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Abstract: Molecular dynamics (MD) simulations have become increasingly useful in the modern
drug development process. In this review, we give a broad overview of the current application
possibilities of MD in drug discovery and pharmaceutical development. Starting from the target
validation step of the drug development process, we give several examples of how MD studies can
give important insights into the dynamics and function of identified drug targets such as sirtuins,
RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed.
In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding
energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best
candidate molecules for further development. The importance of considering the biological lipid
bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein
coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes
as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the
pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how
MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug
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or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations
are of great interest in the field of drug delivery research, different applications of nano-particle
simulations are also briefly summarized using multiple recent studies as examples. In the future, the
role of MD simulations in facilitating the drug development process is likely to grow substantially
with the increasing computer power and advancements in the development of force fields and
enhanced MD methodologies.

Keywords: binding free energy; computational pharmaceutics; computer-aided drug design; confor-
mational ensemble; drug formulations; drug targets; enhanced sampling methods; ligand binding
kinetics; protein flexibility; membrane interactions

1. Introduction

The purpose of a computer simulation is to gain insight into the behavior of an
actual physical system or process. To achieve that specific objective, a model system is
developed that represents or emulates the given physical system. A suitable algorithm
subsequently generates a time series or an ensemble of states (“observations”) for the
model system. Finally, an analysis is conducted by calculating various system properties
from these states (certain properties may also be monitored during a simulation). In the
present context, the word “simulation” usually refers to the process of generating states by
numerically solving a set of differential equations for the selected degrees of freedom (state
variables) of the given model system. Many computed system properties are measured by
experiment as well so that an explanation of the observed experimental data is immediately
available based on the model system and the simulation results. More importantly, one
can also observe behavior that is inaccessible to experiment and test “what-if” scenarios
(e.g., mutation studies). As a result, simulation techniques have become invaluable tools
for modern research as they complement experimental approaches. With the continuing
advance of computing power, such tools will only further increase in importance.

1.1. Classical Molecular Dynamics Simulations

Molecular dynamics (MD) is one such simulation technique [1,2]. It aims at deriving
statements about the structural, dynamical, and thermodynamical properties of a molec-
ular system. The latter is typically a biomolecule (solute) such as a protein, an enzyme,
or a collection of lipids forming a membrane, immersed in an aqueous solvent (water or
electrolyte). In the case of proteins and enzymes, the experimental protein structure as
deposited in the Protein Data Bank (PDB) [3] serves as a starting point for MD simulations.
If no structure is available, one must resort to modeling (predicting) the structure for
which several techniques are available, such as homology or comparative modeling [4].
In atomistic “all-atom” MD (AAMD), the model system consists of a collection of inter-
acting particles represented as atoms, describing both solute and solvent, placed inside a
sufficiently large simulation box, where their movements are described by Newton’s laws
of motions. An algorithm such as velocity-Verlet or leap-frog [2] is employed to advance
over the course of many time steps the state of the model system as a function of time
(see Figure 1 for a schematic view of a basic MD algorithm). A single state consists of the
combined values of the atoms’ positions and velocities (or momenta). To advance the state,
forces acting on particles are computed from a model or empirical potential energy (“force
field”), a function of particle positions, which includes all types of “non-bonded” interac-
tions, such as electrostatic and Lennard-Jones forces, but also various types of “bonded”
potentials for preserving the structural integrity of the given biomolecular system. The
latter include harmonic potentials for maintaining bonds, bond angles, and “improper”
dihedrals as well as terms for dihedrals. Some force fields include the Morse potential for
a more realistic representation of bonds, while others may account for explicit electronic
polarization effects. An extensive discussion of force fields is given by Monticelli and Tiele-
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man [5]. Of note, various force fields have been developed for different types of molecules.
In the context of our review, force fields for proteins [5], biological lipids [6], and small
molecules [7] are of particular relevance (see Table 1 for examples of current commonly
used force fields). Force fields are also employed to compute energies in molecular me-
chanics (MM) applications [8]. Such simulations are usually conducted under conditions
of constant temperature and pressure to mimic laboratory conditions for which special
algorithms are available. In addition, to emulate a very large molecular system, several
techniques for artificially extending the size of the model system have been developed.
The most common one is the periodic boundary condition (PBC). Here, an infinite number
of replicas of the central simulation box surrounds the central box. Due to the long-range
character of electrostatic interactions, special techniques such as Ewald-based methods
are required to include the interactions between the particles in the central box and their
replicas. In the course of a simulation, successive states at regular time intervals are stored
in a trajectory for later analysis. Typically, in AAMD, the time step is 1–2 fs (1 fs = 10–15 s)
and the system size is in the order of tens of thousands of atoms (including solvent). A
larger number of software packages for MD of biomolecules are available, for example,
GROMACS [9], AMBER [10], NAMD [11], and CHARMM [12].

Processes 2021, 9, x FOR PEER REVIEW 3 of 63 
 

 

polarization effects. An extensive discussion of force fields is given by Monticelli and 
Tieleman [5]. Of note, various force fields have been developed for different types of mol-
ecules. In the context of our review, force fields for proteins [5], biological lipids [6], and 
small molecules [7] are of particular relevance (see Table 1 for examples of current com-
monly used force fields). Force fields are also employed to compute energies in molecular 
mechanics (MM) applications [8]. Such simulations are usually conducted under condi-
tions of constant temperature and pressure to mimic laboratory conditions for which spe-
cial algorithms are available. In addition, to emulate a very large molecular system, sev-
eral techniques for artificially extending the size of the model system have been devel-
oped. The most common one is the periodic boundary condition (PBC). Here, an infinite 
number of replicas of the central simulation box surrounds the central box. Due to the 
long-range character of electrostatic interactions, special techniques such as Ewald-based 
methods are required to include the interactions between the particles in the central box 
and their replicas. In the course of a simulation, successive states at regular time intervals 
are stored in a trajectory for later analysis. Typically, in AAMD, the time step is 1–2 fs (1 
fs = 10–15 s) and the system size is in the order of tens of thousands of atoms (including 
solvent). A larger number of software packages for MD of biomolecules are available, for 
example, GROMACS [9], AMBER [10], NAMD [11], and CHARMM [12]. 

 
Figure 1. Basic molecular dynamics simulation algorithm. Each particle moves according to Newton’s second law or the 
equation of motion, F = ma (where F is the force exerted on the particle, m is its mass, and a is its acceleration under a 
potential field), such that the particles in the system are captured in the trajectory [1,13]. r—position; v—velocity; t—time. 

 

 

 

Figure 1. Basic molecular dynamics simulation algorithm. Each particle moves according to Newton’s second law or the
equation of motion, F = ma (where F is the force exerted on the particle, m is its mass, and a is its acceleration under a
potential field), such that the particles in the system are captured in the trajectory [1,13]. r—position; v—velocity; t—time.
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Table 1. Examples of commonly used force fields in molecular dynamics simulations.

Type of Molecule Force Field

Protein AMBER [14], CHARMM [15], GROMOS [16], OPLS-AA [17]

Small organic molecule
General AMBER Force Field (GAFF) [18], CHARMM General Force
Field (CGenFF) [19], Merck Molecular Force Field (MMFF) [20–24],

OPLS3 [25], GROMOS96 [26–29]

Lipid
GROMOS (45A3, 53A6, 54A7/8) [30]; Berger lipid FF [31]; CHARMM
(C36 lipid FF [32], C36-UA [33]); Slipids FF [34]; AMBER (LIPID14 FF)

[35]

Early applications of AAMD were concerned with rather simple systems such as
liquid argon consisting of just 864 atoms [36] and covered the ps (10−12 s) time scale.
The first MD simulation of a biomolecule was achieved by McCammon et al. in 1977;
bovine pancreatic trypsin inhibitor (58 residues) was simulated for 9.2 ps [37]. Nowadays,
µs (10−6 s) timescale is easily achieved with relatively small proteins [38], wherewith
larger systems, this is reachable if state-of-the-art computational power is available [39].
More typically, MD of larger biomolecular systems attain hundreds to thousands of ns
(10−9 s). MD excels in focusing on the dynamical aspects of a given protein or enzyme in
relation to its function. Applications include, for instance, estimation of affinities ∆bG	

(the standard Gibbs free energy of binding) of ligands for proteins using the so-called free
energy perturbation (FEP) methods [40], the inclusion of charge fluctuations in constant
pH AAMD [41], folding of small proteins [42], and the simulation of ion channels [43].
Additional examples are also listed in the recent reviews by Cavalli and collaborators [44]
and Hollingsworth and Dror [45]. Recently, one of the largest atomistic simulations was
reported by Rommie Amaro’s group where they simulated an explicitly solvated influenza
A viral envelope in a phospholipid bilayer [46], a system of ca. 160 million atoms, for
approximately 121 ns. Another study by Jung et al. reported the first atom-scale simulation
of an entire gene with a billion atoms [47].

It is worthwhile to stress that MD is meant to explore the configuration space (the set
of all values of positions and momenta). In the widely used ligand-protein docking one
also needs to sample the configuration space using a similar force field as in MD in order to
optimize the location and binding mode (a “pose”) of the ligand on the surface of a given
protein (receptor) [48]. However, the sampled configuration space is frequently restricted
to a specific region of the protein, while also only specific portions of the protein and/or
ligand are allowed to fluctuate (e.g., only the protein’s side chain are displaceable, while
the main chain is kept rigid). The outcome of such docking studies is a small set of possible
complexes, typically ranked according to the force field employed. Dynamical information
is not obtained from ligand-protein docking studies, but some measure for the affinity of the
ligand for the protein may be obtained. In fact, the lack of a proper description of systems’
true dynamics is one of the biggest caveats of docking [49]. Therefore, frequently after
selecting one of the complexes (usually the highest-ranked complex), an MD simulation is
conducted to explore the complex in much greater detail [50].

1.2. Faster and Longer without Atomistic Details: Coarse-Grained Simulations

While the advancements of the “traditional” AAMD have been very impressive, the
limited length (nm) and time scales (ns to µs) attainable in AAMD still poses a severe
limitation when studying molecular processes that occur on much longer time scales
(e.g., protein (un)folding, protein–membrane association) and/or require much larger
length scales (e.g., very large protein tertiary structure or protein–membrane systems). In
standard AAMD, atoms serve as particles. In coarse-grained MD (CGMD), 4 to 6 atoms (or
more) are grouped together to form “beads” that serve as the particles of the model system.
A similar procedure may be applied to the solvent as well [51]. For instance, in the Martini
force field [52], initially designed for studying biological membranes modeled as lipid
bilayers at the coarse-grained level, four water molecules form a single water bead. As a



Processes 2021, 9, 71 5 of 60

result of such coarse-graining techniques, the number of particles is significantly reduced
in comparison to AAMD of the same system, while the interaction potential energy surface
is also much smoother so that a much longer time and larger length scales are attainable by
CGMD, but at the expense of atomistic details. It otherwise relies on similar algorithms
and associated techniques such as PBC in AAMD, with time steps ranging between 20 to
60 fs. The Martini force field, one of the first force fields for CGMD, has seen important
applications and developments since its first installment and is now also employed for
the analysis of lipid membrane properties, protein–lipid interactions, oligomerization of
membrane proteins, the self-assembly of soluble peptides and proteins, the prediction of
protein conformational changes, binding and pore-formation in membranes [53,54]. A
recent and far more elaborate overview of applications according to the Martini model
is also given by Marrink and Tieleman [55]. There exist also more extreme versions of
coarse-graining. It is quite possible and even desirable in some applications to completely
remove the atomistic details of the solvent and replace it with a structureless polarizable
continuum. This approach is commonly employed for the prediction of acid dissociation
constants of titrating sites in proteins as well as for the calculation of affinities of ligands
for proteins [56].

1.3. Zooming into the Details of Chemical Reactions: Quantum Mechanics Simulations

While MD is extremely useful for the investigation of molecular properties at a longer
time and larger length scales, it cannot be used to study the details of chemical reactions
in the active site of enzymes, simply because current MD techniques cannot properly
handle bond-breaking events. The MM force fields commonly in use for MD enforce
links between specific particles to ensure that they remain together to prevent a complete
destabilization of the molecular structure. Consequently, changes in the electronic structure
are not included in MD simulations. That, however, can be accounted for with quantum
mechanics (QM). A typical QM calculation solves the (time-independent) wave equation
to estimate single point energies, bond distances and angles, partial charges, spectroscopic
properties, various thermodynamic properties, interaction parameters (for instance for
use in classical force fields employed in MD), and so forth, thus providing a very detailed
description of the given chemical system. This can be completed for any given atom
configuration. Because QM is computationally rather demanding, it is not possible and
actually not even necessary to treat the full molecular system (i.e., protein and solvent) at
the quantum level [57]. Commonly, the enzyme system is divided into a quantum motif
(QM part) or region that includes the active site of a given enzyme plus a relevant portion
of the substrate or ligand, while the rest of the system including the solvent is considered
as part of a classical environment (MM part) adhering to a force field like those in AAMD.
The QM part should include all relevant residues and chemical groups that are expected to
play a role in the (proposed) reaction mechanism. Failing to do so may result in erroneous
statements regarding the reaction mechanism and the binding mode of the substrate. It
is also useful to repeat the calculations with different sizes of the QM motif, excluding
a particular residue to discover the role of that residue in the mechanism. Numerous
applications can be found in the literature on the use of QM/MM for studying the details
of enzyme-catalyzed chemical reactions [58]. Relevant to such studies is the identification
of the correct protonation states of titrating sites, especially of those residues or chemical
groups directly involved in the reaction [59–61].

In this review article, we aim to give a broad overview of the current and emerging
applications of MD in drug discovery and design-related processes as well as in pharmaceu-
tical formulation/product development. The review introduces the basic concepts of MD,
describes the principles of various commonly used methods and approaches in relevant
contexts, as well as illustrates many practical aspects and limitations of MD with respect to
the particular tasks at hand. However, detailed theoretical accounts of various method-
ologies are beyond the scope of the review. We hope that this piece of work could serve
as an introductory synopsis to many scientists that have no (or little) experience in MD
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and wish to combine their experimental research with appropriate computations (either in
collaboration with computational scientists or if attracted to the method, by themselves).
In the following paragraphs, we will discuss how MD can help explore the dynamics and
function of different drug targets or evaluate drug-target interactions. We will also look at
the intricacies of simulating different biological systems, such as membrane proteins or
intrinsically disordered proteins. Moreover, the growing role of MD in the field of com-
putational pharmaceutics is analyzed in light of several examples. Many focused reviews
have been recently published on the application of MD in drug discovery [44,45,62–66].
Some recent reviews can also be found on drug formulation and drug delivery aspects,
e.g., [67–70].

