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Abstract: Porous materials constitute an attractive research field due to their high specific surfaces;
high chemical stabilities; abundant pores; special electrical, optical, thermal, and mechanical properties;
and their often higher reactivities. These materials are currently generating a great deal of enthusiasm,
and they have been used in large and diverse applications, such as those relating to sensors and
biosensors, catalysis and biocatalysis, separation and purification techniques, acoustic and electrical
insulation, transport gas or charged species, drug delivery, and electrochemistry. Porous carbons
are an important class of porous materials that have grown rapidly in recent years. They have the
advantages of a tunable pore structure, good physical and chemical stability, a variable specific
surface, and the possibility of easy functionalization. This gives them new properties and allows
them to improve their performance for a given application. This review paper intends to understand
how porous carbons involve the removal of pollutants from water, e.g., heavy metal ions, dyes,
and organic or inorganic molecules. First, a general overview description of the different precursors
and the manufacturing methods of porous carbons is illustrated. The second part is devoted to
reporting some applications such using porous carbon materials as an adsorbent. It appears that the
use of porous materials at different scales for these applications is very promising for wastewater
treatment industries.

Keywords: porous materials; activated carbon; biomass; activating agent; adsorption;
applications; pollutants

1. Introduction

Porous materials are defined as materials with cavities, or channels, called pores. Pores are
empty spaces that exist between particles of any shape in materials. These empty spaces form the
porosity of the materials, defined as the volume percentage of air in the material that correspond to
the total volume occupied by the voids of the material divided by the total volume of the material [1].
The porous space is a continuity of absence of solid matter nested in the continuity of solid matter.
It is essentially irregular in its forms and inconsistent also in its qualities, which can be given great
complexity. There are two types of porosity: open porosity (on the external environment) and closed
porosity. In all cases, it is generally characterized by its volume fraction (or by the density of the porous
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material) and the pore size distribution. The open porosity notably controls the adhesion properties of
the coatings on the surface of the material [2].

Porous materials have attracted the attention of chemists and materials scientists, and the
development of new porous materials has accelerated research development in recent decades [3–5].
This attention comes back not only to the commercial interest that porous materials have for their
application in various fields such as separation [6,7], catalysis [7–9], adsorption [6,10–15], energy storage
and conversion [16–24], and medicine [25,26], but also, because of the scientific interest in the challenges
posed by their synthesis, their treatment and their characterization. Indeed, the progress of technology
and the demand for porous materials have pushed researchers to develop synthesis methods allowing
for controlling the parameters that determine the structural and textural characteristics of these
materials. In this context, a lot of works have shown that controlling the pore size is essential for many
specific applications. However, this technological and industrial development with the growth of
the world population and domestic activities are causing a remarkable increase in water pollution.
It is therefore necessary to purify wastewater before it is released into the environment. Thus, several
wastewater treatment technologies have been developed, the adsorption of which on porous materials
is proving to be one of the most promising techniques for the removal of pollutants from wastewater
due to its affordable price and ease of disposal at large-scale use [27–30]. The most widely used
adsorbents are activated carbons, and they are considered the most useful for the removal of organic
and inorganic pollutants due to their structural variability (macro-, meso-, and micropores), their large
specific surface area, and a wide availability of functional groups [29,31,32].

The purpose of this review is to discuss the preparation processes of porous carbons as well as the
main carbon precursors used. In addition, the performance and characteristics of the resulting carbons
are investigated. Finally, the contribution of activated carbon in the field of wastewater treatment will
also be discussed in detail.

2. Classification of Porous Materials

According to the International Union of Pure and Applied Chemistry-USA(IUPAC) [33,34],
porous materials are classified according to the diameter of the pores (dp) that constitute them, and the
three classes are seen in Figure 1.
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Pure and Applied Chemistry (IUPAC).

2.1. Microporous Materials

Microporous materials are those whose pore diameter is less than 2 nm (dp < 2 nm). They can be
prepared by the sol-gel process and are widely used in catalysis and adsorption.

2.2. Mesoporous Materials

In this category of materials, the pore diameter varies between 2 and 50 nm (2 nm < dp < 50 nm).
A distinction is made between crystalline mesoporous materials and ordered amorphous materials,
which are intermediate between that of crystalline microporous solids of the zeolite type and disordered
amorphous solids such as silica gel [35–37]. Mesoporous materials have several known applications
such as catalysis, filtration, pollution control, optics, and even electronics.
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2.3. Macroporous Materials

As these materials have fairly large pores (dp > 50 nm), they find their use in the field of
decontamination of polluted water with organic dyes and as a catalyst support for the photodegradation
of the pollutant [20,38–41].

