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Abstract: Mathematical modeling is a powerful tool to study the process of the spread of infectious
diseases. Among various mathematical methods for describing the spread of infectious diseases,
the cellular automaton makes it possible to explicitly simulate both the spatial and temporal evolution
of epidemics with intuitive local rules. In this paper, a model is proposed and realized on a cellular
automata platform, which is applied to simulate the spread of coronavirus disease 2019 (COVID-19)
for different administrative districts. A simplified social community is considered with varying
parameters, e.g., sex ratio, age structure, population movement, incubation and treatment period,
immunity, etc. COVID-19 confirmation data from New York City and Iowa are adopted for model
validation purpose. It can be observed that the disease exhibits different spread patterns in different
cities, which could be well accommodated by this model. Then, scenarios under different control
strategies in the next 100 days in Iowa are simulated, which could provide a valuable reference for
decision makers in identifying the critical factors for future infection control in Iowa.

Keywords: cellular automata; process system engineering; mathematical model; dynamic simulation

1. Introduction

Rapid globalization, frequent travel, and contacts between people across states can
make infectious diseases spread at an incredible rate. Infectious diseases have repeatedly
caused an increase in human mortality and social panic throughout history [1], and coun-
tries all over the world are struggling with coronavirus disease 2019 (COVID-19) as this
paper is being put together. For ethical reasons, the process of the spread of infectious
diseases can never be experimentally studied in our society, so mathematical tools defi-
nitely provide a feasible alternative to investigate its spread mechanism for efficient control,
through theoretical modelling [2], analysis [3], and data mining [4]. A theoretical model
is helpful to intuitively impress upon people how serious an infectious disease could be,
which may convince people to take proper precautions and voluntarily follow the protocols
(such as social distancing and quarantine) during the outbreak of an epidemic. It can
also provide decision makers and clinical professionals helpful information from theoretic
simulations [5].

Studies on the spread process of infectious disease can be traced back to 1927, when Ker-
mack and McKendrick constructed the susceptible–infective–recovered (SIR) model to
study the spread of the black death in London [6]. In their study, threshold theory was
proposed to determine whether an infectious disease is an epidemic or not, which laid the
foundation for studying the dynamics of infectious diseases. However, many infectious
diseases are quite complex, especially with the consideration of precautions and treatments.
Various affecting factors, e.g., transmission rates, incubation period, people movements,
hospital capacity [7], quarantine, the availability of vaccination, etc., are needed to be
taken into account for a certain disease; hence, the SIR model was modified accordingly.
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Incubation period was introduced into the susceptible–exposed–infective–recovered (SEIR)
model [8], and the possibility of re-infection of recovered ones are further considered into
the susceptible–exposed–infective–recovered–susceptible (SEIRS) model [9]. Nevertheless,
none of above models is built as a function of the whole population, and when population
dynamics is considered, birth and death rates become indispensable factors [10]. Moreover,
time intervals like incubation period causes a time lag between states, which also needs to
be well-accommodated for [11].