2. Molecular Dynamics in Drug Discovery
2.1. Exploring the Dynamics and Function of Drug Targets

Contemporary drug discovery processes start commonly with identifying and validat-
ing a biologically relevant target that can be modulated with drug molecules to prevent or
cure a disease or alleviate symptoms of sickness (Figure 2). Drug targets are often different
proteins, such as receptors or enzymes, but may also be DNA or RNA molecules. Protein
conformation is one of the biggest approximations in ligand design because proteins are
dynamic and can undergo various conformational changes. Even minor conformational
changes that involve movements of residue side chains can affect the complementarity
between the ligand and the binding site of a protein. Since protein flexibility crucially af-
fects the range of possible target conformational states for ligand binding, MD simulations
can provide important information on the dynamic character of the target with regard
to drug design.
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The following paragraphs present studies of selected target proteins or protein groups
that highlight the flexible nature of proteins. MD simulations have been necessary for
studying these proteins’ dynamics and function and understanding how they bind with
small molecules or other proteins. Specifically, sirtuins have several ligand-binding sites,
and understanding their dynamics may give insights into the development of selective
inhibitors or activators. Additionally, one of the ‘Holy Grails’ of cancer drug discovery is
direct inhibition of oncogenic RAS proteins [71]. RAS proteins are small, dynamic, and
difficult to drug. Therefore, a proper understanding of their dynamics may provide the
necessary key for drugging them. The other two examples include a group of highly
flexible, intrinsically disordered proteins, and a group of immunological proteins that are
currently being actively investigated and developed as biological drugs, i.e., antibodies.
Both protein groups play an important role in many therapeutically significant protein-
protein interactions. Especially MD simulations of proteins belonging to the former group
need improved methodologies to obtain meaningful results.

2.1.1. Ligand-Binding Dynamics of Sirtuins—In Search of Therapeutic Regulators

Sirtuins are a family of proteins that function as nicotinamide adenine dinucleotide
(NAD+)-dependent deacetylases. In mammals, there exist seven sirtuin proteins (SIRT1–7)
that have histone and non-histone targets. Sirtuins have diverged tissue distribution and
subcellular localization; nuclear (SIRT1/6/7), mitochondrial (SIRT3/4/5), and cytosolic
(SIRT2) [72]. Sirtuins have an important role in gene silencing and expression, in cell
metabolism, and tumorigenesis [73]. The function of sirtuins depends on the physiological
conditions and tissues, and they can either stimulate or prevent signaling pathways [74].

The structure of sirtuins contains a conserved catalytic core of about 275 amino acids.
The catalytic core is formed by a typical Rossmann fold domain that binds NAD+ and
a zinc-binding domain (Figure 3). There are four flexible loops connecting these two
domains. These loops form a tunnel in which the substrate interacts with NAD+ in a
deacetylation reaction. The binding site of NAD+ is divided into three pockets A–C: The
ADP ribose moiety binds in the A and B pocket (residues Asn286, Glu288, Arg97, Ala85,
Gln167, His187 in SIRT2) and nicotinamide moiety in the C pocket (residues Ala33, Gly34,
Thr37, Phe44, and Asp43 in SIRT2). Inhibitors often bind into the C-pocket. In addition,
sirtuins have N- and C-terminal extensions of variable length that can affect the enzymes’
function as these terminals are targets to posttranslational modifications. Over two decades,
several compounds have been developed to bind into the pockets A-C and to regulate
the function of sirtuins (reviewed in e.g., [75]). However, there is still no approved sirtuin
regulator/inhibitor in the clinic. One of the challenges has been the flexible nature of the
substrate and cofactor-binding sites.

For many years, there was no crystal structure of human sirtuins with any co-
crystallized regulator available. The binding site of putative regulators in sirtuins is
mostly formed by flexible loops and, thus, the conformational state of these enzymes
crucially affects the prediction of binding modes of small-molecule ligands. Therefore,
MD simulations have been applied to generate different sirtuin conformers to explore the
possible ligand-binding conformations. MD was first used for SIRT2 in the year 2008 to
generate multiple conformations for an ensemble docking approach [76]. In another study,
a set of short (from 400 ps to 10 ns) MD runs were performed for SIRT2 with GROMACS
3.3.1 employing the GROMOS96 force field [77]. The compounds under investigation were
then docked using Gold 3.2 [78] to each SIRT2 snapshot structure in the ensemble. Several
binding modes were observed for the SIRT2 inhibitors with an N-(3-phenylpropenoyl)-
glycine tryptamide backbone. Interestingly, the MD simulations suggested an extended
binding area of C pocket for the SIRT2 inhibitors, which later was experimentally observed
for a highly selective SIRT2 inhibitor, SirReal2 [79].
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Thereafter, several MD studies of SIRT2 have been carried out by Sakkiah and cowork-
ers [80–83] using GROMACS with either GROMOS96 or AMBER03 force field [84]. In one
study, they performed 5-ns MD simulations for the SIRT2-sirtinol complex and the apo
structure of SIRT2 to identify alternative binding pocket conformations for the enzyme [80].
The SIRT2 conformations from the MD runs were clustered and three representative struc-
tures were selected for receptor-based pharmacophore modeling in order to screen for
novel SIRT2 inhibitors. Their other study on the conformational changes of the SIRT2
substrate and inhibitor binding sites revealed the dynamic role of Phe96 in binding the
inhibitor in SIRT2 [81]. They further investigated the role of the inhibitor-binding residues
by simulating the docked complexes of five known inhibitors with SIRT2 for 20 ns [82]. The
stability of the complexes was evaluated by monitoring the root-mean-square deviation
(RMSD) of the protein Cα atoms and the root-mean-square fluctuation (RMSF) of the
protein residues as well as the inhibitor-protein hydrogen bonding interactions along the
simulation trajectory. All compounds had established favorable binding interactions and
stable binding poses after about 10-ns simulation. The detailed analysis of the interac-
tions revealed that hydrogen bonds formed between the inhibitors and especially Arg97
and Gln167 are important for the inhibition of SIRT2 activity. Further MD simulations
by the same research group suggested crucial conformational differences between the
wild-type SIRT2 and two mutants, thus providing insight into the design of more potent
SIRT2 inhibitors [83].
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In an attempt to understand more about the role of C- and N-terminals of sirtuins, MD
simulations were carried out to explore the terminal regions’ effect on the enzymatic activity
of SIRT2 [85]. The results of the simulations performed with GROMACS 4.5.5 and the
all-atom AMBER ff99SB-ILDN force field [86] suggest that the C-terminal region of SIRT2
can partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive
state, thus functioning as an autoinhibitory region.

MD studies have also been applied to study the dynamics of other sirtuins than
SIRT2. For example, SIRT1 simulations have been utilized to screen for novel inhibitors
and to study the interactions between ligands and the protein [87,88]. In another study,
the binding modes of 2-anilinobenzamide derivatives in SIRT1/2/3 were investigated by
30-ns MD simulations with the AMBER 11.0 simulation package using the ff03.r1 [84] and
ff99SB [14] force fields to explain the isoform selectivity of the compounds [89]. According
to the RMSD of the ligand-bound structures, the dynamic stability was achieved at 20 ns.
Furthermore, Sinha and coworkers [90] studied the stability of sirtuin-inhibitor complexes
with the high-speed simulation software Desmond [91] employing the OPLS2005 [17]
force field. After carrying out a virtual screening of plant-derived compounds against
SIRT1-7 by docking and scoring, they identified sulforaphane, kaempferol, and apigenin
as hits. Multiple 20-ns MD simulations were performed for the top-scored poses of these
compounds in the respective sirtuin structures. The results suggested that sulforaphane
bound stably in SIRT1 and SIRT5, kaempferol in SIRT3 and apigenin in SIRT6, and the
critical ligand-protein interactions remained throughout the simulations. In another recent
study [92], natural compounds were identified as potential SIRT1 activators. Stable binding
of mulberrin, quinine, quinidine, gartanin, and nicotinamide in an allosteric SIRT1 site
(i.e., other than the catalytic site) was demonstrated in 50-ns MD simulations with AMBER.
These ligands did not disrupt the functionally important hydrogen bonds between Arg234
(allosteric site) and Asp475, His473, or Val459 (catalytic site) of SIRT1, which was concluded
to be consistent with their experimentally shown ability to activate the enzyme.

There is only little experimental information on the structure of SIRT7. A recently
published study reported a homology model of SIRT7 [93]. Three 1-µs long MD simulations
with GROMACS (AMBER03 force field) were used to investigate the stability and dynamics
of the model structure. The simulations showed that the model of SIRT7 in complex with
NAD+ and acetyl-lysine was stable, suggesting that the model was built properly. In
addition, the simulations suggest that the N-terminus of SIRT7 may play an important role
in assisting to hold the substrate in the active site during the catalytic reaction.

Additionally, the co-factor binding to sirtuins has been studied with MD simula-
tions. Desmond together with the OPLS3 force field [25] was employed to simulate SIRT1
and SIRT3 in complex with either NAD+ or NADH and an acetyl-lysine substrate for
250–500 ns [94]. The simulations suggested an opening of the enzyme structure and an
alternative binding site for the dihydropyridyl moiety of NADH instead of the C pocket.
Furthermore, two persistent hydrogen bonds were observed between NAD+ and Ile347/230
and Asp-348/231 in SIRT1/3 whereas the corresponding bonds were missing if NADH
was bound.

Our case of sirtuins exemplifies that protein flexibility is important to take into con-
sideration in designing ligands that target dynamic binding sites such as that in sirtuins.
Although current flexible docking approaches can take into consideration some features of
the target protein flexibility, MD is clearly a useful method for studying not only protein
flexibility affecting ligand-binding but also larger structural arrangements in dynamic drug
targets. Our next case further highlights how understanding protein dynamics can be a
key to facilitate the design of potent therapeutic compounds against highly dynamic drug
targets such as RAS proteins.

2.1.2. RAS—Uncovering the Conformational Dynamics of a Challenging Anticancer
Drug Target

More than 150 members belong to the Ras superfamily of small guanosine triphos-
phatases (GTPases) [95]. The subgroup of the Ras family comprises 36 proteins, including
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the oncogenes HRAS, KRAS, and NRAS. As KRAS may undergo alternative splicing, these
three RAS genes encode four proteins: HRAS, KRAS4A, KRAS4B, and NRAS (referred
to as RAS from now on). RAS proteins share high sequence similarity and mainly differ
in their membrane anchoring hypervariable region (HVR) [96]. GTPases, including RAS
proteins, have a built-in switch mechanism that allows the protein to adopt an active
conformation, capable of binding effector proteins when GTP is bound [97]. Thus, RAS
activity is controlled by the bound nucleotide, GDP, or GTP. The nucleotide exchange from
GDP to GTP, i.e., RAS activation is facilitated by guanine exchange factors (GEFs) [98,99].
Inactivation of RAS occurs upon GTP hydrolysis to GDP. RAS bears low intrinsic hydrolytic
activity, which is greatly enhanced by GTPase activating proteins (GAPs) [98,99]. For a
more comprehensive picture of RAS biology, the reader is referred to review [100].

Hyperactivation in RAS signaling is related to diseases, especially to cancer [100].
Altogether, RAS mutations appear in around 17% of all human cancers, whereas KRAS
mutations contribute to the majority (69%) [101]. KRAS mutations are frequently observed
in solid tumors of the pancreas, colon, and lung; NRAS in melanomas; HRAS in head
and neck as well as in bladder carcinomas. RAS isoforms display different mutation
preferences; for instance, KRAS mutations appear most often in Gly12 (81%) whereas
NRAS in Gln61 (62%). Not only are RAS isoforms different [102,103], but also oncogenic
mutants of the same isoform even at the same position are dissimilar (e.g., KRAS G12D
vs. KRAS G12R) [104–108]. Due to their major role in cancer, RAS proteins are highly
attractable drug targets and, thus, the focus of major drug discovery efforts [71].

RAS related research has been intense already for several decades since the discovery
of these oncogenes in the early 1980s [109]. However, these small GTPases are difficult-to-
drug and previously, were considered as undruggable targets [71]. The reason for this is
that, first, there is no obvious druggable small-molecule binding pocket in RAS. A pocket
beneath the switch-II was revealed only after G12C-targeting covalent compounds were
disclosed [110]. Of note, the existence of this pocket (as druggable) was not evident from
the available crystal structures at the time. Since then, potential pockets on the effector
protein binding interface have been described [111–114]. Second, RAS proteins are active
at the membrane, which plays a significant role in their function [115]. Third, a major
obstacle in drugging RAS is its highly dynamic character (Figure 4). These difficulties
related to targeting RAS, together with the discrepancy among the oncogenic mutants,
clearly highlight the need for a better understanding of these oncoproteins. To this end,
mastering RAS conformational dynamics comes into play.
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In order to adopt all potential binding conformations with various effector proteins
and with its regulators, RAS needs to be highly dynamic, especially on the switch regions
(Figure 4). Even though recent crystal structures have demonstrated multiple confor-
mational states of RAS, in all crystal structures of KRAS, the switch regions, when not
disordered, are stabilized by crystal contacts [122]. Therefore, the structural data is unable
to fully describe the dynamics of the switches. To capture the dynamics of these cryptic
switches, which is beyond the currently available experimental methods, MD simulations
can be utilized [123].

Recently, we conducted a comprehensive analysis of KRAS G domain (excluding the
HVR) dynamics by classical all-atom MD simulations, including wild-type KRAS and all
G12 missense mutants (G12A, G12C, G12D, G12R, G12S, G12V) bound to both nucleotides
GDP and GTP [124]. Perhaps unsurprisingly, with an aggregate of 170 µs simulation
data, we observed highly dynamic behavior in the switch regions. Interestingly, principal
component analysis (PCA) not only highlighted differences among GDP and GTP bound
systems but also revealed unique profiles for each mutant. Finally, by utilizing Markov state
modeling (MSM), as reviewed in [125], we were able to capture discrepancy among GTP-
bound G12D, G12R, G12V, and wild-type KRAS in their long-timescale dynamics. Each
system populated MSM derived metastable states differently. We anticipated that the shift
in protein dynamics, occurring especially in switch regions, may lead to modulated KRAS
mediated signal transduction among the mutants, as was demonstrated before between
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wild-type HRAS and G12V [126]. Indeed, it was later confirmed that G12R mutant, for
which MSM revealed a unique profile, exhibits different effector protein binding compared
to G12D; it is defective for interaction with PI3Kα [108]. Our results demonstrated that
a G12 mutation located in the P-loop (Figure 4F) is capable of shifting KRAS’ dynamics
in distant regions of the protein that are responsible for effector protein binding [124].
How is this possible as no evident direct interactions from this position to switches were
observed in the simulations? A putative explanation is that the shift in the dynamics will
occur via a hydrophobic interaction network. Through this network, mutant KRAS may
alter the protein dynamics in an allosteric manner, inflicting changes in distant sites of
the protein. In this interaction network, hydrophobic hubs (displaying more than three
hydrophobic interactions) include the residues V14 and A146, which when mutated are
associated with altered RAS dynamics [106,127]. In another study, MD simulations revealed
highly dynamic characteristics for the switches even when there exists a covalent inhibitor
beneath the switch-II [128]. Importantly, the inhibitor AMG 510 appeared extremely stable
regardless of the switch movements. These open conformations and high flexibility of the
switches that were revealed by the simulations are not observed in the crystal structure
(most likely due to the crystal packing effects) [129].

