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Abstract: In recent decades, a growing number of organic pollutants released have raised world-
wide concern. Graphitic carbon nitride (g-C3N4) has drawn increasing attention in environmental
pollutants removal thanks to its unique electronic band structure and excellent physicochemical
stability. This paper reviews the recent progress of g-C3N4-based composites as catalysts in various
advanced oxidation processes (AOPs), including chemical, photochemical, and electrochemical AOPs.
Strategies for enhancing catalytic performance such as element-doping, nanostructure design, and
heterojunction construction are summarized in detail. The catalytic degradation mechanisms are also
discussed briefly.

Keywords: graphitic carbon nitride; aqueous organic pollutants removal; advanced oxidation pro-
cesses

1. Introduction

In recent years, environmental pollution, especially water pollution, is increasingly
becoming a major concern worldwide. Many organic pollutions, such as pharmaceuticals and
personal care products (PPCPs), pesticides, and organic dyes are toxic and refractory [1–4].
Various techniques have been developed to eliminate aqueous organic pollutants (e.g.,
extraction, adsorption, biological treatment, and advanced oxidation processes) [5–9].
Advanced oxidation processes (AOPs) are regarded as effective techniques for organic
contaminants removal from water and wastewater [10–14].

The AOPs utilize highly reactive species (mainly hydroxyl radical, •OH) to oxide
the organic pollutants into less toxic or no-toxic products such as CO2 and H2O [15,16].
According to supplied energies and reactive species, AOPs can be categorized as photo-
catalysis, electrocatalysis, sonolysis, ozonation, Fenton/Fenton-like reactions, and sulfate
radical-based AOPs (SR-AOPs), among others [17,18]. In recent decades, numerous studies
have been conducted to develop novel AOPs. Emerging energy sources (e.g., ionizing
radiation with electron beams and γ-radiolysis, pulsed plasma, etc.) were applied, and
different reactive species (such as periodate or ferrate reagent) were introduced [19–22].
Considering the merits of different AOPs, combinations of various processes are more
common approaches to enhance degradation efficiency [21]. Although some AOPs (e.g.,
UV/H2O2, UV/peroxymonosulfate (PMS)) work properly without catalysts, employing
catalysts can significantly reduce energy and reagent (source of reactive species) consump-
tion [23]. Therefore, designing an effective and stable catalyst is a crucial strategy for the
development of AOPs.

Graphic carbon nitride (g-C3N4), known as a metal-free polymer semiconductor, has at-
tracted increasing attention due to its unique electronic band structure, anti-photocorrosion,
excellent physicochemical stability, and easy availability [24,25]. The bandgap of g-C3N4 is
about 2.7 eV, which enables it to absorb all viewing range of solar irradiation. The valance
band (VB) and conduction band (CB) mainly encompass nitrogen and carbon pz orbitals
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while VB top and CB bottom are located at about +1.4 and −1.3 eV, respectively [26–28].
The study of g-C3N4 can be traced back to 1834, when Berzelius first synthesized a poly-
meric derivative of g-C3N4, and Liebig named it melon [29]. In 2006, Goettmann and his
co-workers investigated Friedel–Crafts reactions that can be catalyzed by g-C3N4, which is
its first application in the catalytic field [30]. In 2009, g-C3N4 was demonstrated as a good
metal-free photocatalyst for water splitting by Wang et al. [26]. Up to now, g-C3N4 has
been in-depth studied and extensively applied in photocatalysis. The g-C3N4 preparation
relies on (solvo)thermal polymerization of nitrogen-rich precursors such as melamine,
dicyandiamide, and urea [31]. In addition, hard/soft temple-assisted methods and sol-gel
methods are frequently used to modify the synthesis approaches. The reaction parame-
ters such as precursors and temperature could significantly affect the physicochemical
property, including specific surface area, bandgap, etc. [32]. However, the pure g-C3N4
encounters several drawbacks, including tiny surface area, inefficient use of visible light,
low electric conductivity, and fast recombination of photo-induced carriers, which are
not beneficial to its catalytic activity [33,34]. To address these issues, a lot of efforts such
as (1) engineering the nanostructure of g-C3N4 [27,35–37], (2) introducing heteroatoms
(metals [38–44] or non-metals [45–50]), (3) coupling with other semiconductors [51–57] and
(4) co-polymerization [58–61] were made. g-C3N4 based composites hold unique advan-
tages for organic pollutants removal from groundwater and wastewater due to the good
adsorption capacity of g-C3N4 for organic molecules, which could be attributed to strong
intermolecular forces like hydrogen bonding, π-π interactions between pollutant molecules
and residual amino groups in the g-C3N4 fragment [62,63]. On the other hand, introducing
extra sources of reactive species such as H2O2 or PMS in photocatalysis can significantly
increase degradation efficiency [64,65]. Furthermore, some studies have explored g-C3N4
based composites for organic pollutants removal without light irradiation in the presence
of PMS or H2O2 [66–69].