Based on above-mentioned factors, lumped models have been widely used to study
different infectious diseases. Spreading models on measles [12] and SARS (Severe Acute
Respiratory Syndrome) [13] have been established and analyzed. Kerr et al. [14] studied
the transmission of HIV (Human Immunodeficiency Virus) and assessed its impact on
the society. Based on the SEIR model, Sen et al. [15] introduced a feedback control tech-
nique to determine a general vaccination strategy. Mathematical models have become
very sophisticated, because an increasing number of concerning factors are incorporated,
which challenges the solver efficiency. Related computational costs could be significant,
and even oscillatory or chaotic dynamics would be generated when the infection rate and
removal rate become nonlinear [16,17]. Therefore, high efficiency computational strategies
are in demand, especially when the spatial–temporal evolutionary trends of the disease are
studied. Among those intelligence algorithms, the complex network has been approved
as an applicable approach to research the dynamic of complex systems, including epi-
demic spread. Dezso et al. [18] analyzed the epidemic threshold for viruses spreading on
scale-free networks, which provide a theoretical reference for eradicating the infection.
Ferdinandy et al. [19] applied a social network to study the spread dynamic of HIV with
various subtypes. COVID-19 is a threatening disease for people all over the world, which is
characterized by asymptomatic patients, and it has been studied by mathematical models
from multiple perspectives. Firth et al. [20] constructed a network model to evaluate the
effect of different control strategies on SARS-CoV-2 transmission, which also explains the
transmission mechanism of COVID-19 in human society. Jiang et al. [21] established a
deep-learning architecture to study the relationship of infected probability and respiratory
status by data analysis. In this paper, the authors hope to study the spread trend and impact
factors by combining the transmission mechanism and data analysis, which is realized on
a cellular automata platform. Cellular automata (CA) are computational algorithms that
rely on a few relatively simple local rules and are realized through parallel computation,
which was first proposed by von Neumann [22]. CA computing has been proven to be
useful for complex systems in various scientific fields [23], and one prominent research
area is the propagation of infectious diseases. White et al. [24] simulated a two-dimensional
spatial evolution of the infection. Athithanet al. [25] adopted a dynamic CA to model
the population in different patches and simulate population movement. Pfeiferet al. [26]
introduced actual geographic information into CA to simulate disease spread.

All the above CA models are cross-validated with differential equation models.
However, differential equation models are established based on the law of conservation
and differentiation within systems. CA models are established based on the flexible inter-
action rules among cells, regardless of the geographical distance between two interacting
cells, and the variables can be either continuous or discrete. When the spread of infectious
diseases is investigated, local population movements [27], population distribution [28,29],
and other spatial heterogeneity factors could be well-characterized in a non-uniform field,
which makes CA a suitable candidate for the study of the epidemic. As a differential
equation model is built and solved across a continuously distributed region, it will get very
complicated if heterogeneous features and multiple impacts are incorporated; infectious
diseases are essentially spread by the interaction of people, making the variables naturally
discrete and heterogeneously distributed. Moreover, CA models can be easily solved by
recording the number of cells along a time evolution, instead of sophisticated solvers for
differential equations.
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In this paper, a CA model is proposed that is applied to simulate the spread of COVID-
19 for different administrative districts. A simplified social community is proposed based
on above-mentioned factors. COVID-19 confirmation data from New York City (NYC)
and Iowa are adopted for model validation purpose. It can be observed that the disease
exhibits different spread patterns in different cities, which can be accommodated by this
model. Then, scenarios under different control strategies for the next 100 days in Iowa are
simulated, which could provide a valuable reference for decision makers in identifying the
critical factors for future infection control.

2. Methods
2.1. The Individual States in the CA Model

Based on the SIR model, the transition relationship of concerned states is present in
Figure 1. S represents the susceptible individuals, Si is the self-isolated individuals, I is the
infected people who have infectivity that has not been confirmed, and Ia represents the
asymptomatic patients, while C denotes the confirmed individual, and R is isolated and H
is hospitalized individual. For the hospitalized individuals (H), after a treatment period,
they could be cured and have corresponding antibody (R), but some of them will die (D).

Figure 1. The state transition mechanism.

P denotes the transform possibility from susceptible to infected, and it is determined
by the individuals’ immunity and surroundings; pa represents the possibility of becoming
an asymptomatic patient. T1 denotes the incubation period, during which an infected indi-
vidual may infect others. T2 is the period between confirmation and hospitalization, and u
represents the fraction of confirmed individuals who get hospital care. T3 represents the
period between hospitalization and recovery, and k represents the fraction of hospitalized
patients becoming terminal. Finally, q represents the self-isolated proportion of susceptible
individuals, which is related to control measures.