On top of the convoluted switch dynamics, another layer of complexity in KRAS
dynamics exists: RAS rotational dynamics on the membrane (Figure 4G). On artificial lipid
nanodiscs, monomeric KRAS was shown to exist in different configurations, named oc-
cluded and exposed, where the effector protein interaction-surface-forming switch regions
are occluded or exposed to RAS effectors [121]. The rotational dynamics of KRAS were
captured in single 20 µs MD simulations of KRAS mutants G12D, G12V, and Q61H, where
three distinct major orientations of RAS were observed [130,131]. Recently, impressive
1.45 ms MD simulations (290 individual simulations of 5 µs) were conducted to further
study dynamic orientations of wild-type KRAS4B at the membrane with different lipid
compositions [39]. Still an unclear issue, however, is the relevant oligomerization state
of KRAS at the membrane. It may exist in monomeric, dimeric, trimeric, or a higher
oligomeric state [132–136]. Overall, small GTPase proteins’ rotational and translational
dynamics on the membrane, which has a substantial influence on RAS oligomerization, is
not well understood [137]. Importantly, this should not be neglected as RAS dimerization
may have an important role in oncogenicity and drug therapy efficacy [138]. Approaches
to obtain a better understanding of RAS signaling on the membrane are ongoing, and
for instance, a structural model of RAS–RAF signalosome was recently reported by Shaw
et al. [139]. For further information on RAS-related MD simulations and dynamics, the
reader is referred to reviews [122,140,141].

Taken together, MD simulations have uncovered RAS conformational dynamics at
the atomic level and provided further insights into RAS biology. Conformational states
derived from MD simulations, which are not captured by experimental methods, could be
utilized in RAS targeted drug discovery. Finally, understanding RAS dynamics may be a
guide in deciphering mutant RAS functionality and point out potential vulnerabilities of
these oncoproteins at the atomic level, which could be targeted directly or indirectly.

In the next section, we will be introducing drug targets of the future, a group of
extremely flexible proteins whose dynamics may be investigated with MD simulations to
complement the data derived with various experimental approaches.

2.1.3. Extremely Challenging Targets—Intrinsically Disordered Proteins

Intrinsically disordered proteins (IDPs) are the type of proteins that in physiological
conditions lack a stable tertiary structural arrangement and instead exist as conformational
ensembles. Apart from fully disordered proteins, many folded proteins contain intrinsically
disordered regions (IDPRs). IDPs are associated with multifunctional roles as they can
undergo conformational arrangements to different folds, depending on the particular bind-
ing partner [142]. The formation of ‘fuzzy’ complexes, where the disorder is maintained
upon binding to the partner, has also been shown to be important in many biological
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processes [143]. The structural characteristics and the individual state of conformation
in such proteins are dependent upon the type of amino acids forming the disordered
segments [142,144,145]. There are many web-servers and computational tools available
for accurate prediction of IDPs and their molecular functions (comprehensively reviewed
in [146]). In addition, there are databases that store experimentally determined IDPs and
IDPRs, e.g., DisProt [147].

The abundance of IDPs in the human genome, their importance in biological functions
such as cellular signaling, and their involvement in various pathological conditions make
them an attractive target for drug design [148]. Although the lack of a defined tertiary
structure poses a challenge for rational structure-based drug design strategies, there is
evidence that small molecules and peptides can be designed to target the protein-protein
interactions of IDPs with their ordered binding partners (reviewed in [148,149]). Experi-
mental techniques such as NMR spectroscopy or small-angle X-ray scattering (SAXS) can
be used to characterize the conformational ensembles of IDPs although the quantitative
data on the dynamic processes can be difficult to interpret regarding the unambiguously
identified motions [150]. On the other hand, MD simulations suit perfectly for describing
atomic motions and, thus, MD-based approaches can be valuable in studying the conforma-
tional dynamics of IDPs and their binding mechanisms to the partner proteins. However,
there are some challenges that need to be addressed [149].

First, the extremely large number of degrees of freedom present in IDPs poses a
challenge for proper sampling of the conformational space of the protein. Therefore,
MD algorithms with enhanced sampling techniques such as replica exchange molecular
dynamics (REMD) [151] (see Figure 5) are often used to efficiently overcome energy barriers
in the IDP conformational landscape.
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weighted Metropolis criterion. After a successful temperature exchange, velocities are rescaled to those expected in the new
temperature condition. Successful swapping between replicas happens when there is some overlap between the potential
energy of neighboring replicas over the course of a simulation.
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Second, when simulating IDPs, it is crucial is to pay attention to the selection of the
applied force field since most of the available protein force fields have been developed
for proteins that have stable folded structures. Thus, general protein force fields tend
to overpopulate certain secondary structures or compact, collapsed structures over the
extended ones [154]. Experimental structural data have been used to guide the develop-
ment of novel or updated force fields for both all-atom and coarse-grained simulations,
such as FF14IDPSFF [155], FF14IDP [156], FF99IDP [157], A99SB-ILDN [158], CHARMM36
IDPSFF [159], and AWSEM-IDP [160]. Third, the applied solvent model needs to be care-
fully selected as in IDPs, the solvation effect plays a greater role. Novel solvent models such
as TIP4P-D [161] facilitate the protein-water interactions and disfavor collapsed protein
structures. However, depending on the studied IDP, such models may underestimate the
transient tendency of an IDP/IDPR for folded structures, in which case a traditional water
model could give better results [162]. Table 2 lists some examples of MD simulation studies
of biologically relevant IDPs employing different force fields and solvent models.

Table 2. Molecular dynamics simulation of intrinsically disordered proteins (IDPs) with various force fields and solvent models.

IDP (Therapeutic Relevance) MD Program/
Force Field Solvent Model Results Ref.

c-Myc (oncoprotein,
anti-cancer target) AMBER/AMBER99SB GBSA a (implicit

solvent) and TIP4P-EW
Insights into inhibitor

binding sites [163]

Tau protein
(microtubule-associated protein,

neurodegenerative diseases,
Alzheimer’s)

NAMD/CHARMM27 SPC/E

Insights in the internal protein
dynamics and protein-water

interface in a hydrated protein
powder model

[164]

GROMACS/GROMOS
54a7 SPC Insights into the protein

structure and function [165]

Stathmin
(microtubule-regulating protein,

anticancer target)

GROMACS/GROMOS
54a7 SPC

Mechanistic view on the effect of
phosphorylation on the function

of the protein
[166]

Prothymosin alpha and Neh2
domain of Nrf2 (regulators of
the oxidative stress response,
neurodegenerative diseases,

cancer, premature aging)

GROMACS/GROMOS96
53a6 SPC

Insights into protein-protein
binding, relevant information for
the development of therapeutics

[167]

Amelogenin P173 (a constituent
of enamel matrix derivative,

regenerative
periodontal therapy)

GROMACS/CHARMM22/
CMAP SPC

Structural insights, initial
simulations in agreement with
the experimental data; will be

used in the future to investigate
the influence of environmental

conditions

[168]

Histatin 5 (human oral
antimicrobial peptide,

antifungal, wound-healing)

Amber/AMBER
ff99SB-ILDN TIP4P-D

Simulations agree with the
experiment, insights into the
future development of IDP

simulations

[169]

c-Src kinase (regulation of cell
growth, anticancer target)

GROMACS/AMBER
ff03ws TIP4P

Simulations agree with the
experiment, insights into the

conformational ensemble,
observation of transient helical

regions as putative binding sites

[170]
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Table 2. Cont.

IDP (Therapeutic Relevance) MD Program/
Force Field Solvent Model Results Ref.

Axin-1 (Wnt/beta-catenin
signaling, anticancer target)

GROMACS/AMBER99SB*-
ILDN TIP4P-D

Simulations agree with the
experiment, insights into the

conformational ensemble, effect
of the solvent model critical

[162]

Ets1 (transcription factor, cancer,
autoimmunity)

GROMACS/AMBER-
based hybrid

force field
TIP3P

Insights into the effect of
phosphorylation on the structure

and function of the IDP
[171]

a Generalized Born/Surface Area.

From the studies listed in Table 2, it is worth discussing in more detail how Jin
et al. [163] mapped the conformational ensemble of the unbound disordered dimerization
domain of the transcription factor c-Myc using REMD. Subsequent (conventional) MD
simulations of the inhibitor-bound c-Myc domain gave the authors valuable insight into
the constantly changing binding interactions and binding sites of the inhibitor at c-Myc (the
conformational ensembles looked as if there were ‘ligand clouds’ around ‘protein clouds’).
The obtained information was later utilized when Yu et al. [172] selected representative
conformations of these different c-Myc binding sites to carry out a successful structure-
based virtual screening study, which produced four active compounds that block c-Myc
function in the cell.

The above example supports the suggested in silico protocol of Bhattacharya and
Lin [149] for designing small molecule drugs for IDPs:

1. Generate the conformational ensemble for the unbound target protein using enhanced-
sampling MD.

2. Identify highly populated conformations in the ensemble and extract the representa-
tive ones by clustering.

3. Detect possible ligand-binding pockets in all the representative conformations of the IDP.
4. Select the most druggable pockets using criteria such as hydrophobicity, plasticity,

and allosteric coupling to functional sites.
5. Carry out conventional virtual screening in each selected pocket and protein confor-

mation exhibiting that pocket.
6. Select the virtual hits that show good predicted binding affinity in many IDP conformations.

This general protocol could also work well with other types of targets with flexible
binding sites.

Of note, MD generated IDP ensembles are frequently compared with experimental
data and vice versa [173,174]. Naturally, since MD and the experimental techniques
have their own limitations but produce complementary information, they can be used
synergistically to characterize the conformational ensembles of IDPs [150,175–178]. For
example, Shrestha et al. [170] recently reported how their enhanced simulation protocol
was able to produce a structural ensemble of the disordered N terminal of c-Src kinase that
agreed with the NMR and SAXS data, without reweighting or biasing the simulations.

In the next section, we will briefly look at a fast-growing branch of drug discovery
that can also benefit from MD simulations: the design of monoclonal antibodies and
antibody fragments.

2.1.4. Molecular Dynamics Simulations in Antibody Design

Antibodies have become an attractive class of biotherapeutics because of their low
toxicity and innate ability to recognize and selectively bind to a wide variety of targets [179].
Experimental methods for the discovery of high-affinity antibodies, such as phage display,
have proven to be extremely effective in antibody development, but also time-consuming and
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laborious [180]. Therefore, computational methods, such as MD simulations, have emerged
to complement and expand the knowledge obtained from experimental antibody research.

In contrast to many other computational methods that ignore the structural plasticity
of molecules, MD simulations can describe the dynamic details of molecular interactions.
In antibody design, this can be utilized to identify the so-called “hot-spot” regions at
the antibody-antigen interface [181]. As an example of this, Sinha et al. [181] in their
work based on anti-lysozyme antibody structures could demonstrate that MD was able
to reveal salt-bridges and other functionally important electrostatic forces even though
these interactions were left undetected in the static crystal structure of the studied antigen-
antibody complex. Naturally, the discovery of functionally important residues is the key to
designing mutations in antibodies with improved affinities and selectivity to their targets.

Because MD simulations can reproduce molecular fluctuations at atomic resolution,
they are also being employed to improve the scoring of antibody-antigen complex predic-
tion methods. In this regard, MD simulations were used to refine the interactions in docked
antigen-antibody complexes to obtain average values for the Generalized Born/Surface
Area (GBSA) score that was used for re-ranking the docking results. The averaged GBSA
scores derived from the simulations further improved the accuracy of predicting the
antigen-antibody complexes [182]. Similarly, conformational ensembles generated with
MD simulations can be used in rigid docking calculations, also called ensemble dock-
ing [183,184]. Even minor changes in protein conformation can affect docking results.
Therefore, the advantage of this approach is that it incorporates backbone flexibility in
the docking procedure and can be considered to mimick the conformational selection in
antigen-antibody binding [183].

MD simulations can also provide a solution for designing antibodies with enhanced
stability [184]. In a recent study, Bekker et al. [185] applied MD simulations to predict
the thermal stability of single-domain antibodies and comparing them with experimental
data. This allowed them to pinpoint the key residues contributing to the instability and to
successfully design a mutated antibody with improved thermal stability [185,186]. Addi-
tionally, a major issue encountered in antibody-based therapeutics is that antibodies are
prone to aggregate in the high concentration formulations needed for treatment [187]. Spa-
tial aggregation propensity (SAP) is a measure directed to solve this issue. SAP quantifies
the hydrophobic patches exposed on the antibody surface, averaged over the snapshot
structures obtained from MD simulations with explicit solvent. Identification of regions
prone to aggregation can be used to predict targeted mutations to design antibodies with
better stability.

Overall, MD simulations can reveal details on antigen-antibody interactions that are
not (easily) obtainable with any other methods. MD provides a useful tool to complement
both experimental and other computational methods for designing novel antibodies with
improved affinity, specificity, and stability.

2.2. Simulating Drug-Target Interactions

In the drug development process, lead compound discovery and subsequent opti-
mization of the identified compounds to candidate drugs follow the target validation
(Figure 2). During this phase, the aim is to discover and design compounds that have a
good binding affinity and selectivity to the target. Docking and scoring are common tools
for fast estimation of favorable ligand binding poses and binding energies. However, the
scoring functions of current docking tools have many limitations that result in inaccurate
binding affinity predictions [49,188]. With MD, we can tackle these limitations and facilitate
a more accurate evaluation of the compound binding affinity as the simulations take into
account the effect of water and the dynamics of the binding partners [49]. In this section,
we will go through some principal methods that utilize MD in the estimation of ligand
binding energies and binding kinetics. In the end, we also discuss how the challenge of
docking extremely flexible peptides has been tackled with hybrid approaches combining
molecular docking and MD simulations.
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2.2.1. Binding Energy Estimation

Molecular recognition is critical to many fundamental biological processes [189].
Binding between two interacting molecules in the cell initiates several biological processes,
and the significance of these specific interactions can be judged through the free energy of
binding (∆Gbind). In general, the change in free energy (∆G) describes the thermodynamics
and the kinetic properties of a system (for our purpose, a ligand binding to a protein in
a solvent). ∆G can be described as an amount of energy released or required during a
chemical process. The final ∆G value at the state of equilibrium is negative if the chemical
process (for our purpose, ligand binding to its target) is spontaneous, while ∆G is positive
if the chemical process is non-spontaneous. Conventionally, ∆G is given by the change in
Gibbs function:

∆G = ∆H − T∆S, (1)

where ∆H represents the change in enthalpy of the system, T represents the temperature in
Kelvin, and ∆S represents the change in the entropy of the system.