Some excellent reviews on g-C3N4 based composites involving pollution remediation
have been published [25,31,70,71]. g-C3N4 based composites as photocatalysts for water
purification have been summarized in these reviews, while no reviews involve other AOPs
such as chemical AOPs and electrochemical AOPs. The dramatically increasing amounts
of g-C3N4 based composites in the range of AOPs fields requires a broader, thorough, and
up-date assessment. This review is mainly focused on the application of g-C3N4 based
composites in chemical AOPs and electrochemical AOPs. The challenge and strategies for
enhancing photodegradation performance using g-C3N4 based composites as photocatalyst
were also included.

2. Chemical AOPs

The chemical AOPs started as early as the application of the Fenton reaction to water
treatment, in which •OH can be generated from the catalytic decomposition of H2O2 by
Fe2+ for the destruction of various organic pollutants (Equation (1)) [10].

Fe2+ + H2O2 + H+ → Fe3+ + •OH + H2O (1)

With the increasing demand for water treatment, various oxidants such as O3, PMS,
peroxydisulfate (PDS) were applied in chemical AOPs. The PMS and PDS could be
heterogeneous activated, and reactive species such as •SO4

− are subsequently generated to
degrade organic pollutants [72–74]. Table 1 summarizes the part of a representative study
using g-C3N4 based composites as a catalyst in chemical AOPs.
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Table 1. Graphic carbon nitride (g-C3N4) based composites for chemical advanced oxidation processes (AOPs).

Catalyst Target
Contaminants Oxidant Reaction Conditions Performance Ref.

Cu(II)/CuAlO2/g-
C3N4

Bisphenol A
(BPA) H2O2

BPA, 25 mg/L; catalyst, 1 g/L; H2O2,
10 mM; T, 35 ◦C; pH, 7 95.5% in 120 min [75]

Cu/Al2O3/g-C3N4
Rhodamine B

(RhB) H2O2
RhB, 20 mg/L; catalyst, 1 g/L; H2O2,

10 mM; T, 25 ◦C; pH, 4.9 96.4% in 100 min [76]

Iron oxide/g-C3N4 Ciprofloxacin H2O2
ciprofloxacin, 20 mg/L; catalyst, 1 g/L;

H2O2, 5.6 mM; pH, 3 100% in 60 min [68]

g-C3N4/carbon
nanotubes/Fe(II) Methylene blue H2O2

Methylene Blue, 90 mg/L; catalyst,
0.5 g/L; H2O2, 1 mM; T, 25 ◦C; pH, 4.9 66.8% in 1 h [69]

Fe3O4@C/g-C3N4
Acid orange 7

(AO 7) PMS AO 7, 20 mg/L; catalyst, 0.6 g/L; PMS,
0.1 g/L; T, 25 ◦C; pH, 4 97% in 20 min [77]

CoFeO2/g-C3N4 Levofloxacin PMS
levofloxacin, 10 mg/L; catalyst,

0.15 g/L; PMS, 0.5 mM; T, Room
temperature; pH, 3

100% in 60 min [78]

Co-doped g-C3N4 4-chlorophenol PMS 4-chlorophenol, 50 mg/L; catalyst,
1 g/L; PMS, 2.5 mM 100% in 30 min [79]

Mn-doped g-C3N4 Acetaminophen PMS acetaminophen, 20 mg/L; catalyst,
0.05 g/L; PMS, 0.8 g/L; pH, 6.5 100% in 15 min [80]

Cu+-g-C3N4 Rhodamine B H2O2
Rhodamine B, 50 mg/L; catalyst, 0.
8 g/L; H2O2, 40 mM; pH, neutral 99.2% in 1 h [81]

Pd/g-C3N4 BPA PMS BPA, 20 mg/L; catalyst, 0.1 g/L; PMS,
1 mM; T, 25 ◦C; pH, 9 91% in 60 min [82]

