seen in Appendix A.1.

We also take an example of an increasing comparator that can be seen in Figure A4 in
the Appendix A.2. Ceterchi and Tomescu’s in [49] discuss how an increasing comparator
can be represented as an SN P system. The comparator is used to create a network of
parallel and bitonic sorters of natural numbers. For this example, we compare the numbers
8 and 5, respectively. The configuration file can be found in Appendix A.4. This SN P
system has two output neurons as seen in Appendix A.3 where the top output neuron
would represent the smaller of the two numbers after comparing is done.



Processes 2021, 9, 72 14 of 24

The last SN P system we consider in this section is a bit adder. This SN P system
provides the sum of two natural numbers in binary form. Gutierrez-Naranjo and Leporati
provide an SN P system for such an adder in [50]. The example provided in Appendix A.5
adds the numbers 2 and 3, in binary format. Snapse does not allow an input of bitstrings
which shall be discussed in Section 6. Instead, a couple of nodes are created to simulate
this as seen in Figure A7. The configuration file can be found in Appendix A.6.

neurons = [N0, N1, N2, O3]:
N0{
spikes = 2:
rules = {[aa/a->a;0], [a/a->0;0]}:
outsynapses = [N1, N2]:
delay = -1:
storedGive = 0:
storedConsume = 0:
outputNeuron = False:
position = <(-3,1.5,0)>:
}
N1{
spikes = 1:
rules = {[a/a->a;0], [a/a->a;1]}:
outsynapses = [N0, N2]:
delay = -1:
storedGive = 0:
storedConsume = 0:
outputNeuron = False:
position = <(-3,-1.5,0)>:
}
N2{
spikes = 3:
rules = {[aaa/aaa->a;0], [a/a->a;1], [aa/aa->0;0]}:
outsynapses = [O3]:
delay = -1:
storedGive = 0:
storedConsume = 0:
outputNeuron = False:
position = <(0,0,0)>:
}
N3{
spikes = 0:
rules = {[]}:
outsynapses = []:
delay = -1:
storedGive = 0:
storedConsume = 0:
outputNeuron = True:
storedReceived = 0:
bitString = null:
position = <(3,0,0)>:
}
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Figure 7. The SN P system in Figure 2 in Snapse.

6. Final Remarks

In this paper, we presented Snapse, a tool which provides users the ability to cre-
ate, design, and modify their models through graphical means. We discuss in Section 1,
that although research regarding SN P systems is active, their development could be made
even easier and faster using a visual tool. Snapse takes a step in this direction by offering
many features that ease the difficulty of customizing SN P systems. Section 3 lists down
these features. Aside from storing work, it gives researchers the ability to control the run of
their models through the introduction of guided non-determinism and editing between
simulations. In Section 5, three useful examples are presented to show how Snapse can
be used by experts in SN P systems. Additionally, the graphical presentation and visual
indicators such as in Figure 1 make Snapse more accessible to people new to SN P systems.

While this work is a preliminary one to introduce the visual tool Snapse for SN P
systems, the Snapse version as of now can be used, at least in part, in some applications.
Aside from the examples in Section 5 and their extensions or generalization, Snapse could be
used in (parts of) the systems for skeletonizing images as in [27,28], aiding in the design of
some systems in [30,32–34], computational biology in [37], and other applications in [26,38].

Next we list a few and natural directions for further work. The algorithm and the
architecture of Snapse may be optimized to allow it to run faster when simulating larger
systems. In particular, allowing users to use bitstrings as inputs in place of spike trains,
and to use regular expressions that use variables such as that used in the Encoder in [51]
are helpful. We aim to support the use of input neurons, in order to simulate SN P systems
as transducers as in [22,23] and more recently in [25]. Snapse can also be extended to allow
support for other variants of SN P systems like SN P systems with rules on synapses [52],
with anti-spikes [53] and dynamic variants such as [54–56].

There is also room for various improvements with the user experience e.g., adding
more input/output options, such as input neurons or taking in spike trains from a (perhaps
bit string) file, allowing the use of exponents in the rule declarations, adding support for
systems written in P-Lingua and other formats, or allowing the user to navigate and jump
to specific timesteps through the simulation choice history via a tree. It is also interesting
to be able to use Snapse to work with parallel and text-based simulators such as those
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from [11,12]. In simulating larger systems, the suggestions for optimizations in [12,57] are
likely to be useful also.
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Appendix A. Examples of SN P Systems in Snapse

Appendix A.1. Example of an SN P System That Generates all Natural Numbers Greater than One
in Snapse

See Figures A1–A3 .