Moreover, ∆G of a system can be used as an overall measure to determine the stability
of a given system (for our purpose, the stability of a ligand-receptor complex, or ligand
binding affinity) [190]. In case of a ligand-binding event, the standard binding free energy
∆G◦

bind is related to the binding constant Kb by the relationship:

∆G◦
bind = −RTlnKb, (2)

where R is the universal gas constant (unit: cal·K−1·mol−1), T is the temperature in Kelvin,
and ∆G◦ has been measured at standard conditions: 1 atm pressure, room temperature
(298.15 K), and 1 M protein and ligand concentrations. On the other hand, Kb is a ratio of
the kinetic rate constants for association and dissociation (kon and koff, respectively) and
the inverse of the dissociation constant, Kd.

Since the free energy is a state function, binding affinity (or Kd) of a ligand can be
obtained from the difference between the two thermodynamic equilibrium states, i.e., the
unbound (initial) and the bound (final), without knowing the exact pathway connecting
the two states [190]. Computationally, the estimation of ∆Gbind requires extensive MD
simulations to generate the unbound and the bound equilibrium states. These equilibrium
states can also be defined as macrostates, while the macrostates can be further sub-divided
into an ensemble of discrete microstates, comprising various intermediate stages of the
ligand-receptor probing process (Figure 6).

Assessment of ∆Gbind for a series of ligands against a specific target protein can help
identify the most promising compounds with higher binding affinities than the rest of the
compounds. Therefore, drug design and docking-based virtual screening processes are
often followed up by ∆Gbind calculations [191] for which several computational methods
have been developed. Such methods include rigorous thermodynamic pathway approaches
to obtain relative (and recently also absolute) binding free energies of a series ligands [192],
as well as less rigorous and computationally faster end-point methods that only sample
the macrostates. The accuracy of these methods varies and is inversely correlated with the
computational requirements. The most rigorous (alchemical i.e., non-physical) pathway
approaches such as free energy perturbation (FEP) methods [192,193], Bennet’s Acceptance
Ratio (BAR) [194], and thermodynamic integration (TI) [195] can usually be applied only
to a few compounds due to the high computational cost. Somewhat faster approximations
include methods that sample the possible physical microstates of the thermodynamic
pathway, e.g., the Weighted Histogram Analysis Method (WHAM) [196] applied to predict
the potential of mean force (PMF) using enhanced MD techniques such as steered molecular
dynamics (SMD) [197–199] (Figure 7) and umbrella sampling [200], as well as the multistate
BAR estimator (MBAR) [201] and Jarzynski’s non-equilibrium method [202]. For ligand-
protein systems, the change in the PMF upon (un)binding is often assumed to be equivalent
with the binding free energy profile along the chosen reaction coordinate [203]; there are,
however, different theoretical approaches to obtain the free energy from the PMF [203–205].
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Computationally less expensive end-point methods include the linear interaction energy
(LIE) method [206] and the well-established Molecular Mechanics Poisson-Boltzmann
Surface Area (MM-PBSA) and Molecular Mechanics Generalized Born Surface Area (MM-
GBSA) [207,208] approaches. In the next paragraphs, we focus on the application and
limitations of the MM-PB(GB)SA methods that are commonly used for the evaluation of
binding free energies of hit compounds from virtual screening experiments (post-docking
analysis), e.g., to re-rank the docked poses of the top ligands [209].
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Figure 7. Steered molecular dynamics (SMD). A continuous external force is used to pull the ligand out of the target
protein binding site along the reaction coordinate (‘collective variable’, CV). The free energy of binding is calculated
from the relationship between the force used and the displacement of the ligand. The plot of average potential energy
versus displacement is called the potential of mean force (PMF) [210]. Enhanced MD simulations (e.g., as umbrella
sampling) coupled with the weighted histogram analysis method (WHAM) are used to determine the PMF along the
reaction coordinate.
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The binding free energy estimation based on MM-PB(GB)SA method employs only
the unbound and bound states (i.e., end-points) of the system. The binding free energy of a
ligand to a protein is obtained as:

∆Gbind = Gcomplex − Gprotein − Gligand. (3)

The free energy (G) of each individual system (ligand/protein/complex) is calcu-
lated from the total molecular mechanics’ energy (EMM) of the system in the gas phase
(includes internal bonded and non-bonded electrostatic and van der Waals energies), the
solvation free energy (Gsolv) with both polar (computed using implicit solvation models,
either Poisson-Boltzmann or generalized Born continuum solvent models), and non-polar
contributions (assumed to be proportional to the solvent-accessible surface area, SASA), as
well as the entropy (S; includes translational, rotational and vibrational contributions) at a
specified temperature T:

G = EMM + Gsolv − TS. (4)

The entropy is estimated from a normal-mode analysis of harmonic frequencies
calculated at the molecular mechanics level, which is computationally costly (please, see
e.g., [211] for a more detailed description of the theoretical aspects of the methodology).

MM-PB(GB)SA calculations include two conventional approaches: (i) the three-
trajectory scheme, and (ii) the single trajectory scheme [212–215]. The former relies on
the snapshots from three MD trajectories, including apoprotein, free ligand, and the
ligand-protein complex, which makes it comparatively accurate but computationally ex-
pensive [214,216]. Single trajectory strategy, however, includes only one MD simulation
for the ligand-protein complex, reducing the computational time significantly [214–217].
The latter approach, however, neglects any explicit structural relaxation of the protein and
ligand upon binding. Besides the strategy chosen, other factors also contribute towards
MM-PB(GB)SA calculations, which include: (i) simulation time, (ii) choice of the force field,
(iii) solvent model, (iv) solute dielectric constant, and (v) the net charge of the system. It has
been reported that several short MD simulations run independently provide better ∆Gbind
predictions than a single long MD trajectory [213,214,218,219]. On the other hand, charged
ligands can hinder the process of making accurate predictions [216,220,221]. Additionally,
for obtaining absolute ∆Gbind with the MM-PB(GB)SA calculations, the inclusion of con-
formational entropy (T∆S) remains a challenge. Incorporation of T∆S in the calculation
does not guarantee a better accuracy in the final energies due to insufficient conformational
sampling [212,213,218,220]. A sufficient number of MD snapshots may lead to a reliable
estimate of absolute ∆Gbind, however, it is computationally expensive [214,216]. Therefore,
relative ∆Gbind is generally sufficient to rank compounds against the target protein in
structure-based drug design [214] and has a better prediction accuracy than the absolute
∆Gbind calculations with this method.

The MM-PB(GB)SA approach has been applied in a number of studies, includ-
ing the development of anticancer compounds [222–224], antibacterial [225–227], antivi-
ral [228–232] and antiparasitic drugs [233–235], as well as antipsychotics [236,237]. These
methods are also often applied to understand and analyze the binding mode and key inter-
actions of small molecules [238,239] as well as peptide [240,241] and protein ligands [242]
at their targets. Several comparative studies differentiating between the prediction accu-
racy of ∆Gbind energies of protein-ligand complexes by MM-GBSA and MM-PBSA have
been reported [243–246]. One such study indicated hot-spots in Ras–Raf and Ras–RalGDS
protein-protein complexes involved in allosteric activation [244]. In another such study, the
prediction of binding affinities of HIV-1 protease inhibitors helped rationalize drug resis-
tance as a result of binding site mutations [245]. MM-PB(GB)SA calculations do not rely only
on the parameters employed but also the receptor structures used [216,218,233,247,248].
Specifically, these approaches are believed to be dependent on the system. Hou et al. [214]
reported accurate relative ∆Gbind for 59 ligands against six different protein targets using
the MM-GBSA approach when compared with the MM-PBSA method. Oehme et al. [220]
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reported that MM-GBSA has better accuracy than MM-PBSA for calculating ∆Gbind en-
ergies of ligand–HIV protease systems. Hence, to date, no study concludes on which
approach is better; instead, the literature suggests that the applied method should be
selected on a case-by-case basis.

In conclusion, MD-based binding free energy calculations have a significant impact
on the hit identification stage as they can improve the accuracy of the ranking of the hit
compounds. As we learned from Equation (2), binding free energy is also related to binding
kinetics, i.e., association and dissociation of a ligand to/from its target. We will now look
at how MD is used in analyzing the drug binding and unbinding events to facilitate the
design of compounds with favorable binding kinetics.

2.2.2. Drug-Protein Binding Kinetics Estimation

There is increasing evidence of the importance of drug-protein binding kinetics to
develop improved drugs [249–252]. The binding kinetics of drug-protein complexes is
characterized by the association rate constant (kon; unit: M−1·s−1) and by the dissociation
rate constant (koff; unit: s−1) [253]. It is also common to refer to the inverse of koff, the
residence time (τ). Recent works have shown that residence times can often be better
correlated with the in vivo efficacy of drugs than binding affinities [250,251,254,255]. Drugs
with increased residence time interact longer with the target protein, displaying longer
physiological effects. Drugs with increased on-rates may bind faster to the target protein
than endogenous ligands, being effective competitors. Such drugs would also be less
available in the free form, leading to less non-specific binding and fewer side effects.
Therefore, modulation of kon and koff values may help in the design of effective and
safe drugs.

Computational methods are useful to reveal molecular details about drug-protein
binding, providing information on how to modulate binding kinetics. However, obtaining
binding and unbinding events from conventional MD simulations is challenging, because
they are often infrequent events. One of the ways of sampling such infrequent events is
combining MD simulations with enhanced sampling methods [253,255–258].

This section provides information on how enhanced sampling methods can be used to
help in the design of drugs with modified kon or koff values. This is not a comprehensive
list of all available enhanced sampling methods. The reader is referred to up-to-date
information in the toolbox KBbox [259], which provides a compilation of tutorials and
publications of computational methods to predict binding kinetics.

Most computational work done so far is retrospective, aiming at reproducing data
for binding kinetics available in the literature. One exception is a recent study that used
elABMD, a method to predict relative residence times that combines adiabatic bias MD
with an electrostatics-like collective variable [260]. A Spearman coefficient of 0.94 was
achieved for a set of 6 glycogen synthase kinase 3 beta inhibitors. Another exception is the
study of koff values of inhibitors of the human flavoprotein D-amino acid oxidase using
scaled MD [261]. The koff values of 5 compounds were determined by scaled MD and,
afterward, experimentally. The correct ranking was obtained for 4 out of 5 compounds.

Methods with low computational cost allow the estimation of relative kinetic rates for
a set of drugs. One of these methods is smoothed potential or scaled MD [262], which aims
at estimating relative residence times. Scaled MD enhances the sampling of unbinding
events by smoothing the potential energy of the system. The method was used to predict
relative residence times for 4 78-kDa glucose-regulated protein binders (correlation coeffi-
cient, R, of 0.85) [262], 4 adenosine A2A receptor binders (R of 0.95) [262], 7 glucokinase
activators (R of 0.92 after removal of one outlier) [263], and 7 HSP90 inhibitors (coefficient
of determination, R2, of 0.89 after removal of one outlier) [264]. Scaled MD was also used
to understand why the residence time of the drug etoposide is longer for the human type II
topoisomerase (TopoII) α, compared to TopoIIβ [265].

τRAMD [266] is another method that aims at computing relative residence times for a set
of drugs. τRAMD is based on random acceleration molecular dynamics (RAMD) [267,268],
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a method where an additional force of constant magnitude and random orientation is
applied to the drug to facilitate dissociation. τRAMD was used to predict relative residence
times for 70 HSP90 inhibitors (R2 of 0.86 after removal of outliers) [266]. Analysis of
inhibitor-protein contacts in the trajectories using machine learning improved residence
time estimates and detected that interactions between a halogen or a methyl group in
the loop-binder compounds with Phe138 lead to a longer residence time [269]. τRAMD
was also recently applied to estimate relative residence times of ligands dissociating from
different mutants of T4 lysozyme [270].

Nonequilibrium targeted MD (TMD) [271–273] is another method that can be used to
compute relative residence times for a set of drugs. In this method, an additional force is
applied to the drug to facilitate dissociation, as in τRAMD, but in this case, the magnitude
of the force is changed to obtain constant velocity of unbinding. The mean work calculated
from TMD simulations was compared to koff values for a set of 26 HSP90 inhibitors [274],
resulting in R2 from 0.45 to 0.80 for inhibitors grouped according to binding mode and
scaffold. Moreover, the net charge of inhibitors was identified as a factor that could lead to
longer residence times.

Brownian dynamics (BD) simulations [275] are suitable for studying drug-protein
binding. In this method, the drug and protein are treated as rigid bodies, with no internal
motions, and the solvent is represented implicitly, leading to low computational cost. A
combination of BD with MD simulations was used to study the binding pathways of two
inhibitors to H1N1 neuraminidase [276]. The computed association rates were ranked
correctly, and the formation of a salt bridge between the inhibitors’ carboxyl group and
Arg368 was revealed as a key step for binding.

Many enhanced sampling methods have moderate to high computational costs, pre-
venting fast computation of residence times for a large set of drugs. However, such methods
can reveal molecular details that may help in the design of drugs with modified binding
kinetic rates. Methods that depend on the definition of one or more progress coordinates
to describe the infrequent event and enhance the sampling, such as metadynamics [277]
and weighted ensemble MD (WEMD) [278,279], have been used to reveal mechanistic
details of drug-protein association and dissociation. Metadynamics was used to distin-
guish cyclin-dependent kinase 8 inhibitors with short or long residence times [280] and to
study association or dissociation events for relevant pharmacological targets such as HIV
reverse transcriptase [281], Src kinase [282,283], p38 MAP kinase [284], the M3 muscarinic
receptor [285], the adenosine A2A receptor [285,286] and the β2-adrenergic receptor [287].
WEMD was used to study ligand dissociation from epoxide hydrolase [288] and from
proteins used as model systems to study binding kinetics [289,290].

SMD has also been used to uncover molecular mechanisms of ligand association and
dissociation. SMD suits for analyzing fast and slow (un)binding events of various ligands
(see for example refs [291–293]). While applying biasing force restraints on explicit-solvent
models allows for faster approximate calculations in SMD simulations, this leads to a
non-equilibrium trajectory and could change the underlying physical processes too drasti-
cally [294]. A recent work [295] used interaction-energy fingerprints obtained from SMD
to predict koff values for 37 HIV protease inhibitors (R2 of 0.75), showing that interactions
with residues Asp25, Ile47, and Ile50, located in the active site or in the flap region, are
important to modulate koff values. SMD was also used in combination with RAMD to
study dissociation from B-RAF kinase [296].

Another enhanced sampling method used for binding kinetics studies is REMD,
although with a usually high computational cost. A modification of REMD which employed
replica exchange in two dimensions was used to study the binding of an inhibitor to Src
kinase [297]. Many binding and unbinding events were sampled. Transient encounter
complexes, which are not visible in experimental data but may reveal information to help
in the design of drugs with improved kinetic rates, were characterized.
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Other methods to obtain (un)binding events include Markov state models [298,299],
adaptive sampling [300], fluctuation amplification of specific traits (FAST) approach [301],
and the milestoning approach [302].