FeOy/S-g-C3N4 Sulfamethoxazole PMS
sulfamethoxazole, 10 mg/L; catalyst,
0.5 g/L; PMS, 0.8 mM; T, 25 ◦C; pH,

3.54
100% in 60 min [83]

Fe(III)-doped
g-C3N4

AO 7 PMS AO 7, 8.5 mg/L; catalyst, 0.1 g/L; PMS,
0.1 g/L; pH, 3–4 97% in 30 min [84]

cryptomelane-type
manganese

oxide/g-C3N4

AO 7 PMS AO 7, 0.13 mM; catalyst, 0.2 g/L; PMS,
0.65 mM; T, 8 ◦C; pH, 7.25 88% in 30 min [85]

carbon and oxygen
dual-doped g-C3N4

BPA PMS BPA, 0.1 mM; catalyst, 0.5 g/L; PMS,
5 mM; T, 30 ◦C; pH, 6.7 100% in 60 min [86]

Active
carbon/g-C3N4

AO 7 PMS AO 7, 50 mg/L; catalyst, 0.2 g/L; PMS,
0.4 g/L; T, 27 ◦C; pH, 3.82 100% in 20 min [87]

Fe-doped
g-C3N4/graphite 4-chlorophenol PMS 4-chlorophenol, 0.1 mM; catalyst,

0.1 g/L; PMS, 0.1 mM; pH, 3 100% in 10 min [88]

Oxygen-doped
g-C3N4

BPA PMS BPA, 0.05 mM; catalyst, 1 g/L; PMS,
10 mM; T, 30 ◦C; pH, 3–9 100% in 60 min [66]

Fe(II)-doped g-C3N4 Phenol PMS phenol, 0.1 mM; catalyst, 1 g/L; PMS,
5 mM; T, 23 ◦C; pH, 2.6 100% in 20 min [89]

Mn3O4/g-C3N4 4-chlorophenol PMS 4-chlorophenol, 50 mg/L; catalyst,
0.3 g/L; PMS, 1 mM; T, 25 ◦C; pH, 4 100% in 40 min [90]

Pure g-C3N4 holds inert activation performance of oxidants such as H2O2 and PMS.
Considering that g-C3N4 has excellent affinity to entrap transition metal ions, metal
doping is the main strategy for improving the catalytic activity. Oh et al. investigated
the catalytic activities of Me-doped g-C3N4 (Me = Cu, Co, and Fe) as PMS activator for
sulfathiazole degradation. Among the prepared catalyst, Co-doped g-C3N4 (0.59 wt%
Co) exhibited the highest degradation efficiency for sulfathiazole, while excessive metal
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doping and surface defects (-C≡N) had a scavenging effect for •SO4
− [91]. The authors

further studied Fe-doped g-C3N4 for acid orange 7 degradation, and the non-radical
pathway was proposed [84]. Li et al. prepared Fe doped g-C3N4 as PMS activator for
phenolic compounds degradation. (Fe (V) = O) generated from the oxidation of Fe(III)-
N was proposed as dominant reactive species [67]. In another work, Fe doped g-C3N4
was also employed in PMS activation for phenol degradation. Authors investigated the
ratio of 46% and 54% of Fe (III) and Fe (II) via Mössbauer spectra, while the XPS survey
spectra suggested the primary Fe on the surface of the catalyst was in the 3+ state. It
was proposed that the Fe (II) complex heterolyzed at the O-O bond of activated PMS to
form Fe (IV) = O, which was the primary active species [89]. In PMS/Mn-doped g-C3N4
system, superoxide radical was firstly generated due to the PMS bounding to the Mn-N
site, and singlet oxygen produced by superoxide radical was proposed as the responsible
reactive species for acetaminophen degradation [80]. Ma et al. synthesized Cu (I)-doped
g-C3N4 for the removal of rhodamine B in a Fenton-like reaction. Cu (I) could be firmly
embedded in g-C3N4 and reactive species produced by the interaction of H2O2 and Cu
(I) [81]. The unique adsorption capacity of g-C3N4 for some organic pollutants also leads to
superior degradation performance. Xie et al. investigated that different monochlorophenols
isomers (2-chlorophenol, 3-chlorophenol, and 4-chlorophenol) could be degraded efficiently
using Co-doped g-C3N4 as a catalyst in the presence of PMS. It was confirmed that the
degradation rate was in the same order as the adsorption quantity [79]. This was attributed
to the strong intermolecular forces between pollutant molecules and residual amino groups
in the g-C3N4 fragment [92]. Pd-doped g-C3N4 was successfully synthesized by anchoring
Pd nanoparticles on g-C3N4 using KBH4 reduction method, which was regularly active
for PMS activation toward bisphenol A removal [82]. Metal oxide such as manganese
oxide [85,90] and iron oxide [68] decorated on g-C3N4 are also employed for organic
pollutions degradation via activating H2O2 or PMS (Figure 1). Lyu et al. prepared Cu
(II)/CuAlO2/g-C3N4 composite as a Fenton-like catalyst. The Cu and C were investigated
as dual reaction centers, and C-O-Cu acts as bridges to accelerating electrons transfer [75].
Nonmetal doping is also considered to be an efficient approach to improve electron transfer
capability. Electronic structure modulation was achieved in oxygen-doped g-C3N4 for PMS
activation, which was fabricated using urea and oxalic acid dihydrate [66]. The authors
further investigated carbon and oxygen doped g-C3N4 exhibited better PMS activity due
to its dual active sites-electron-poor C atoms and electron-rich O atoms [86]. Co-doping
of iron and sulfur was found to be an approach to charge distribution and density of g-
C3N4 for PMS activation [83]. To improve its chemical activity and electron transportation
ability, Coupling nanocarbon materials g-C3N4 was developed to realize efficient PMS or
H2O2 activation [87]. Moreover, combining nanocarbon materials and metal doping was
frequently fabricated with g-C3N4 to exploit both materials’ synergistic effect [69,77,88].
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3. Photochemical AOPs