To simulate a dynamic system, the cellular structure and interaction rules are set
based on empirical knowledge. In this work, a community with a total of n2 cells is
considered; each cell may contain one individual or be empty, and the healthy states of the
individual are represented by different color/number, i.e., 0 for un-infected (S), 1 for empty
positions (N), 2 for self-isolated (Si), 3 for infected (I), 4 for confirmed (C), 5 for recovered
(R), 6 for hospitalized (H), 7 for dead (D) and 8 for asymptomatic (Ia). Hence, the set
X(i, j, t) = {0, 1, 2, 3, 4, 5, 6, 7, 8} is used to represent the individual state in the cell (i, j) at
time t. T1(i, j, t) is used to record the infected duration of infected individuals, and similarly,
T2(i, j, t) and T3(i, j, t) are used to record the duration of confirmed and hospitalized patients.
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2.2. Individual Heterogeneity and the State Transition Rules

Immunity difference among individuals is defined by the following A(i, j),

A(i, j) = fgender × fage × a(i, j) (1)

where fgender represents the immunity coefficient related to gender, and fage represents the
immunity coefficient related to age range. The values of these coefficients are determined
by actual data, which are presented in Table A4 in Appendix A, and a(i, j) is assumed to
follow [0,1] uniform distribution [30].

It is assumed that eight neighbors in a two-dimensional plane surround each individ-
ual, and the interaction rule with the neighbors is expressed by a transition matrix N:

NX(i,j) =

X(i− 1, j− 1) X(i− 1, j) X(i− 1, j + 1)
X(i, j− 1) X(i, j) X(i, j + 1)

X(i + 1, j− 1) X(i + 1, j) X(i + 1, j + 1)

 (2)

where N represents the neighbor structure of X(i, j). For each individual, N is identical,
which corresponds to the infection risk of certain disease. The transition of states for X(i, j)
is also influenced by the current local environment, and parallel computing is exerted on
every cell simultaneously.

The possibility of being infected for a susceptible individual X(i, j) at time t is defined
as follows:

P(i, j, t) =
1
8
× ∑

(m, n) ∈ NX(i,j)
m = i or n = j

{
PX(i,j),X(m,n)(t)

}
+

1
8
√

2
× ∑

(m, n) ∈ NX(i,j)
m 6= i and n 6= j

{
PX(i,j),X(m,n)(t)

}
(3)

where PX(i, j) X (m, n) represents the probability of X(i, j) infected by X(m, n) at time t.
The neighbors are divided into two categories by their distance: one group of neighbors are
1 away from X(i, j), the other group of neighbors are

√
2 away from X(i, j). Hence, the in-

verse of the distance is taken as the influence coefficients. The probability of being infected
is inversely proportional to the resistance, and is proportional to the infectivity of its
neighbors. Thus, it can be expressed as follows:

PX(i,j),X(m,n)(t) =
√

rX(i,j),X(m,n) × (1− A(i, j)) (4)

where rX(i, j)X(m, n) represents the infectivity of X(m, n) to X(i, j), which is also assumed
to follow [0,1] uniform distribution [30]. The probability of being infected is determined
by the immunity as well as the infectivity of its neighbors. Asymptomatic patient is an
important character of SARS-CoV2 infections, so the parameter pa is introduced to consider
the probability of becoming an asymptomatic infected individual. The set value of pa
of different age groups is shown in Table A3 in Appendix A. It is worth noting that the
infectivity of asymptomatic patients is half that of symptomatic ones [31].