In summary, there are many examples of works showcasing how computational
methods can be used to help in the design of drugs with improved binding kinetics
(Figure 8). On one hand, methods with low computational cost, such as τRAMD and scaled
MD, can be used to rank tens to hundreds of ligands by residence time. This information
can help in the prospective selection of candidate drugs with short or long residence times.
On the other hand, methods with high computational cost, such as WEMD, metadynamics,
and REMD, can reveal information about transient states and ligand-protein interactions
that can be modified to modulate kon or koff values. Therefore, computational methods can
be applied to provide mechanistic insights in drug-protein association and dissociation
events, helping in the design of drugs with improved kinetic rate constants.

Processes 2021, 9, x FOR PEER REVIEW 22 of 63 
 

 

ics, and REMD, can reveal information about transient states and ligand-protein interac-
tions that can be modified to modulate kon or koff values. Therefore, computational meth-
ods can be applied to provide mechanistic insights in drug-protein association and disso-
ciation events, helping in the design of drugs with improved kinetic rate constants. 

 
Figure 8. Methods of low computational cost (scaled MD, τRAMD, targeted MD) allow the prediction of relative residence 
times (left panel), while methods of high computational cost (metadynamics, weighted ensemble MD, replica-exchange 
MD) provide information about drug-protein interactions during association and dissociation, which may be modified to 
modulate binding kinetics (right panel); ligand-protein complex from PDB ID 5TOB [303]. 

In the next section, we will look at ways to tackle the flexibility of peptides in peptide-
protein docking to get more accurate binding poses. 

2.2.3. Peptide-Protein Docking: Tackling the Flexibility Challenge with Molecular Dy-
namics Simulations 

Peptides represent a unique class of compounds that differ in their biochemical and 
therapeutic characteristics from small molecules, proteins, and antibodies [304]. Peptide-
protein interactions are essential e.g., for cellular signaling, localization, immune system, 
and apoptotic pathways. Consequently, these molecules have been attracting attention 
from pharmaceutical and biological communities, with nearly 20 new peptide-based clin-
ical trials annually [305]. In the computational field, much progress has been achieved in 
small-molecule docking, but these methods are often not suited for peptides given their 
size and flexibility [306]. The inherent flexibility of peptides poses a great obstacle toward 
determining the 3D structure of the complexes they form. In this section, we briefly review 
the use of MD simulations to tackle the peptide flexibility challenge, its applications, ad-
vantages, and fallbacks in the context of peptide-protein interactions. 

Computational methods that aim to study protein-peptide interactions can be classi-
fied into three categories: (1) template-based docking that uses known structures to build 
an initial model of the target complex; (2) local docking that performs a search around a 
user-defined region, and; (3) global docking that concomitantly searches for the binding 
site and a binding pose. Each approach has its own strategies to deal with the main chal-
lenges in protein-peptide docking, namely the modeling of conformational changes, in 
particular on the peptide side, the integration of experimental or theoretical data into the 
modeling process, and the selection of the best models out of the plethora of generated 
models (scoring). The application of flexible refinement in combination with molecular 
docking software to address the flexibility challenge has been investigated among others 

Figure 8. Methods of low computational cost (scaled MD, τRAMD, targeted MD) allow the prediction of relative residence
times (left panel), while methods of high computational cost (metadynamics, weighted ensemble MD, replica-exchange
MD) provide information about drug-protein interactions during association and dissociation, which may be modified to
modulate binding kinetics (right panel); ligand-protein complex from PDB ID 5TOB [303].

In the next section, we will look at ways to tackle the flexibility of peptides in peptide-
protein docking to get more accurate binding poses.

2.2.3. Peptide-Protein Docking: Tackling the Flexibility Challenge with Molecular
Dynamics Simulations

Peptides represent a unique class of compounds that differ in their biochemical and
therapeutic characteristics from small molecules, proteins, and antibodies [304]. Peptide-
protein interactions are essential e.g., for cellular signaling, localization, immune system,
and apoptotic pathways. Consequently, these molecules have been attracting attention from
pharmaceutical and biological communities, with nearly 20 new peptide-based clinical
trials annually [305]. In the computational field, much progress has been achieved in
small-molecule docking, but these methods are often not suited for peptides given their
size and flexibility [306]. The inherent flexibility of peptides poses a great obstacle toward
determining the 3D structure of the complexes they form. In this section, we briefly review
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the use of MD simulations to tackle the peptide flexibility challenge, its applications,
advantages, and fallbacks in the context of peptide-protein interactions.

Computational methods that aim to study protein-peptide interactions can be classi-
fied into three categories: (1) template-based docking that uses known structures to build
an initial model of the target complex; (2) local docking that performs a search around a
user-defined region, and; (3) global docking that concomitantly searches for the binding site
and a binding pose. Each approach has its own strategies to deal with the main challenges
in protein-peptide docking, namely the modeling of conformational changes, in particular
on the peptide side, the integration of experimental or theoretical data into the modeling
process, and the selection of the best models out of the plethora of generated models
(scoring). The application of flexible refinement in combination with molecular docking
software to address the flexibility challenge has been investigated among others by using
an enhanced sampling MD method with models obtained from ClusPro Peptidock [307],
by combining the default pepATTRACT [308] method with an additional round of MD
refinement, and by using MD to generate an ensemble of peptide conformations as input
for HADDOCK [309]. A detailed description of several protein-peptide docking software
is available elsewhere [310].

The use of MD simulations can provide an improved sampling of protein-peptide
conformations; however, it has been observed that for large-scale predictions, heavy com-
putational resources would be needed. A possible approach to circumvent this is to apply
enhanced sampling MD methods such as SMD [311], Hamiltonian replica exchange [312],
and Gaussian accelerated MD (GaMD) [313] to study protein-peptide binding. GaMD has
been successfully used, in combination with the global peptide docking software ClusPro
Peptidock, to refine docking poses and explore the binding mechanism of three systems.
Initial models of the complexes were obtained by using the standard ClusPro Peptidock
webserver protocol from the unbound forms of the peptides and proteins, excluding the
PDB entries that contained the bound form of the target systems from the fragment search.
For each system, the top-scoring protein-peptide complex was selected and refined using
GaMD (described in detail in Supplementary Material of Wang, Alekseenko, Kozakov, and
Miao [313]). The selected initial docking models had backbone RMSD of 3.3, 3.5, and 4.8 Å,
for peptides 1, 2, and 3 respectively, with no significant conformational changes compared
to the starting model observed for peptides 1 and 3. After GaMD refinement, the minimal
backbone RMSD from the bound form observed throughout the MD simulations for pep-
tides 1 and 2 was lower than 1 Å, whereas peptide 3 showed high fluctuations, temporarily
sampling the near-native conformation (1 Å ≤ i-RMSD ≤ 2 Å). Cluster analysis of the
conformations with the lowest free energies yielded backbone RMSDs of 0.94 Å, 0.61 Å,
and 2.72 Å for peptides 1, 2, and 3, respectively, adequately capturing conformational
changes and noticeably refining the initial docking poses. Despite these promising results,
the number of systems tested remains very limited.

HADDOCK, the High Ambiguity-Driven biomolecular DOCKing software has been
optimized for protein-peptide docking, taking full advantage of its capacity to handle
molecular ensembles and allow for flexible refinement. The protocol starts from three
peptide conformations: extended, alpha-helical, and polyproline-II, which, together, cover
about 80% of the observed protein-bound peptide conformations in the experimentally
determined structures in the PDB [314]. The default HADDOCK protein-protein protocol
consists of three stages: (1) From randomized ligand orientations around the protein
receptor, rigid-body energy minimization is performed, (2) the top-ranking models are
subsequently refined using semi-flexible simulated annealing [315] in torsion angle space,
and finally, (3) the resulting docking models are refined with a short restrained MD in
explicit solvent. In the case of protein-peptide docking, to allow for more flexibility and
potential conformational changes, the length of the semi-flexible refinement is doubled, and
the peptides are treated as fully flexible, which increases the conformational sampling. This
protocol was tested on peptiDB [316], with 103 non-redundant peptide-protein complexes,
including 47 unbound cases. Since HADDOCK is an information-driven method, the
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binding region was defined in a broad manner, consisting of a binding interface on the
protein receptor which was ~3 times larger than the true interface. By doing this, the
focus is on the challenge of identifying the correct binding conformation of the peptide.
The protocol generated 79.4% high quality (interface-RMSD ≤ 1 Å) models for bound-
unbound (i.e., experimental peptide-bound protein/unbound peptide) and 69.4% for
unbound-unbound (unbound protein/unbound peptide) docking, the latter representing
the most realistic scenario [317]. This ensemble docking approach that includes flexible
MD refinement steps is shown to be a valuable strategy to tackle the flexibility challenge
in protein-peptide docking. The HADDOCK developers have also provided guides on
how to generate peptide ensembles using MD simulations instead of the three common
conformation approaches and how these can be used in HADDOCK, both through its
webserver and a local installation [304,309].

The flexible peptide-protein docking protocol pepATTRACT combines fast coarse-
grained ab initio docking with an atomistic refinement of the most favorable docked models.
Combination of the ATTRACT docking protocol with an MD refinement using AMBER
14 [318] led to a 50% increase in the top-10 success rate when compared to a no-refinement
scenario [308]. An ensemble of 80 peptide-protein complexes from the peptiDB benchmark
was selected for testing. This ensemble includes experimental data and has been used
in other docking protocols [317]. The same strategy as previously published for HAD-
DOCK was followed by, using the three main peptide conformations for the docking with
some knowledge of the binding site. For each complex, the 1000 best initial rigid-body
docking solutions, ranked by the ATTRACT score, were selected for flexible interface refine-
ment [319] and subsequent MD with AMBER 14 using a generalized Born implicit solvent
model. The final complexes were clustered by the fraction of common contacts [320] and
ranked by the top-four members of each cluster [317] as done in HADDOCK. Interestingly,
the authors also considered a “worst-case” scenario in which no knowledge of the binding
site is assumed, and a global docking is performed. This is often the case faced by most
researchers. After clustering, 97% of the successful cases (56 out of the 80 complexes
considered) had at least one cluster with an average top-four interface-RMSD ≤ 2 Å. The
AMBER MD refinement step was shown to yield an average improvement of 0.44 Å of the
interface-RMSD. There was a striking increase in comparison to the use of only the default
interface refinement, which only improved the model’s interface-RMSD by 0.10 Å.

In conclusion, several peptide-protein docking software are continuously being de-
veloped and optimized further. While addressing the innate flexibility of peptide-protein
complexes remains challenging, researchers are taking advantage of MD simulations for
enhanced sampling and refinement. This combination of docking and MD can greatly
improve the prediction of peptide-protein complexes and is a powerful asset in the field of
peptide therapeutics and drug design.

In our biological context, the cellular environment is of course more complex than just
water, ions, and proteins. In the next section, we specifically look at target proteins that are
associated with biological membranes. We will discuss how MD is utilized to study their
structure, function, and ligand binding properties as well as what the benefits are if we can
include the membrane structure explicitly in the simulations.

2.3. Molecular Dynamics Simulations of Membrane Proteins

Most current drug targets are membrane-associated, either integral or peripheral
proteins [321,322]. Integral membrane proteins are either polytopic proteins (spanning
through the membrane several times) or bitopic proteins (single-pass proteins, spanning
through the membrane only once), whereas peripheral proteins are associated with only
one side of the membrane. Unfortunately, the structure determination of membrane
proteins has been particularly challenging [321]. This has hampered reliable computational
studies of several important drug targets. However, recent advances in crystallography
and especially in cryogenic electron microscopy (cryo-EM) have resulted in a significant
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increase of atomistic resolution structures of large membrane-bound macromolecules, thus
providing valuable information on these targets for computer-aided drug design.

MD simulations of membrane proteins have often been carried out without the mem-
brane as it is computationally more costly to include a membrane model in the simulation
system, especially if the lipid bilayer is represented in atomic detail [323]. However, biolog-
ical membranes can play significant roles in modulating drug action (e.g., by affecting the
substrate selection or receptor function), not only at polytopic integral membrane protein
targets but also at bitopic and peripheral membrane protein targets [324]. There are also
drugs whose mode of action is to directly target (disrupt) biological membranes [325], and
thus, the inclusion of membranes in MD simulations may be crucial for gaining realistic
insights. In this section, we focus on MD simulations of particularly important drug targets
that are polytopic integral membrane proteins, i.e., G-protein coupled receptors (GPCRs)
and ion channels. We also look at what MD simulations can tell about the function of
cytochrome P450 (CYP) enzymes that are bitopic membrane proteins playing a significant
role in drug metabolism.

2.3.1. Molecular Dynamics Simulations of GPCRs and Ion Channels

With membrane proteins representing around 25% of the total proteome and their
experimentally proven importance in various pathophysiological processes, they are highly
regarded as targets in small molecule drug discovery. Indeed, approximately one-third
of all currently marketed small molecule drugs target membrane proteins to alter down-
stream cellular signaling pathways. Rhodopsin-like GPCRs, nuclear receptors, ligand-
and voltage-gated ion channels are ranked as the top four of all druggable targets by
FDA-approved drugs [326,327].

The most targeted class of transmembrane (TM) proteins are the GPCRs. These consist
of seven transmembrane-spanning α-helical domains with a characteristic dynamic net-
work connecting the ligand-binding site to the cytosolic Gα signaling subunit. Despite the
significant functional importance of GPCRs, spectroscopic techniques remain challenging
for these membrane proteins because of their distinct hydrophobic surfaces, high flexibil-
ity, and relatively low expression. However, recent advances in the structural biology of
GPCRs, with X-ray crystallography, cryo-EM, and X-ray free-electron lasers (XFELs) have
resulted in novel overall structural insights and understanding of the structural basis for
the induced receptor response upon ligand binding and unbinding [328–330]. Because of
the highly dynamic nature of GPCRs with multiple, functionally distinct conformational
states [331,332], combined spectroscopic and computational studies allow for a detailed
atomic analysis of the TM domain dynamics mediating downstream signals [333]. The most
recent example is the in-depth characterized structure of GPR52 coupled to its downstream
heterotrimeric Gs protein in a previously unknown self-activation state [334]. Addition-
ally, a potential allosteric ligand-bound state was suggested as a potential drug target for
Huntington’s disease.