Light irradiation is the most widely used method of applying additional energy to
assist reactive species generating, which presents the advantages of simple, clean, relatively
inexpensive, and efficient. TiO2 and ZnO were firstly used as photocatalysts for catalytic
oxidation of organic contaminants. In this case, photocatalysis induces the formation of
h+, •O2

− and •OH, which act as principle reactive species for pollutants degradation.
Consequently, visible light irradiations have been coupled with powerful oxidants such
as H2O2 and PMS, including catalysis with a modified photocatalyst, resulting in various
AOPs. In this section, the applications of these different AOPs as photocatalysis, Photo-
Fenton (like) reactions, and photo-assisted sulfate radical based AOPs are summarized.
Some representative applications of g-C3N4 based composites as a catalyst in photochemical
AOPs are shown in Table 2.

Table 2. g-C3N4 based composites for photochemical AOPs.

Catalyst Target
Contaminants Light Source Reaction Conditions Performance Ref.

NiCo2O4/g-C3N4 Carbamazepine 500 W Xenon lamp,
Visible light

carbamazepine, 10 mg/L; catalyst,
0.5 g/L; PMS, 1 mM; 100% in 10 min [93]

TiO2/g-C3N4 Acetaminophen 300 W Xenon lamp,
Visible light

acetaminophen, 5 mg/L; catalyst,
0.5 g/L; PS, 2 mM; pH, 7 100% in 30 min [94]

Fe doped
g-C3N4/graphene Trimethoprim 350 W Xenon lamp,

Visible light
Trimethoprim, 0.02 mM; catalyst,

0.5 g/L; PMS, 0.2 mM; pH, 6 100% in 120 min [95]

MoS2/A
g/g-C3N4

Tetracycline 300 W Xenon lamp,
Visible light

tetracycline, 20 mg/L; catalyst,
0.2 g/L; PMS, 0.1 mM; T, 20 ◦C;

pH, 5.5
98.9% in 50 min [96]

activated
carbon/g-C3N4

Atrazine 300 W Xenon lamp,
Visible light

atrazine, 5 mg/L; catalyst, 1 g/L;
PMS, 5 mM; T, 25 ◦C; pH, 5.56 97.5% in 120 min [97]

Cobalt-doped
g-C3N4

Rhodamine B
500 W halogen
tungsten lamp,

Visible light

rhodamine B, 10 mg/L; catalyst,
0.4 g/L; PMS, 0.12 mM; T, 25 ◦C;

pH, 4.68
100% in 25 min [98]

Sulfur-doped/g-
C3N4

Bisphenol A 150 W Visible light
lamp

Bisphenol A, 50 mg/L; catalyst,
0.3 g/L; PMS, 0.3 g/L; T, 20 ◦C;

pH, 5
85% in 120 min [99]

g-C3N4-imidazole-
based

ligand-FePcCl16

Carbamazepine Xenon lamp,
Visible light

carbamazepine, 25µM; catalyst,
0.1 g/L; PMS, 0.3 mM; pH, 7 95% in 25 min [100]