In the beginning, infected curves of different regions present a simple rising trend;
after that, the infected curves went down or presented fluctuations, which were led by
different actions people took. Therefore, we introduced the parameter q to represent the
people’s compliance with COVID-19 restrictions in different states to a certain degree,
and it is defined as follows:

qt = 0.7− 0.1× (Ct+1 − Ct)/Ct

0.025
(5)

where C represents the daily confirmed number in local actual data, qt represents the
proportion of people who take effective prevention measures at time t. (Ct+1 − Ct)/Ct is
the increase rate of confirmed numbers at time t + 1, and the increase rate at time t + 1 is
related to the self-isolation proportion at time t.
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The states of one individual in the cells are updated by the following:

(1) When X(i, j, t) = 0, the possibility of being infected at time t can be calculated as
mentioned above, and then, whether the individual transitions to being infected
(X(i, j, t) = 3 or 8) is determined by both itself and its neighbors. If X(i, j, t) is changed
from 0 to 3, then, T1(i, j, t) will be changed from 0 to 1, and the record of the infected
duration of this individual begins. If X(i, j, t) is changed from 0 to 8, then T4(i, j, t) will
be changed from 0 to 1, and the record of the asymptomatic infected duration of this
individual begins;

(2) When X(i, j, t) = 1 or X(i, j, t) = 2, which indicates empty positions and self-isolated
individuals, respectively, their value will be constant;

(3) When X(i, j, t) = 3 and T1(i, j, t) exceeds T1, the individual will be confirmed,
and X (i, j, t) will become 4; then, T2 (i, j, t) will change from 0 to 1 and begin
to record the confirmed duration, and T1(i, j, t) will return to 0;

(4) When X(i, j, t) = 8, and T4 (i, j, t) exceeds T1 + T2, the individual will recover and
X(i, j, t) will become 5; T4 (i, j, t) will return to 0;

(5) When X(i, j, t) = 4, T2 (i, j, t) reaches T2, and the individual will be hospitalized
(X(i, j, t) = 6). After obtaining hospital care, the patient may recover (X(i, j, t) = 5) with
the probability of u, while probability 1 − u becomes exacerbated, the set value of u
in different stage is shown in Table A5 in Appendix A;

(6) When X(i, j, t) = 6, and T3(i, j, t) reaches T3, the infection becomes fatal (X(i, j, t) = 7)
with the probability of k; otherwise, patients will recover after treatment (X (i, j, t) = 5),
the set value of k in different stage is shown in Table A5 in Appendix A.

In addition to above rules, the movement of the population is correlated to the moving
proportion m and the maximum moving step length L. At each time step, the states of each
cell are updated simultaneously, and the movement of the individuals is simulated.

For the factor of heterogeneity, CA is suitable to demonstrate the spatial evolution of
epidemics. As is shown in Figure 2, an area with size 1000 × 1000 is considered. At the
initial stage, 15 infected individuals are randomly distributed in this area. The propagation
process is simulated. It can be observed that the infected region (I) continues to spread
outwards, while the infected individuals inside are confirmed (C) and recovered (R) after a
certain time interval. In addition, the proportion of infected gradually decreases due to
the increment of self-isolated (Si) proportion (q) and treatment/quarantine. The spread of
infectious disease is prevented by medical response and government control. An example
video is provided in the Supplementary Materials: in order to show the consideration of
self-isolated individuals (Si), the self-isolation proportion is transformed artificially from
0.00 to 0.85 at around 0:55 in the video.

Figure 2. An example to present the epidemic spatial evolution (time (t) = 20, 60, and 120 d).
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3. Simulation Results and Discussion
3.1. Model Verification

In order to verify proposed model, pandemic COVID-19 data from NYC and Iowa
were applied. The data acquisition period ranged from 6 March to 31 August in 2020
(179 d) [32,33], and pre-processing was conducted to find the overall trend of the epidemic.
In this paper, the data of daily confirmed, daily hospitalized, and daily dead were smoothed
by a seven-day moving average for further application. The comparison between simula-
tion and real data for New York and Iowa is shown in Figures 3a–c and 4a. The parameters
set for New York city and Iowa are presented in Tables A1 and A2 in Appendix A, and the
software used for simulation was GNU Octave 5.2.0. Robustness is very important when
random factors are considered; through running the code repeatedly, it has been proven
that the impact of random initial conditions on simulation results is very weak. This is
an expected result for the authors, as the region size is large enough to contain the initial
infected individuals, so the random distribution of initial infected individuals will always
be sufficiently dispersed, which is corresponding to a robust simulation result.