Interestingly, class A GPCRs contain a ‘placeholder’ formed by the N-terminus and the
extracellular loop 2 (ECL2) [335–337]. While adopting an open conformation in the absence
of the ligand, the extracellular loop plays a critical role in lipophilic ligand recognition,
access, and selectivity for the orthosteric site [338,339]. In the same class, a consensus
amino acid network was described through a comprehensive analysis of X-ray structures
by Venkatakrishnan et al. [340]. While the GPCR family allows binding ligands of diverse
chemical properties, most ligand-contacting residues are preserved in the TM helices TM3,
TM6, and TM7 that form a scaffold for the ligand-binding pocket. This observation explains
drug cross-reactivity and allows drug repurposing with tailored ligand specificity based on
topologically equivalent positions in the TM helices from structural homologs [341–343].
In contrast, class B GPCRs are frequently targeted by highly flexible peptide ligands at a
solvent-accessible orthosteric binding pocket [344]. While consensus scaffolds generally
guide GPCR ligand recognition, different ligands induce various conformational states of
the receptor with a specific downstream signal [345,346].
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These observed characteristic dynamics have spurred the use and advanced develop-
ment of atomic level MD simulation approaches to supplement the increasing amount of
static structural information from spectroscopic techniques. The increase in computational
resources has enabled the analysis of conformational dynamics up to the microseconds
range [347,348]. To date, because of the high structural homology between various TM
protein classes even with distant homologs [349], the rational design of novel therapeutic
candidates has been facilitated by comparative modeling combined with docking ap-
proaches and machine learning algorithms [350–353]. While currently repurposed ligands
generally target primary orthosteric sites [343,354], long unbiased MD simulations have
also facilitated the identification of allosteric regions of membrane proteins that may
potentiate or inhibit downstream signal transduction [355,356].

Early simulations of membrane proteins were performed without membrane embed-
ding, but today accurate membrane modeling has allowed for the simulation of realistic
cellular membrane environments [357,358]. In vitro data on membrane thickness, curva-
ture, fluidity [359], and surface tension [360] has enabled accurate modeling of ligand
binding and the corresponding downstream activation of the signaling proteins [361,362].
Furthermore, multiscale MD simulations combining atomistic and coarse-grained MD
can also give structural and functional insights into important protein–lipid interactions,
protein oligomerization, clustering, and crowding [363]. For example, cholesterol-GPCR in-
teractions and cholesterol’s general influence on membranes can modulate GPCR structure
and dimerization, thus affecting e.g., receptor-crosstalk and drug efficacy [364].

Multiple dedicated web servers have been developed to facilitate the highly complex
set-up of membrane protein simulations. For example, CG dynamics can benefit from the
user-friendly CHARM-GUI [365], the VMD Membrane plugin [366], and the recently de-
veloped MERMAID (employing the Martini forcefield) [367]. Alternatively, parameterized
phospholipids for coarse-grained simulation of membrane-protein dynamics are available
in the SIRAH2.0 forcefield [368] recently implemented in the GROMACS and AMBER
simulation packages. Besides these, LipidWrapper and BUMPy allow for geometric trans-
formations towards different curved shapes of lipid bilayers [369,370]. The development
of PACKMOL-Memgen for building membrane protein–lipid bilayer systems has enabled
accurate atomistic MD simulations with complex lipid mixtures at desired ratios, allow-
ing asymmetric leaflet compositions [371]. While parameters for phosphoinositides and
lysophospholipids have recently been added to the AmberTools19 PACKMOL-Memgen
release, the range of lipids in the new Lipid17 force field, which is the update of the AMBER
Lipid14 forcefield [35], can be further extended. Moreover, various enhanced sampling and
biasing simulation methods such as REMD [372], metadynamics [373], milestoning [374],
and umbrella sampling [359,375] have been explored successfully for membrane-associated
simulations. Another useful resource is the MemProtMD database, which, as of now,
contains 3500 resolved membrane protein structures that have been inserted into simulated
lipid bilayers using coarse-grained self-assembly MD simulations [376].

Besides gaining general insights into ligand binding modes [377] or quantifying lig-
and binding energies [378] at membrane-embedded TM receptors, ligand migration from
the membrane bilayer to the central GPCR channel has been recently successfully simu-
lated [379]. For example, it has become evident that membrane partitioning characteristics
of drug molecules such as quantitative bilayer distribution, permeation depth, and their
overall conformational features in the lipid bilayer are crucial for understanding their
target GPCR binding kinetics [380,381]. Simulations of membrane permeability of small
molecular compounds are useful for predicting drug absorption through cellular mem-
branes, although challenging [382]. Recently, the physics-based PerMM tool and database
were developed to facilitate the analysis of passive membrane permeability coefficients
and translocation pathways of bioactive molecules [383]. The availability of such advanced
computational tools may offer an alternative to the common in vitro membrane diffusion
models that include Parallel Artificial Membrane Permeability Assay (PAMPA), phospho-
lipid vesicle-based permeation assay (PVPA), Permeapad®, and the artificial membrane
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insert system (AMI-system) [384]. From the available data in reported studies, it can be in-
ferred that membrane-embedding significantly affects TM receptor structure and dynamics,
ligand diffusion and binding as well as downstream signaling.

MD simulations of ion channels have been used, for example, to explore the mecha-
nism of ion permeation by external stimulants or to investigate the structural and functional
effects of disease-causing mutations in the context of genetic disorders such as cystic fibro-
sis [385,386]. Such studies can give important insights to aid in the drug discovery process.
For example, the key conformational changes in the channel pore could be targeted with
small molecular compounds [385]. For ion channels (or any other target proteins) that
lack a known experimental structure, MD can help select and validate the best homology
models for further structural investigations [387,388]. In addition to evaluating the stability
of ligand-binding at ion channels (e.g., [387,389]), simulations of agonists, partial agonists,
and antagonists in the ligand-binding sites of the ion channel may give an understanding
of the structural details crucial for the channel opening (activation) or closing (inhibition).
For example, Feng et al. found that an agonist had larger conformational effects on the
channel pore profile of human TRPV1 (transient receptor potential vanilloid type 1) than
an antagonist [387]. On the other hand, simulations of an ionotropic glutamate receptor
GluR2 (iGluR2) suggest that since partial agonists show more flexibility at the binding
pocket, they cannot open the channel pore as efficiently as full agonists [390]. Interestingly,
water exchange within the iGluR2 binding pocket was shown to be more pronounced
when a partial agonist was bound than when a full agonist was present. Simulations of
the serotonin 3A receptor (5-HT3AR) with granisetron showed how the binding of this
antagonist causes conformational changes in the receptor, thus leading to constricting
the channel pore [391]. Similar to Feng et al.’s TRPV1 simulations with agonists and an-
tagonists [387], MD simulation of the cryo-EM structure of rabbit TRPV5 with econazole
showed different flexibilities of the inhibitor in the four binding sites of the homotetrameric
channel structure [392]. The varying dynamic behavior of the inhibitor in each monomer
was shown to be correlated with the direct lipid contacts of econazole at the binding site.
The simulation data also suggests how econazole affects the pore profile to inhibit Ca2+ flow
through the channel. Wang et al., in their study on allosteric regulation of P2X receptors
(ATP-gated cation channels), used metadynamics to determine favorable binding modes
of an allosteric regulator AF-353 at human P2X3 receptor (hP2X3) [393]. Moreover, after a
short MD refinement of the crystal structure of hP2X3 complexed with another allosteric
modulator AF-219, they were able to observe new, stable ligand-receptor hydrogen bonds
that were not seen in the original crystal complex.

As in the case of GPCRs, the phospholipid bilayer plays an important role in ligand-ion
channel interactions. MD simulations can give insight into the access pathways of ligands
to their site of action; e.g., MD was used to elucidate how capsaicin accesses its intracellular
TRPV1 binding site by first flipping from the extracellular to the intracellular leaflet of
the bilayer [394]. Moreover, MD simulations can efficiently facilitate the identification
of structurally and functionally important lipid interaction sites on ion channels and
other integral membrane proteins [395]. For example, the crucial role of cholesterol on
the structural integrity of nicotinic acetylcholine receptor (nAChR) was demonstrated
by MD simulations; in the absence of cholesterol the receptor structure collapses, while
the cholesterol molecules present both in the surface sites and buried pockets maintain
the original receptor conformation and support the contacts between the pore and the
agonist-binding domain [396]. Likewise, MD simulations of the GABA type A receptor
(GABAAR) with cholesterol suggest that cholesterol may promote pore opening by binding
in the intersubunit sites of the receptor in a wedge-like manner [397]. Insight into such
sites may aid in the design of (lipid-like) drug molecules that can modulate the function of
therapeutic integral membrane proteins such as ion channels and GPCRs.

We will now look at the key enzymes responsible for drug metabolism and how their
membrane interactions significantly affect their ligand-binding and functional properties.
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2.3.2. Drug Metabolizing Cytochrome P450 Enzymes

Cytochrome P450 enzymes (CYPs) play an important role in drug metabolism, steroid
biosynthesis, and xenobiotic degradation. Human CYPs are bitopic integral membrane
proteins with a single TM α-helix that is connected to the globular catalytic domain via a
linker region varying in length from 25 to 28 residues. The knowledge of orientation and
interactions of CYPs in the membrane and therefore mechanism of substrate entrance and
exit after metabolism is scarce due to experimental limitations. The most X-ray structures
of CYPs have been resolved after truncating the TM helix residues, or even by mutating
residues in the globular domain region that interacts with the membrane. Therefore,
significant information on protein-membrane interactions and function has been lost. To
date, full-length structures of only fungal (Saccharomyces cerevisiae, Candida albicans, and
Candida glabrata) lanosterol 14-alpha demethylases (CYP51) have been reported [398–400].
However, there are a number of experiments performed (employing e.g., epitope analysis,
mutagenesis, tryptophan fluorescence scanning, and atomic force microscopy) to find the
important globular domain and membrane interactions and distance of the globular domain
above the membrane [401–404]. The TM-helix orientation can be measured experimentally
using solid-state NMR spectroscopy [405,406]. Furthermore, the orientation of CYPs’
globular domain has been determined by measuring the heme-tilt angle by rotational
diffusion and nanodisc experiments [407].

As these experiments have been performed for only certain CYPs and there is a very
low sequence identity between different CYP subfamilies, there is little understanding of
how sequence differences between CYP isoforms will influence the membrane orientation,
interactions of the globular domain with the membrane, and subsequent selection of
substrates for metabolism by individual CYPs. As most of the substrates are hydrophobic
in nature, it is assumed that the ligand tunnel opening in the membrane would be the
favorable route of entry into the catalytic site of CYPs [408,409]. To understand such fine
differences, computational modeling, and simulations at various time and length scales
have played a significant role in understanding the mechanistic behavior and dynamics of
CYPs in their native environment.

Computational methods such as the Orientation of Protein in Membranes (OPM)
database (http://opm.phar.umich.edu/) [410] and the Protein Data Bank of Transmem-
brane Proteins (http://pdbtm.enzim.hu/) [411] can be used to predict the position, inser-
tion, and orientation of membrane proteins in the biological membranes. Some research
groups have taken the OPM predicted orientation of the globular domain above the mem-
brane as the starting point and further optimized it using all-atom molecular dynamics
(AAMD) simulations in the physiological conditions [412,413]. However, large domain
motions or orientational changes of the globular domain are unattainable by AAMD and
require coarse-grained (CG) simulations. The CG simulations help us explore large con-
formational spaces by decreasing the number of degrees of freedom and allowing the
extension of simulations beyond the microsecond scale. Different approaches utilizing
multiscale simulations, CGMD, and AAMD have been used to study the orientations of
several CYPs (CYP2C9, CYP3A4, and human CYP51) in a lipid bilayer [414–416]

We have optimized a multiscale simulation protocol to study CYP–membrane inter-
actions [417]. For this, CYP3A4 was used as the test case for the insertion and orientation
of a CYP enzyme in a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) bilayer.
We then extended the same approach to other major drug-metabolizing CYPs such as
CYP2C9, CYP2C19, CYP1A1, CYP1A2, as well as to the human steroidogenic enzymes
CYP17 and CYP19 that are [417–419]. From the results of our simulations, we have been
able to identify differences in the orientations or the distance of the globular domain with
respect to the membrane, and important residues at the membrane–protein interface that
result in such differences.

Through our optimized multiscale simulation protocol, we identified that the two
highly similar CYPs: CYP2C9 and CYP2C19 that share 94% sequence identity, can have
not only distinct substrate specificities but also different membrane protein orientations
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and interactions [419]. Such differences were due to the primary sequence variation in the
linker, beta-strand1, the B-C loop, helices F, F’-G’, G regions and their turns. These regions
are the flexible substrate recognition sites (SRS1, 2, and 3), located at the entrance to the
active site [420]. Furthermore, using our multiscale simulation approach, we identified the
effect of mutations in the TM-helix of CYP17 on the interactions and orientation [418]. The
original TM-helix sequence was modified to increase the expression of CYP17 in E. coli.
The difference in the heme-tilt angles in wildtype and mutant (mt) TM-helix corresponded
to the experimental heme-tilt angle measured by Ivan Lenov for mtCYP17 (64 ± 4◦) [421],
Ohta et al. [404] (47◦ to 63◦), and simulation results by Cui et al. [422]. Furthermore,
mutations in the TM-helix of CYP 17A1, especially W2A and E3L, led to a gradual drifting
of the TM-helix out of the hydrophobic core of the membrane. This instability of the
TM-helix could affect the interactions with the allosteric redox partner, cytochrome b5,
required for CYP 17A1’s lyase activity. Truncation of the TM-helix residues in CYP17 has
been shown to decrease its catalytic activity 2.4-fold, which could be due to the loss of
hydrophobic interactions between CYP17 and its redox partner [423]. Such hydrophobic
interactions between TM helices of CYP2B4 and cytochrome b5 have been reported by
dynamic nuclear polarization (DNP) NMR spectroscopy under magic angle spinning
(MAS) [424]. Therefore, the unstable TM-helix lying parallel to the membrane plane in
mtCYP17 could result in the loss of inter-TM helix interactions between mtCYP17 and its
redox partner, leading to decreased catalytic activity, or affect membrane anchoring and
thereby lead to reduced activity.

Besides understanding the CYP–membrane interactions and orientations, it remains
unexplained how the CYPs select different substrates and what route substrates take for
entry into the catalytic site, and how the corresponding soluble products exit the site.
The study of ligand entrance and exit is beyond the scope of classical MD due to the
limited time and length scale one can reach in such simulations. Therefore, enhanced
sampling techniques such as RAMD [268,425] and SMD [408,426–428] are used. In RAMD
simulations, an artificial force with random direction is applied to the center of mass of the
ligand while in SMD, a force is applied to the ligand in a specified direction (Figure 7).

Different ligand access/exit tunnels have been observed opening in soluble vs membrane-
bound CYPs [425,429]. In mammalian CYPs, the 2a tunnel that opens into the membrane
can be used by hydrophobic substrates, whereas tunnel 2c that opens in the solvent may
be preferred by hydrophilic products to egress [430]. RAMD simulations of CYP2C9 in
complex with flurbiprofen and warfarin and their products by Cojocaru et al. [425] suggest
that depending on the physicochemical properties of the ligands, different tunnels were
preferred. RAMD simulation of CYP51 by Yu et al. showed, on the other hand, that tunnel
2f is the predominant ligand egress tunnel that leads to the membrane [431].