Figure A1. An example of a choice in an SN P system that generates all numbers greater than one
in Snapse.
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Figure A2. An example of neurons firing in an SN P system that generates all numbers greater than
one in Snapse.

Figure A3. An example an SN P system that generates all numbers greater than one at the end of its
simulation in Snapse.
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Appendix A.2. Graphical Representation of an Increasing Comparator

See Figure A4.

Figure A4. An increasing comparator presented graphically.

Appendix A.3. An Example of an Increasing Comparator in Snapse

See Figure A5 for an example that compares the numbers 8 and 5. See Figure A6 for
the resulting outputs after simulation.

Figure A5. An example of an increasing comparator that compares 8 and 5 in Snapse.



Processes 2021, 9, 72 19 of 24

Figure A6. An example of an increasing comparator in Snapse after simulation.

Appendix A.4. An Example of a Configuration File of an Increasing Comparator in Snapse

neurons = [N0, N1, N2, N3, O4, O5]:
N0{
spikes = 8:
rules = {[a+/a->a;0]}:
outsynapses = [N2, N3]:
delay = 0:
storedGive = 1:
storedConsume = 1:
outputNeuron = False:
position = (-3,1,0):
}
N1{
spikes = 5:
rules = {[a+/a->a;0]}:
outsynapses = [N2, N3]:
delay = 0:
storedGive = 1:
storedConsume = 1:
outputNeuron = False:
position = (-3,-1,0):
}
N2{
spikes = 0:
rules = {[aa/aa->a;0], [a/a->0;0]}:
outsynapses = [O4, O5]:
delay = 0:
storedGive = 1:
storedConsume = 2:
outputNeuron = False:
position = (0,1,0):
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}
N3{
spikes = 0:
rules = {[aa/aa->0;0], [a/a->a;0]}:
outsynapses = [O5]:
delay = 0:
storedGive = 0:
storedConsume = 2:
outputNeuron = False:
position = (0,-1,0):
}
N4{
spikes = 0:
rules = {[]}:
outsynapses = []:
delay = -4:
storedGive = 0:
storedConsume = 0:
outputNeuron = True:
storedReceived = 0:
bitString = null:
position = (3,1,0):
}
N5{
spikes = 0:
rules = {[]}:
outsynapses = []:
delay = -4:
storedGive = 0:
storedConsume = 0:
outputNeuron = True:
storedReceived = 0:
bitString = null:
position = (3,-1,0):
}

Appendix A.5. An Example of a Bit Adder in Snapse

See Figure A7 for an example that adds the numbers 2 and 3. See Figure A8 for the
resulting outputs after simulation.
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Figure A7. An example of a bit adder that adds 2 and 3 in Snapse.

Figure A8. An example of a bit adder in Snapse after simulation.
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Appendix A.6. An Example of a Configuration File of a Bit Adder in Snapse

neurons = [N0, N1, N2, O3]:
N0{
spikes = 2:
rules = {[aa/aa->a;1]}:
outsynapses = [N2]:
delay = 0:
storedGive = 1:
storedConsume = 2:
outputNeuron = False:
position = (-3,1,0):
}
N1{
spikes = 3:
rules = {[aaa/aa->a;0], [a/a->a;0]}:
outsynapses = [N2]:
delay = 0:
storedGive = 1:
storedConsume = 1:
outputNeuron = False:
position = (-3,-1,0):
}
N2{
spikes = 0:
rules = {[a/a->a;0], [aa/a->0;0], [aaa/aa->a;0]}:
outsynapses = [O3]:
delay = 0:
storedGive = 1:
storedConsume = 1:
outputNeuron = False:
position = (0,0,0):
}
N3{
spikes = 0:
rules = {[]}:
outsynapses = []:
delay = 0:
storedGive = 0:
storedConsume = 0:
outputNeuron = True:
storedReceived = 0:
bitString = null:
position = (3,0,0):
}
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