Figure 3. (a) The comparison result of New York City (NYC) in terms of daily confirmed. (b) The comparison result of NYC
in terms of daily hospitalized. (c) The comparison results of NYC in terms of daily dead. (d) The trend of infected numbers
and recovered numbers.
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Figure 4. (a) The comparison result of Iowa in terms of daily confirmed. (b) The trend of the number of infected and
recovered in Iowa.

As is shown in Figure 3a, the simulated number of daily confirmed rose to more than
5000 rapidly, and reached a peak at day 29 (3 April). After 3 April, the daily confirmed cases
start to reduce continuously, but the descent rate is slow and the duration of the epidemic
lasts for over 180 days. As control interference started around day 18 (23 March), and the
self-isolation proportion (q) was added to investigate this control interference. The curves
of hospitalized and dead individuals in Figure 3b,c were similar to the trend of the daily
confirmed (Figure 3a), but the peak value of these two groups was far less than that of
the confirmed, which reveals that most infected individuals recovered without treatment.
Through a limited number of parameters (listed in Table A1), the dynamics of the epidemic
are well fit, and the corresponding correlation coefficients of Figure 3a–c are 0.9912, 0.9415,
and 0.9731, respectively.

The individual states considered in this model include susceptible (S), self-isolated
(Si), infected (I), recovered (R), confirmed (C), hospitalized (H), and dead (D). Among them,
the actual confirmed, hospitalized, and dead number can be recorded and acquired in
relevant webs [32]. The trend of infected numbers and recovered numbers simulated
through this model is depicted in Figure 3d, which shows that more than 500,000 individu-
als experienced being infected and were recovering; moreover, it also can be observed that
the proportion of asymptomatic patients account for 2/3 of the overall infected individuals.

The second simulation case is the epidemic situation in Iowa. Unlike in NYC, there is
still an upward trend of daily confirmed in Iowa. The number of hospitalized and dead
in Iowa are negligible relative to its confirmed number; hence, only the trend of daily
confirmed is concentrated. As is shown in Figure 4a, Iowa has not yet been put in place
with a durably effective control strategy compared to NYC. During the 180 days after the
outbreak, the phenomenon of renewed outbreaks has appeared twice in Iowa, and the
daily confirmed number reaches a new peak at August 30. The self-isolation parameter q is
set accordingly as shown in Figure 5, for which a correlation coefficient between simulated
and actual data is as good as 0.9490. The cumulative recovered number has been more
than 120,000 obtained from this model, as shown in Figure 4b.
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Figure 5. The change curve of self-isolation proportion (q) of NYC and Iowa (IA).

Different states have different compliance for COVID-19 restrictions, which corre-
sponds to different epidemic dynamic. Figure 5 shows the change curves of the self-
isolation proportion (q) of NYC and Iowa, which have been validated by comparing the
simulation result with actual data in Figures 3 and 4. For NYC, q is set as 0 before day
18 (23 March), which means that there is no self-isolation and everyone faced the risk of
being infected; after day 18 (23 March), q is set according to Equation (5). For Iowa, q is
also set as 0 from day 1 to day 53 (6 March to 27 April), and set according to Equation (5)
after day 53 (27 April). It can be seen that NYC presented a faster and more sustaining
prevention measure than Iowa.

3.2. Trend Prediction of the Epidemic in Iowa

The daily confirmed number had reached 1000 in Iowa at 31 August. Based on the
infection status at 31 August, the trend of infection for the next 100 days under different
control strategies are simulated and exhibited in Figures 6 and 7.

Figure 6. (a) Simulation results of Iowa under different self-isolated proportions (q). (b) The trend of recovered number
under different self-isolated proportions (q).
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Figure 7. (a) Simulation results of Iowa under different diagnostic test strategies (different test strategies have different
intervals and scales). (b) The trend of the number of recovered corresponding to different strategies.