To conclude, computational prediction, modeling, and simulation have enabled us
to a great extent to understand the structure, dynamics, and function of CYPs in general
and in particular mammalian CYPs in their native membrane-like environment. However,
there is still a need for improving computational algorithms, developing compatible force
fields, and facilitating the inclusion of complex membrane systems in MD simulations to
help understand fully complex biological questions relating to drug metabolism by CYP
enzymes. In the future, elucidating the intricacies of the membrane and ligand interactions
of CYPs may, for example, aid in predicting the metabolism of novel drug candidates or
understanding the adverse effects of drugs and their metabolites. Moreover, this may give
important insights into anticancer drug development that targets CYP enzymes [432].

We have now seen how MD can be used to support the first steps of the drug develop-
ment process from target identification and validation to lead discovery and optimization
(Figure 2). In the last part of this review, we focus on the next phase, the preclinical research
and, more specifically, pharmaceutical development or (pre)formulation studies. In this
phase, it is important to find suitable formulations (e.g., a tablet or solution) that then will
be used in the preclinical toxicity assays and later in clinical trials. If the candidate drug is
successful in the trials (safe and effective) and will later obtain the marketing authorization,
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its formulation needs also to be up-scalable and suitable for industrial manufacturing. Since
the solubility of the drug is important for absorption, it is of uttermost importance to ensure
the solubility of the solid-state drug formulations. The stability of the chemical compounds
is also an important aspect to be considered. To achieve these and any other required
properties that are important for the manufacturing process or the final dosage form, drug
formulations include many excipients, e.g., wetting agents, preservatives, antioxidants,
plasticizers, lubricants. It may also be beneficial to load the drug to different delivery
vehicles such as nanoparticles. In the following paragraphs, we get a glimpse of how MD
can help in drug formulation and solubility studies, as well as in the characterization and
design of nanoparticles for drug delivery and therapeutic purposes.

3. Molecular Dynamics in Pharmaceutical Development
3.1. MD Studies of Crystalline and Amorphous Solids

Pharmaceutical formulations are often crystalline or solid-state in nature, which
makes the understanding of such systems critical in pharmaceutical development and
manufacturing. The crystalline systems include everything from polymorphic forms,
salts, and co-crystals to hydrates [433]. Additionally, recent research has suggested that
formulations containing the active pharmaceutical ingredient (API) in an amorphous state
are an attractive option for poorly soluble drugs [434].

Many physical phenomena of interest such as dissolution, phase changes, nucleation,
and crystal growth happen on large time scales which necessitates the use of molecular
mechanics force fields instead of more accurate but more expensive quantum mechanics-
based approaches. Force fields typically used in drug discovery such as AMBER, OPLS,
and CHARMM can be applied to crystalline systems [435], and other force fields that are
developed with crystals in mind also exist [436,437].

Understanding the possible phase changes between different polymorphic forms of
the same crystalline drugs is critical because different forms can have radically different
behavior during dissolution, storage, and manufacturing. The transition between the β
and α forms of DL-norleucine is a typical example of a solid-solid phase change simulated
with MD [438]. It was possible to discover different transition pathways and their energy
barriers and to determine that the transition proceeded by cooperative movement between
the bilayers in the crystal.

Another type of phase change that is often encountered, is dehydration of a hydrate
crystal to a lower hydrated form or to the anhydrous state [439,440]. This process has been
captured for example for naproxen using MD as the dihydrate form of the sodium salt
dehydrated to the monohydrate form during the simulation [441]. Dehydrated products
are often of low crystallinity, which makes structure determination difficult with traditional
single-crystal X-ray diffraction methods. Solving the molecular structure of such products
requires, therefore, X-ray powder diffraction (XRD). Here, MD can assist by simulating
the dehydration process; the XRD pattern of the dehydrated state found in the simulation
can then be compared with an experimental powder pattern to solve the structure of the
new phase [442,443]. Using MD-based free-energy perturbation methods, the free energy
of inclusion of a solvated molecule can be calculated, which is relevant for understanding
the stability of a hydrate [444].

The morphology of the crystalline phase of an API is very important for its behav-
ior during processing because the shape of the microcrystalline particles influences the
powder’s flowability [445]. Several studies have targeted the crystal growth of organic
molecules using MD and have been able to predict the morphology of experimental crystals
with good accuracy [446]. The growth of a crystal is often modified using additives. MD
simulations can be used to quantify the particular additive’s effect on the growth rates of
each crystal face [447].

At the macroscopic level, crystals of drug-like molecules often take days to grow
but at the nanoscale, the growth of a single crystal layer is much faster and accessible
with MD. Such events are typically simulated using enhanced sampling methods such as
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metadynamics, where a collective variable describing the crystallinity is used to construct a
biased potential that enables escaping from local minima (Figure 9). The collective variable
is modeled by calculating the orientation of a crystalline molecule with its neighbors. This
allows for distinguishing between molecules in the crystal and molecules in the solution.
By simulating several different faces of a crystal, the rates of the different ways a molecule
can attach and detach to the crystal surface can be computed. The rates are dependent on
the MD simulation and therefore parameters such as temperature, solvent composition,
and level of supersaturation can be varied. These rates can then be used as an input in a
kinetic Monte Carlo simulation to predict the morphology of the crystal [448].
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Another fundamental problem for crystalline formulations is the nucleation of a
crystal from a solution, where changes in the experimental conditions can produce different
polymorphic forms of the same API. Here, MD can be used to simulate the nucleation
by preparing a simulation box consisting of a supersaturated solution of the API. MD
simulations have shown that nucleation sometimes happens by a two-step process where
density fluctuations of the solute produce amorphous clusters that can potentially turn
crystalline and form the initial crystal nucleus [449]. This contrasts with the classical
nucleation theory that assumes that a crystal nucleus forms directly from the solute [450].
For example, the nucleation of DL-norleucine crystals from an octanol solution has been
studied by Ectors et al. [451] and they also found that pre-nucleation clusters were formed.
The norleucine molecules formed bilayers of enantiopure domains that the authors theorize
could transform into the racemic crystal structure.

Nucleation can also happen from a pure amorphous phase that can be created using
methods such as ball milling or melting followed by quench cooling [452]. Understanding
nucleation at the molecular level is very difficult using experimental techniques because of
the small time and length scales involved. Using metadynamics, it is possible to simulate
the nucleation event at the molecular level. Giberti et al. [453] were able to simulate
the transition of urea from the amorphous phase to the known most stable crystalline
polymorph and additionally found a new metastable polymorph.

Coamorphous systems have shown promise in drug delivery due to their enhanced
stability compared with the pure amorphous phases [454]. However, MD simulations of
such systems are still rare [455]. In the next paragraph, we will look at how MD simulations
can facilitate the characterization of drug-polymer formulations that are commonly used



Processes 2021, 9, 71 32 of 60

for increasing the physical stability of amorphous solid drugs (e.g., preventing nucleation
and subsequent crystallization).

3.2. Amorphous Drug-Polymer Formulations

In the field of amorphous drug formulations, the main challenge is the stability of
the amorphous solid dispersions (ASD) [456,457]. Once the solid drug is amorphized, via,
e.g., spray-drying, the molecules will tend to recrystallize [458], and the physical stability
is further reduced if the compound is stored under humid conditions. The water acts as
a plasticizer and will lead to time-limited stability of such drugs [459,460]. One way to
extend the amorphous stage is the addition of polymers to the ASD. If the polymer is
chosen properly, the drugs will have a high affinity to it and that will slow down the drug
aggregation and crystallization process [460,461].

Solubility/miscibility and mobility are two of the several factors contributing to the
stability of an amorphous formulation. For example, the formation of a hydrogen bond
network between the drug and the polymer often plays a significant role in reducing the ten-
dency of the amorphous drug to crystallize [462,463]. Experimentally, the molecular dynam-
ics and crystallization kinetics of amorphous formulations are usually studied with broad-
band dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) [464–466],
whereas the molecular interactions such as hydrogen bond distributions can be studied
with Fourier-transform infrared spectroscopy (FTIR) and high-resolution solid-state NMR
techniques, although with limited insights due to e.g., poor resolution [462,467].

The past decade has seen an increased interest in computational studies of drug-
polymer formulations, Bradley D. Anderson’s group being among the pioneers in employ-
ing MD simulations in the field [467–474]. Complementing the experimental methods,
MD simulations are particularly useful for providing atomic-level structural insights into
drug-polymer-solvent interactions and distributions and for exploring and predicting
the thermodynamic and kinetic bulk properties of such formulations [472,475–477]. For
example, the glass transition temperature (Tg), an important parameter for the stability of
amorphous formulations, can be determined dilatometrically from a series of MD simula-
tions performed at different temperatures. Usually, the obtained Tg values agree reasonably
with the experiments, although they may be higher due to the faster cooling rates in the
simulations [472]. The contribution of various groups of a polymer to the mobility of
a drug molecule can be studied by analyzing the atomic fluctuations of the molecules
along the simulation trajectories. Another important property to assess for ASD is the
miscibility of the drug and the polymer. Despite the concerns about the applicability of
the Flory-Huggins (FH) theory [478], a significant number of studies are based on the
calculation of chi (χ), the FH interaction parameter [479,480]. In the majority of studies,
chi represents how much molecules of type A prefer to interact with molecules of type B
rather than both A and B interacting with themselves (applied to a binary system). As the
next step, the miscibility can be used to estimate solubility parameters [470]. Importantly,
MD allows us to study the formation of the hydrogen bonds between the drug molecules
and polymers [473,481]. That, along with radial distribution function and other analysis
routines, are powerful tools to quantify the nature of the drug-polymer interactions, for
instance, whether hydrogen bonds are formed or whether it is the hydrophobicity that
plays the major role in the specific placement of the drug molecules.

The frequent problem with MD simulations in this field is that the polymers are
relatively long for the all-atomistic simulations [482]. In some works, researchers represent
the polymer by a chain with a lower number of monomers [481]. In others, where atomistic
details can be considered negligible, a coarse-graining is applied to get a faster qualitative
analysis of the polymeric excipients [483].

3.3. Drug Solubility

According to the biopharmaceutical classification proposed by Amidon et al., active
pharmaceutical ingredients can be divided into four groups [484] that define to which



Processes 2021, 9, 71 33 of 60

extent two main properties of importance for oral absorption, namely permeability and
solubility, impact the bioavailability of a specific drug molecule. Absorption is a result of
complex, multiphase molecular interactions between the molecules of interest, membrane
components, and the environment at the interface between the gastrointestinal (GI) fluid
and the cells. A number of computational studies are focused on the permeability issue,
targeting for example the passage of small molecular drugs [485,486] or peptides [487–489]
through the cell membrane, and the effect of permeability enhancers on the membrane
permeability [490]. Poor aqueous solubility has emerged as the main problem in the
field, with as much as 70–90% of contemporary drug molecules having too low solubility
to allow absorption after oral intake [491]. Low drug solubility, therefore, frequently
causes erratic exposure and clinical failure after oral dosing [492]. To improve aqueous
solubility, a number of advanced strategies have been developed such as the use of co-
solvents, surfactants, self-emulsifying drug delivery systems, mesoporous carriers, lipid-
based and amorphous formulations [493]. All these techniques have their own pros
and cons, but their optimization for a particular poorly water-soluble drug requires a
thorough analysis. Not only may the experiments be expensive, but also the molecular
level details and mechanisms on the scale of nanoseconds and nanometers often cannot be
observed in the wet lab. Thus, computer simulations appear to be a useful tool, capable
to predict the interactions of the drug molecules with the formulations and surrounding
media of interest, e.g., GI fluids for orally delivered drugs. Apart from MD simulations,
there are also other computational methods available; these can be generally classified
as machine-learning-based methods requiring training on experimental data [494,495]
and empirical methods exploiting the datasets to analyze the contributions of specific
descriptors (functional groups) to solubility [496,497]. Nevertheless, classical MD not only
allows one to determine the best parameters for the solubility improvement but also sheds
light on the underlying mechanisms [471,498,499], thus, providing new ideas for further
formulation development [500].

In MD studies, solubility is explored through calculations of the change in Gibbs free
energy of the simulation box while the system is being transferred from one state to another.
This is visualized in a simplified example provided in Figure 10, where a simulation
box filled with only water molecules is compared to a similar box complemented with
a hydrophobic molecule or a hydrophilic molecule. As compared to the purely aqueous
system, the second box is going to have extra free energy, as the higher repulsion between
the insoluble (I) molecule will make the solvent molecules more packed out of the cut-off
radius of the I, which essentially moves the system further from the energy minima. In the
third system, on the contrary, the stronger attraction will lead to the minimization of the
Gibbs free energy, along with more stable placement of the molecules and lower entropy.

The absolute value of solubility is not trivial to observe as it is difficult to compute
the residual chemical potential of the solid form [501,502]. On the other hand, if the
experimental value of solubility for one compound is known in the chosen media, it can
serve as a reference for comparison in simulations: the reference system is simulated, its free
energy is calculated and the same is repeated for a similar system with another compound.
In the same way, the impact of various solvents can be estimated from a set of simulations
where the reference system is compared with other simulation boxes containing the same
molecule but different solvents [503]. The solubility of a compound can be evaluated in
any solvent of interest based on the experimentally found solubility of the compound
in another solvent, and the relevant free energies of solvation computed with MD. For
instance, Chebil et al. [504] reproduced the solubility of quercetin in chloroform, water,
acetonitrile, acetone, and tert-amyl alcohol within 0.5 log unit using the equation:

c2 = c1 exp
(
−∆Gsolv2 − ∆Gsolv1

RT

)
(5)
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Here c2 and c1 are solubilities in two different media (unknown and known, respec-
tively), ∆Gsolv is the computed free energies of solvation in these media, R is the gas
constant, and T is the temperature in Kelvin.

Figure 10. Schematic representation of three similar simulation boxes. Inner circles represent the regions of strong repulsion
(overlapping electronic clouds), outer stand for van der Waals attraction (except for the red, insoluble I molecule). On the
left panel, a purely aqueous system is presented; in the middle, a hydrophobic molecule is put into an aqueous environment;
the right panel demonstrates the system with a hydrophilic molecule.

A similar approach is used for the calculation of excess solubility—the solubility in
the actual solution relative to an ideal solution [505]. Nevertheless, several important
assumptions need to be taken, the most important being that the amount of the solvent
should not influence the solubility of the drug molecule. In practice, this is implemented
by introducing just one molecule of the solute to the box with solvent (usually the periodic
boundary condition is applied), which represents the infinite dilution [503].