Cu-modified
alkalinized g-C3N4

Rhodamine B halogen tungsten
lamp, Visible light

rhodamine B, 10 mg/L; catalyst,
0.4 g/L; H2O2, 9.8 mM; pH, 4.6 95% in 10 min [101]

3.1. Photocatalysis

As one typical technique of AOPs, photocatalytic degradation held the advantages of
non-toxic, convenient operation, and high efficiency. With the irradiation of UV or visible
light with energy larger than the semiconductor’s energy gap, the electron-donating and
electron-accepting sites are formed in the surface of the semiconducting catalyst. The pho-
togenerated electrons migrate from the valence band (VB) to the corresponding conduction
band (CB), leaving holes in the VB, resulting in the electrons and holes occupying the CB
and VB, respectively. Holes can directly oxidize pollutants or react with H2O/OH− to
produce hydroxyl radicals (Eθ

(•OH/H2O) = 2.8 eV/NHE). Whereas the electrons capture
dissolved oxygen (O2) to yield superoxide radical (Eθ

(O2/•O2−) = −0.3 eV/NHE). The
resulting •O2

− are subsequently protonated to produce the •OH. Finally, those generated
radicals take part in the oxidation of pollutants. In the early seventies, Fujishima and
Honda showed the possibility of using the photo-excited semiconductor titanium dioxide
(TiO2) to split water into hydrogen and oxygen in a photo-electrochemical solar cell [102].
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This fundamental work led to developing a new AOP technology, based on semiconductor
photocatalysis, for water purification.

g-C3N4 compounds have emerged as up-and-coming candidates to replace TiO2,
owing to its graphite-like structure and medium bandgap [103,104]. However, the photo-
catalytic activity of g-C3N4 is still limited by its low electric conductivity and fast recom-
bination of photo-induced carriers [105]. In this regard, modulating the nanostructure of
g-C3N4 towards enhancing light harvest efficiency and catalytic mass-transfer is highly
desirable. Researchers have made great efforts to design g-C3N4 with various structures,
including 3D porous/nanospheres structure, 2D nanosheet and nanorod, etc. [27,37,106].
Such structures such as 3D porous and 2D nanosheet could provide high surface area,
exposing more active sites for catalytic surface reactions. Furthermore, nanostructured
g-C3N4 could significantly reduce photo-induced carriers’ transfer distance, leading to a
lower recombination possibility. Moreover, the light quantum efficiencies could be signifi-
cantly improved by constructing 0D, 1D nanorod, and 2D architectures g-C3N4 [107,108].

The VB top of g-C3N4 locates at about 1.4 V, leading to a small thermo-dynamic force
for organic pollutants oxidation. Moreover, the more positive potential of •OH/H2O
standard redox voltage results the hole cannot directly oxidize the H2O to generate •OH
(Eθ

(•OH/H2O) = 2.8 eV/NHE). To overcome this shortcoming, several elements of doping
have been conducted [44,48,50,108]. Generally, metal doping occurs by inserting into the
framework. In contrast, non-metal doping occurs in C or N atoms of g-C3N4 replaced
by a heteroatom, which could enhance photocatalytic activity via improve the transfer
and separation rates of photogenerated carriers and modulate bandgap [41,47]. Con-
structing heterojunction is another approach to enhance photodegradation performance
for g-C3N4 [109,110]. Generally, Z-schemed heterojunction could be a good option that
possesses higher redox potentials in forming reactive radicals and directly hole oxidation
ability [111,112].

3.2. Photo-Fenton Like Processes

The Photo-Fenton process, the combination of ultraviolet or visible light with the
conventional Fenton process, can enhance catalysts’ catalytic capacity and increase the
degradation efficiency of organic pollutants and reduce iron sludge production [113]. The
successive and competitive steps reaction mechanism for the photo-Fenton process are
shown in Equations (2) and (3).