As shown in Figure 6a, when the self-isolation proportion is set as 0.8, which is
almost the best control effect ever reached in Iowa, the daily confirmed number presents a
downward trend. However, it is worth noting that only taking a long enough self-isolation
period can avoid massive infection. The infection status in Iowa experienced two rebounds
in the first 180 days, which may have been led by an unsustained self-isolation strategy.
When the self-isolation proportion is set as 0.6, which corresponds to the middle degree of
the control effect that Iowa had achieved in the past 180 d, the daily confirmed number
will be stable at around 800 over the next 100 days. Obviously, this is an unfavorable
outcome to prevent the infection. When q is set as 0.4, the daily confirmed number appears
to have an upward trend, and reaches the peak (1315 confirmed per day) after 37 days.
One positive signal is that infected number will not increase infinitely, even if the self-
isolation proportion maintains at a relative low level (q = 0.4), as more and more recovered
people with immunity hinder the spread. However, the cost is greater, because more
individuals will be infected compared with the cases with a higher self-isolation proportion.
The disturbing fact also associated with this case is that elderly people and those with
underlying illness will be put in danger, which makes this case unfavorable. As shown
in Figure 5b, the higher the self-isolation proportion, the less people experienced being
infected during this pandemic. Although self-isolation is an effective strategy to prevent
the infection and reduce the infection rate, self-isolation with a long period and wide range
will lead to a large loss for local economy. In addition, the long period of self-isolation will
reduce the life quality of inhabitants; therefore, a faster and more effective control strategy
is needed.

Apart from self-isolation, diagnostic testing is another frequently adopted strategy to
control the spread, and a combination of these two strategies can effectively shorten the
duration of the epidemic. In the initial setting, only the infected individuals with symptoms
will be tested and confirmed after the incubation period T1. However, for COVID-19, the in-
fected ones within incubation period (asymptomatic) may also infect others; hence, it is
necessary to take precautions to test the asymptomatic individuals periodically in order to
prevent infection. In order to simulate the effect of diagnostic test during the process of
infection spread, a certain proportion of individuals (including both infected and healthy)
are selected randomly to be tested. The asymptomatic infected individuals and those in
latency will be quarantined in advance after being tested. The test strategy is limited by the
production rate of test reagent. For the same production rate of test reagent, two schemes
with different intervals and scales are proposed and compared in this paper:
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1. Test strategy 1: interval of 10 days, 30 percent of individuals are tested;
2. Test strategy 2: interval of 30 days, 90 percent of individuals are tested.

As is shown in Figure 7a, compared with the single self-isolation strategy, a combina-
tion of self-isolation and diagnostic testing results in a significant improvement in terms of
infection duration and number of infected. The results present that strategy 2 is the optimal
strategy (Figure 7b); strategy 1 exhibits an incomplete effect on controlling the spread of
the infection, even though the test interval is the shorter than strategy 2, so the strategy
with an accumulation of test reagent and large-scale collective testing is better than the
strategy with frequent but small-scale testing.

4. Conclusions

A CA model for simulating and analyzing epidemic evolution is proposed in this
paper. Through this model, a simplified social community is considered and expressed
on a two-dimensional plane, and individual heterogeneity is considered with parameters
including sex ratio, age structure, individual immunity, incubation and treatment period,
and population movement. COVID-19 confirmation data from NYC and Iowa are adopted
for model validation purposes, and the number of confirmed in Iowa is predicted with
different control strategies. It is shown that a synergistic action of self-isolation and
diagnostic testing can effectively prevent the spread of infectious diseases. In addition,
the test strategy with a long interval and larger scale is better than that with short interval
and small scale when the production capacity of test reagent is limited.