Several computational approaches exist to calculate relative solubility values for such
systems. The firsthand choice is to perform free energy calculations, for example, using free
energy perturbation (FEP) [193,506], thermodynamic integration (TI) [195], or Bennett’s
acceptance ratio [194]. The underlying concept in them is based on the change of the energy
of the system while the solute molecule is introduced to the solvent. For example, the
solute molecule can be gradually inserted in (or deleted from) the box. This is implemented
by reducing the strength of the Lennard-Jones and electrostatic interactions between the
molecule of interest and the solvent molecules. The gap between the two states (the
presence and absence of the solute molecule in the solvent) can then be subdivided into
more configurations, so that the difference between the adjacent ones would be small, thus
improving the accuracy of the method.

The Widom insertion method is an alternative approach where the solute particle
is randomly inserted into various places across the box and the averaged energy of the
interaction is used to calculate the excess chemical potential [507]. The main disadvantage
of the method is the significant overlaps between the atoms, which makes it less suitable
for relatively big solute molecules in the dense solvents. On the other hand, the method has
shown a good agreement with experimental data for smaller molecules. Further, solubility
can also be calculated through Grand Canonical Ensemble MD simulations [508,509]. The
partition coefficient is yet another important value that can be observed from MD. It
represents the difference in solubility of the solute in water and organic phases. Calculating
partition coefficients can be as valuable as the solubility calculations, as it allows to evaluate
the affinity of the solute molecule to the media at the interface with water [510]. For more
details and methods, the reader is recommended to read the review on MD simulations for
solubility calculations by Hossain et al. [511].
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3.4. Nanoparticle Simulations

Recent advances in nanotechnology and applications of nanomedicines for site-specific
drug delivery have increased the interest in nanoparticles (NPs) for drug discovery and
pharmaceutical applications [69,512,513]. Currently, a number of different NPs with their
unique physical properties are being investigated for pharmaceutical applications, includ-
ing but not limited to, liposomes [514], inorganic or polymer-based nanoparticles [515–517],
and carbon nanotubes [518]. The typical size of various nanoparticles can range between 1
and 100 nm. Due to this smaller length scale, molecular simulation is particularly suitable
and extensively used in a number of studies for investigating different NPs’ molecular
structure [514–517], drug loading capacity [519,520], drug release mechanism [521–523],
interaction with cell membrane, and membrane penetration process [524–530]. A number
of excellent review articles are already available in the literature on the application of
MD on various aspects of NP-based drug delivery systems [512,531–534]. However, in
this section, we will provide a review of recent articles where MD simulations have been
applied to study some of the key structural and functional properties of different NPs that
are necessary for the NPs to become successful in pharmaceutical applications.

3.4.1. Structural Characteristics

Structural characteristics of lipid-based NPs composed of stearic acid, oleic acid,
and sodium dodecyl sulfate (SDS) have been studied by coarse-grained (CG) MD simu-
lations [514]. Formation of vesicle-like structures with water entrapped inside the lipid
droplet was observed. Such lipid-based NPs were proposed to be suitable for the delivery
of both hydrophilic and hydrophobic drugs. MD simulations were used by Connell et al. to
study the adsorption of gonadotropin-releasing hormone I (GnRH-I) and a cysteine-tagged
modification of GnRH-I (cys-GnRH-I) to modeled silica surfaces [516]. The simulations
revealed that a specific orientation of the peptides at the silica surface was the reason
behind different immunological responses of two different peptide-silica NP systems. The
simulations also showed that when the peptides were conjugated with bovine serum albu-
min, they formed more interaction points with the surrounding molecules which resulted
in improved immunological responses. In another study, Monti et al. investigated the
stability, aggregation, and sintering of gold (Au)-NPs functionalized with cysteine-based
peptides using MD simulations with reactive force fields (ReaxFF) [517]. Their molecular
level analysis suggested that the Au-NPs functionalized with peptides are physically stable
and the peptide chains adsorbed to the gold surface hindered sintering of the particles.
The stability of fluticasone NPs was studied by Ahmed and coworkers [515] with MD
simulations. Fluticasone is a poorly water-soluble corticosteroid and six different polymers
were used to prepare fluticasone nano polymeric particles. The MD simulations and calcu-
lated MM-GBSA binding free energies confirmed the experimental results, showing better
binding of the drug to a copolymer as compared to the individual respective polymers.

3.4.2. Drug Loading and Release

MD has been employed to investigate the loading of cyclosporin A (CyA) by lipid-
based NPs composed of medium-chain fatty acids and poly (ethylene glycol) molecules
at various compositions [519]. The simulations showed that the increase of drug loading
did not significantly change the NP nanostructure and drug exposure to the aqueous
environment. The CyA molecules prefer to localize at the NP surface. However, if the
particle is overloaded with CyA (increasing the number of drug molecules from 1 to
10), a submerged localization of CyA inside the NP was observed. The drug loading
capacity of chitosan NPs was investigated by Mousavi et al. for donepezil and rivastigmine
molecules [520]. Their simulation showed that in the presence of ions, the overall drug
loading capacity of rivastigmine is relatively lower compared to donepezil in chitosan NPs.

Thota et al. [522] performed CGMD simulations to investigate the loading and release
of ibuprofen in the amphiphilic peptide (AF)6H5K15 (FA32) and its derivatives (F12H5K15
and F16H5K15). The simulations showed that the FA32 formed quasi-spherical NPs and the
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derivatives of FA32 formed nanofibers, respectively, when loaded with ibuprofen. It was
also found that the release of ibuprofen was slower from the NPs than the nanofibers.

MD simulations can be employed to investigate the interaction of NPs with drug
compounds as a function of the NPs’ various functional and structural properties, i.e. sur-
face modification with coating polymers, morphology, and size. For example, PEGylation
of NPs, a process where NPs are coated with polyethylene glycol (PEG) polymers, can
enhance the loading of hydrophobic drug molecules [535]. However, the binding affinities
of such NPs and drug compounds should then be evaluated properly to better understand
the release capabilities from such NPs. MD with ReaxFF has also been used to explore the
structure, dynamics and drug release of Au-NPs functionalized with chitosan and loaded
with gentamicin [521]. The simulations revealed that the loading of the drug is dependent
on the size of the carrier and chitosan polymer chain length. The simulations also showed
a slower release mechanism by a delayed gentamicin migration towards the solvent.

The size and internal microstructure of the NPs are also important in terms of drug
release from the NPs. Depending on the binding affinity of the drug compounds with the
NP constituent components, the drug can be loaded in the core or corona of the NPs. The
release of drug compounds will highly depend on the location of the drug loaded at the NPs.
Free energy calculations using SMD can play a vital role in understanding drug components’
location inside the NP and their release mechanism. Such free energy calculations by
Vukovic et al. [536] revealed the exact location of the hydrophobic bexarotene and a highly
charged drug, human vasoactive intestinal peptide, inside a PEGylated NP. In a recent study
by Kabedev et al. [537], it was shown that an NP composed of intestinal fluid components
loaded with a hydrophobic drug, danazol, requires significantly less energy to release
the danazol molecules from the NP surface to the membrane center than into the water
phase. Unrestrained CGMD was employed to investigate the mixed polymeric-surfactant
NP structure by Wu et al. [538]. The authors observed that the particle microstructure
was affected by the different polymer-surfactant ratios, which subsequently affected the
particles’ drug loading ability.

MD simulations have also been used to evaluate the effect of the system pH and drug
concentration required to achieve an optimal drug release and loading. Chitosan NPs were
evaluated as carriers for the controlled release of cytarabine at pH 6.4 and 7.4 [523]. The
release of cytarabine was found to be higher at pH 6.4 than 7.4, which agreed well with
the experimental results. Koochaki et al. [539] investigated the self-assembly behavior of
dual-responsive block copolymer and the resulting micelles’ loading ability of doxorubicin
(DOX) using both AAMD and CGMD simulations. The results of CGMD simulations
showed that DOX can be efficiently loaded in the polymeric micelles. However, the loading
efficiency was slightly decreased with the increasing drug concentration, mainly due to the
decrease in particle size.

Overall, MD simulations can reveal important information on the size and internal
molecular structure of NPs as well as on the system parameters such as pH and overall
drug concentration, which can be utilized to achieve optimal NP design characteristics for
desired drug loading and release.

3.4.3. Diffusion through Cell Protecting Layers

MD simulations were used by Yu and colleagues to better understand the diffusion
behavior of lipid-based NPs in a biological hydrogel mimicking a mucus layer [540,541].
The simulations revealed that lipid-based NPs with moderate rigidity have higher diffu-
sivity through the mucus layer compared to their soft and hard counterparts. NPs with
moderate rigidity can deform into an ellipsoidal shape and diffuse through the mucus
layer with rotational motions. MD simulations also captured the temperature-dependent
diffusion mechanism where lipid-based NPs show higher diffusivity near the phase transi-
tion temperature or the temperature at which the liposome membrane transforms from
a solid-like gel to liquid crystalline phase [541]. MD simulations were also employed to
study NP diffusion through endothelial glycocalyx [542]. It was estimated that the force
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required to indent the glycocalyx surface increases significantly with the increase in NP
size. The results also suggested that an improved diffusivity of the glycocalyx layer will be
possible with positively charged NPs.

3.4.4. Direct Membrane Penetration

One of the attractive functional properties of NPs (more specifically cationic NPs)
is their capability of direct translocation into the membrane without a significant toxic
effect at lower concentrations [524]. However, the direct translocation mechanism is not
clearly understood, and the knowledge of the molecular insertion mechanism(s) would
be beneficial in designing NPs for efficient cellular uptake. MD simulations have shown a
significant promise in modeling the direct insertion process. For example, SMD combined
with umbrella sampling has been applied in a number of studies to understand the effect
of particle size and shape [525], surface charge [525,526], and properties of ligands used as
particle coatings [527,543] on cellular uptake of the NPs.

Regular or unrestrained MD has also been applied to investigate NP translocation
through the membrane by taking some additional measures in the simulations such as
using multiple NPs [528], applying an external electric [529] or magnetic field [530], or
applying gradients of ionic concentration across the cell membrane [524]. In one such study,
CGMD simulations were performed to investigate the interaction of multiple peptide-NP
conjugates with the cell membrane [528]. The simulations showed that some NPs form a
transmembrane pore and then the other NPs can permeate the membrane through that
pore. Direct translocation of cationic Au-NPs was investigated by applying an external
electric field using CGMD simulations [529,544]. The simulation results suggested that
translocation of NPs can occur under a weak external electric field without permanently
damaging the membrane. The effect of the magnetic field for the permeation of NPs through
the blood-brain barrier endothelial cell membrane was studied by Pedram et al. [530]. They
used iron oxide as the core and gold as the shell of the NPs in all-atom MD simulations.
The results showed that the NPs of size between 5-45 nm can cross the cell membrane with
the application of very week magnetic force (<5000 pN). Lin and Alexander-Katz showed
that ionic concentration gradient across the cell membrane can induce the penetration of
Au-NPs using CGMD simulations [524]. After the insertion process, the pore was self-
resealed and the ionic concentration across the membrane was equilibrated. This study
suggested that the gradient of different properties, such as pH or osmotic pressure across
the membrane can be important for the direct permeation of NP.

3.4.5. Interactions with Viruses and Biomacromolecules

In addition to functioning as a drug delivery system, NPs can also interact with a
relevant receptor and act like a drug itself [534]. In a recent study, it was found that
Au-NPs coated with long and flexible ligands mimicking heparan sulfate proteoglycan
(HSPG) molecules can associate with different classes of viruses and induce irreversible
viral deformation [545]. To better understand the finding, all-atom MD simulations were
performed to investigate the interaction of different NPs and viruses at physiological
conditions. NPs were initially placed close to the virus capsid and the simulation showed
that multivalent binding develops between the negative sulfonate group of the NP ligands
and the positively charged L1 protein of the virus. The total binding energy and force
applied on the L1 protein by each NP was calculated to be about −34 kcal/mol and 189
pN, respectively. Such force was able to deform the L1 protein, disturb the arrangement of
L1 proteins of the virus, and ultimately destabilized the virus [545].

MD simulations have also been used to investigate the inhibition process of amyloid
β (Aβ) fibrillation by using Au-NPs [546]. The simulations showed that Au-NPs can
influence the conformational change of the peptides and reduce inter-peptide interactions
which can in turn prevent the β-Sheet formation of Aβ peptides and prolong the progress
of Aβ aggregation. The interaction of NPs covered with different types of ligands (i.e.,
positively and negatively charged, peptide, and synthetic inhibitor ligands) with Aβ40
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peptides and their fibrils were also investigated using MD [547]. The simulations revealed
that the peptide-NPs and negatively charged-NPs attached to the free peptides and fibril
tips, respectively, which can potentially restrict peptide fibrillization and fibril growth.
Positively charged NPs, on the other hand, attached to the peptide and fibril surface and
deformed it [547].

Altogether, this section identifies a number of studies where MD simulations were
used to investigate various structural characteristics and functionalities of NPs. MD
simulations were also applied to improve the understanding of NPs’ interaction with
membranes, viruses, and macromolecules. The molecular-level description obtained using
MD simulations might facilitate the successful NP-based product development in drug
discovery and pharmaceutical applications.

4. Conclusions

Over the past 50 years, MD simulation techniques have established their relevance
in modern drug discovery and development processes. With the increasing computer
power and development of new force fields and enhanced sampling methods, it is now
possible to simulate even big and complex (bio)molecular systems in time scales that can
give important insights into real-life molecular events and interactions. Our example cases
of sirtuins and RAS show how MD simulations can be successfully used to uncover the
conformational dynamics of highly flexible target proteins, thus providing valuable insights
for drug discovery and design. Moreover, MD-generated conformational ensembles can
be helpful in ligand design against extremely flexible intrinsically disordered proteins.
Enhanced MD approaches and force field development are key in tackling such challenging
targets. MD simulations can also reveal important details of antibody-antigen interactions
and help design novel antibody therapeutics with improved properties.

MD-based binding free energy calculations are widely used in the hit identification
phase to improve the accuracy of ranking the putative hits. In addition, the design of drugs
with improved binding kinetics benefits from various enhanced MD techniques that probe
the drug residence times at the target site. Similarly, MD simulations can facilitate peptide
docking by enhancing the conformational sampling and refinement of peptide-protein
complexes in the development of peptide therapeutics.

MD simulations of membrane proteins embedded in a relevant cell membrane model
have been challenging due to the big size of the simulation system, but especially coarse-
graining has helped to reduce the computational cost. Inclusion of the membrane in MD
simulations has revealed important insights into lipid-protein interactions, the function of
membrane proteins, as well as the ligand entry and exit into the target binding site.

Apart from the first steps of the drug discovery process, MD simulations have also
shown to be useful in pharmaceutical development and formulations studies. For ex-
ample, crystalline and amorphous drugs, drug-polymer formulations, or drug-loaded
nanoparticles can be studied by MD simulations to complement experimental studies.
Molecular-level insights into such systems can help in improving the solubility, stability, or
other properties of drug formulations.

In conclusion, MD simulations can serve as a powerful tool in facilitating the early
phases of the modern drug discovery and development process. In the future, MD sim-
ulations will likely gain even more importance due to the theoretical and technological
advancements in the field.
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