Fe2+ + H2O2 → Fe3+ + •OH + HO− (2)

Fe3+ + H2O + hv→ •OH + Fe2+ + H+ (3)

As shown in Equation (2), Fe2+ rapidly reacts with H2O2 to generate Fe3+. The main
form of Fe3+ is [Fe(OH)]2+ at pH 2.8–3.5, which plays a key role in reactions. Subsequently,
the reduction of [Fe(OH)]2+ under light irradiation achieves redox recycling (Figure 2).
Moreover, •OH can be generated via direct photolysis of H2O2 [16]. In the photo-Fenton
process, the key is to accelerate the reduction of Fe3+ to Fe2+ via light irradiation. In the
heterogeneous photo-Fenton reactions, the active sites’ redox cycle determines the reaction
rate [114]. Although g-C3N4 cannot act as active sites for H2O2 decomposition, unique
up conversion property, and substantial nitrogen coordinating sites make it become the
ideal support for active sites [115]. In addition, the excellent photocatalytic activities of
g-C3N4 based composites endue unique advantages as a catalyst for photo-Fenton-like
reactions [116]. Metal doping into g-C3N4 is an important approach to enhance degradation
efficiency in photo-Fenton reactions. Fe-doped g-C3N4 has been successfully synthesized
by thermal shrinkage polymerization for aqueous organic pollutants degradation in photo-
Fenton reactions. Introducing Fe in g-C3N4 accelerated the separation of photogenerated
electron-holes. The Fe accepts electrons towards rapid reduction from trivalent to divalent,
promoting the rapid generation of reactive species [117]. Another report about porous
Fe-doped g-C3N4 revealed that the porous g-C3N4 structures enhance the photo-Fenton



Processes 2021, 9, 66 7 of 14

activity, owing to more active sites (Fe-N4) exposure [118]. An et al. embedded Fe into
g-C3N4 by pyrolysis of Fe-N-containing precursor and melamine. The high-density Fe-Nx
was investigated as a reactive site for H2O2 activation [119]. Another strategy used to realize
efficient photo-Fenton-based degradation is heterojunction construction, including the Z
scheme [120] and type II [121,122]. Zhang et al. prepared MnO2/Mn-modified alkalinized
g-C3N4 by the calcination-impregnating method. It was proposed that Z-scheme charge
transfer accelerated the redox cycle of the Mn4+/Mn3+/Mn2+ [123].
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3.3. Photo-Assisted Sulfate Radical Based AOPs

Sulfate radical-based advanced oxidation processes (SR-AOPs) are increasingly gain-
ing attention as an effective solution to the destruction of recalcitrant organics in water [124].
Among various approaches to generate sulfate radicals via activation of additional sources
of reactive species (such as peroxymonosulfate (PMS) and persulfate (PS)), the photo-
activation in the presence of a heterogeneous catalyst is worth mentioning [65]. The general
mechanism is presented in Equations (4)–(8).

Photocatalyst + hv→ e− + h+ (4)

S2O8
2− + e− → SO4

2− + SO4•- (5)

HSO5
− + e− → SO4•- + OH− (6)

HSO5
− + h+ → SO5•- + H+ (7)

2SO5•- → 2SO4•- + O2 (8)

Firstly, photocatalysts are excited under light irradiation to form photo-induced elec-
trons and holes. Then the •SO4

− and •OH are generated through the combination of
electrons and PMS or PS. When transition metals are constructed into photocatalysts, they
could be potential reactive sites for PMS/PS activation (shown in Equations (9)–(12)).

Mn+ + HSO5
− →M(n+1)+ + SO4•− + OH− (9)

M(n+1)+ + HSO5
− →Mn+ + SO5•− + H+ (10)

M(n+1)+ + e− →Mn+ (11)

Mn+ + h+ →M(n+1)+ (12)
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Similar to the application in photo-Fenton-like reactions, g-C3N4 generally plays as
reactive site supporters or participate in heterojunction construction in photo-assisted
sulfate radical based AOPs. The TiO2/g-C3N4 composite was fabricated for paracetamol
photocatalytic degradation in the presence of visible light and persulfate. As prepared
composite held type II heterojunction, which inhibits the electron-hole recombination in
photocatalyst and adding persulfate increased 13 times degradation rate [94]. Liang et al.
prepared porous 0D/3D NiCo2O4/g-C3N4 composite for carbamazepine removal. 99%
of degradation was achieved in 10 min under visible light irradiation [93]. Jin et al.
constructed Z-scheme MoS2/A g/g-C3N4 via a method of chemical electrostatic adsorption.
The deposited Ag further enhances photocatalytic activity via improving light utilization
ability and the separation rate of photogenerated e−/h+ pairs. The results indicated that
the presence of PMS dramatically accelerates the photocatalytic reaction [96]. Through
metal ions such as Fe and Co doping, enhancing photocatalytic activity and improving
PMS activation could synchronize implementation towards an efficient organic pollutant
removal [95,98].