The authors sincerely hope this work can provide an alternative to study the spread
of infectious disease, and eventually help to control any infection across the world in
the future. Based on the model established in this work, more actual strategies can be
investigated to better facilitate decision-making, including partitioned management and
multi-strategy synergy. Besides infection issues, symptoms could be much more diverse,
corresponding to the change of infection mechanism. It is also helpful and feasible to
identify the evolution state of the spread based on data analysis from systematic point
of view. The spread of all infectious diseases within a certain region can be studied as a
complex system with an inherent mechanism in future study.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9
717/9/1/55/s1, Video S1: Figure 2.mp4, Source code S1: NYC.m, IA.m, IApredict.m, IAtest1.m,
IAtest2.m and qcurve.m.
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Appendix A

The parameters set for NYC and Iowa are presented below. The parameters in the
proposed model can be divided into two types: one kind of parameter is the characteristic
parameter for infectious diseases (including infection period T1, confirmed period T2,
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treatment period T3, vacancy ratio α, moving proportion m, maximum moving step length
L, immunity coefficient f, hospitalization fraction u, and dead fraction k). In this paper,
this kind of parameter is determined by the confirmation data from NYC and verified by
the confirmation data from Iowa. Among the parameters, vacancy ratio α, moving pro-
portion m, and maximum moving step length L do not seem like the disease characteristic
parameters, but in fact, these three parameters determine that an infected individual will
have contact with a certain number of individuals. This has a similar concept named
basic regeneration number R0, and R0 is generally fixed for one particular infection [34].
Immunity coefficient f is a special disease characteristic parameter, because its value is
determined by the data analysis—from [32], the rate of confirmed cases per 100,000 people
by sex and the rate of confirmed cases per 100,000 people by age group can be obtained,
so that the immune coefficient can be set accordingly. For example, the proportion of
immune coefficients for males and females is equal to the proportion of infected for males
and females. The other kind of parameters are the characteristic parameters of the region
in consideration (including the initial number of infected ε, sex ratio gsex, age structure gage,
and self-isolation proportion q), which can be determined by local related data.

Table A1. The parameters set for NYC.

Symbol Description Value

n Region size 1000.000
α Vacancy ratio 0.200
ε Initial number of infected (on 15 February) 250.000

T1 Period from infected to confirmed 10.000
T2 Period from confirmed to hospitalized 4.000
T3 Period from hospitalized to recovered 4.000
m Moving proportion 0.160
L Maximum moving step length 10.000

gmale Male proportion 0.477
gfemale Female proportion 0.523

gage > 60 Proportion of the elderly 0.170
gage < 60 Proportion of the younger 0.830

Table A2. The parameters set for Iowa.

Symbol Description Value

n Region size 1000.000
α Vacancy ratio 0.200
ε Initial number of infected (on 29 February) 20.000

T1 Period from infected to confirmed 10.000
T2 Period from confirmed to hospitalized 4.000
T3 Period from hospitalized to recovered 4.000
m Moving proportion 0.160
L Maximum moving step length 10.000

gmale Male proportion 0.495
gfemale Female proportion 0.505

gage > 60 Proportion of the elderly 0.240
gage < 60 Proportion of the younger 0.760

Table A3. The probability of becoming an asymptomatic patient (pa) for different age groups [31].

Age Range 0–4 5–14 15–29 30–59 60–69 70–79 80–

pa 0.95 0.8 0.7 0.5 0.4 0.3 0.2
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Table A4. The set value of the immunity coefficient.

Immune Coefficient Description Value

fmale Immunity coefficient for male individuals 0.8059
ffemale Immunity coefficient for female individuals 1.0000

fage > 60 Immunity coefficient for old individuals 0.7673
fage < 60 Immunity coefficient for young individuals 1.0000

Table A5. The set value for the hospitalization fraction (u) and dead fraction (k).

Data Range u k

6 March to 23 April 0.31 0.38
24 April to 12 June 0.18 0.33
13 June to 1 August 0.12 0.42

after 1 August 0.11 0.17
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