4. Electrochemical AOPs

Electrochemical advanced oxidation processes (EAOPs) have gained increasing at-
tention as one of the most potent classes of AOP [125–127]. The direct electrochemistry
oxidation known as EAOP is anodic oxidation (AO), which is conveniently operated and
widely used [125,128]. Electro-Fenton reaction (EF), also known as EAOPs involving the
Fenton process, constitutes a clean and effective way to accelerate contaminants degra-
dation via in situ electrocatalytically generated H2O2 from the oxygen reduction reaction
(ORR) and regeneration of Fe2+ on the cathode [126] (Equations (13)–(15)).

O2 + 2H+ + 2e− → H2O2(Eθ = 0.67 eV/SHE) (13)

Fe3+ + e− → Fe2+(Eθ = 0.77 eV/SHE) (14)

Fe2+ + H2O2 → Fe3+ + •OH + OH− (k = 76 M−1 s−1) (15)

One of the EF technology’s key points is to fabricate a cathode with high efficiency
towards ORR [129,130]. G-C3N4 have been recently considered for cathode modification,
which can provide more active sites than other nitrogen-containing materials for electrocat-
alytic reactions to serve as ORR catalyst. Zhu et al. prepared g-C3N4 doped gas diffusion
electrode as a cathode in electro-Fenton processes, and the H2O2 accumulation reached
2.59 mg h−1 cm−2, while it is 1.86 mg h−1 cm−2 using cathode without g-C3N4 doping [131].
Loading g-C3N4 on activated carbon fiber electrode was investigated as an efficient way
to boost electrocatalytic activity for rhodamine B degradation in electro-Fenton processes,
which was due to the g-C3N4 accelerated the cyclic utilization of ferrous ions on the sur-
face of activated carbon fiber [132]. Furthermore, light irradiation was combined with
electro-Fenton processes using g-C3N4/activated carbon fiber and g-C3N4/carbon nan-
otube electrodes as cathodes, which achieved higher H2O2 production [133,134]. Moreover,
g-C3N4 based composites such as ZnO/g-C3N4 and TiO2/g-C3N4 severed as photoanodes
were applied in photo-assisted anodic oxidation of organic pollution, which was attributed
to the superior photocatalytic activity of g-C3N4 [135,136].

5. Conclusions and Perspectives

This review has shown the application of g-C3N4 based composites in various AOPs,
including chemical AOPs, photochemical AOPs, and electrochemical AOPs. In the past
years, g-C3N4 has been served as an excellent candidate for pollutants removal from water
and wastewater thanks to the tunable electronic structure and excellent physicochemical
stability. However, pristine g-C3N4 still suffered numerous issues such as smaller surface
area, faster recombination of charge, and poor oxidant decomposition activity. It can be
summarized the main challenges and strategies in the following aspect:
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(1) For chemicals AOPs, pristine g-C3N4 holds inert activation performance of oxidants
such as H2O2 and PMS. Considering that g-C3N4 has excellent affinity to entrap
transition metal ions, metal doping is the main strategy to improve the catalytic
activity and electrons transfer capability. Combining nanocarbon materials and
metal doping was also frequently fabricated with g-C3N4 to exploit both materials’
synergistic effect.

(2) In the case of the photochemical technologies, the challenges for enhancing the pho-
todegradation performance could be ascribed as (1) expand the absorption edge
of g-C3N4 and enhance the light-harvesting capability, (2) make separating charge
more efficient and suppress the recombination of photo-induced carriers, and (3)
coordinate energy band structures to enhance reduction or oxidative capacity. The
recent progress of g-C3N4 based composites regarding the photodegradation perfor-
mance improvement include nanostructure design, element doping, hetero-junction
construction, and co-polymerization.

(3) Cathode modification in electron-Fenton processes is the major application of g-C3N4
based composites in electrochemical AOPs. The key to improving EF performance is
to fabricate a cathode with superior ORR efficiency towards higher H2O2 production.

Although g-C3N4 based composite shows promising activity in various AOPs, the
synergic effect between different components is still not fully understood. In addition,
developing methods towards stable morphology/structure synthesis is highly demanded
for practical applications.
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