3. Graphite and Graphene

Graphite consists of interconnected carbon atoms arranged to hexagonally form flat networks in the
form of layers stacked parallel to each other (Figure 2b) [42,43]. These layers are connected by low energy
van der Waals type bonds. This explains the laminated morphology of graphite [42,43]. Graphite is
characterized by high thermal and electrical conductivity, good chemical stability, and remarkable
plasticity [43–50]. A good thermal and electrical conductivity is attributed to the delocalization of
the π-electrons of the carbon atoms in graphite, and its plasticity can be explained by the possibility
of sliding the sheets layers one onto the other [42,43]. These favorable characteristics make graphite
interesting materials for improving the transfer and storage of thermal energy, for preparing anodes
of lithium-ion batteries, and for electrochemical applications. In this context, Zhong et al. [51]
used pitch-based graphite foams to increase the thermal diffusivity of paraffin wax for a thermal
energy storage application. Later, Jana et al. [45] studied the effect of the addition of graphite on
the conductivity of a tannin-based resin. They showed, contrary to what was expected a priori, that
the smaller graphite particles were much more suitable for obtaining conductive matrices. Indeed,
the use of small grains made the viscosity higher because of their higher surface and made it possible
to obtain homogeneous foams with a higher density [45]. In 2019, Zhang et al. [52] showed that the
use of graphitized mesoporous carbon as anode materials for lithium-ion batteries improved speed
performance and had a good cycling stability with a reversible capacity of 248.3 mA h g−1 at 1 C after
100 cycles. In the same context, porous graphitic carbon was synthesized from Eichhornia crassipes
plants collected from the Coimbatore region, Tamilnadu-India, and has been used for the sustainable
fabrication of hole-transporting materials electrode in perovskite solar cells [53].
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Figure 2. A conceptual model depicting the structure of graphene (a), graphite (b), and carbon
nanotubes (c).

Graphene is related to graphite, and it was isolated experimentally for the first time, in 2004,
from graphite [54–57]. It is a planar material with a hexagonal structure (Figure 2a), often compared to
a honeycomb network, in the form of a two-dimensional (2D) crystal consisting of a simple plane of
carbon atoms in sp2 hybridizations [58]. Graphene represents the basic unit of graphite, and it has a
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high optical transparency and remarkable rigidity with a tensile strength of more than 130 GPa [59].
It can be wrapped to form many other forms of carbon such as fullerenes, nanotubes, or stacked in
graphite. It is important to note that the honeycomb structure of graphene gives it excellent stability
with a high mobility of the electrons on its surface [59–61] and can be used in multiple applications
in the fields of electronics (flexible screens, high frequency electronics, nanoelectronics, batteries,
chargers), the environment (atmospheric pollution sensors, desalination of seawater), and health
(targeted therapy). Generally, there are three main techniques for making graphene. The first allows
us to isolate a single plane of graphene by the exfoliation of a graphite crystal using adhesive ribbon;
this operation is repeated several times so that the film is sufficiently thin before depositing it on a
substrate, which more often is silica [55,56,62]. The second method consists of an annealing at high
temperature of a silicon carbide substrate, which induces the sublimation of Si, consequently producing
a reorganization of the carbon atoms, leading to the formation of graphene planes on the surface [63–65].
The third method is based on chemical deposition on metals from hydrocarbons [44,62,66–69]. The first
technique is widely used because it is simple and inexpensive and also because the properties of
graphene are easily accessible [55,70,71].

The chemical properties of graphene are similar to those of graphite, and graphene can be
used in multiple applications, in particular for field effect transistors due to the high mobility of the
surface electrons. Because graphene has chemical stability in contact with electrolytes, mechanical
elasticity and good electrical conductivity, it is widely used as a storage medium for lithium [72–75].
It is also used in gas sensors such as NO2, CO, H2S, H2, NO, NH3, and CO2 [76–85], or even
as a biosensor for the detection of dopamine [86,87], β-nicotinamide adenine dinucleotide [88],
paracetamol [87,89], Kojic acid [90], uric acid [86,87], vanillin [91], and caffeic acid [92]. Graphene is
also used as a drug carrier [93–97] and as a charge conductor in solar cells as well as a light collector
including cells and photodetectors [53,60–62,98–100]. He et al. [101] prepared a three-dimensional
graphene-CNTs@ Se aerogel, usingCNTs/selenium that is sandwiched between graphene nanosheets
via an environmentally friendly solvothermal method. They showed that due to the 3D sandwich-type
protection of the active Se, the cathode offers an initial coulombic efficiency of 92% as well as an
excellent cyclic performance. This greatly facilitates the improvement of the specific energy density of
Li-Se batteries [101]. Likewise, it has been shown that a graphene-CNTs-Li2S hybrid aerogel could be
effectively used as a high capacity cathode for Li-S batteries with a reversible discharge capacity as large
as 1123.6 mA h g−1, and a decrease in capacity of less than 0.02% per cycle [102,103]. The efficiency
of these materials is attributed to the 3D structure, which is achieved by using two-dimensional
(2D) graphene nanosheets and one-dimensional (1D) carbon nanotubes (CNTs), thus forming highly
efficient channels for electron transfer and ionic diffusion [102,103]. This architecture was used for the
development of a CoS2-carbon nanotubes-graphene anode for high performance lithium-ion batteries
that can deliver an initial discharge capacity of 993 mA h g−1 at 100 mA g−1 [104].

4. Carbon Nanotubes

Carbon nanotubes are an allotropic form of carbon (Figure 2c), observed for the first time in 1991 by
Japanese researcher Sumio Iijima during the synthesis of fullerenes by an electric arc [105]. They have
been characterized as graphene sheets that are wound on themselves in the form of microtubes and
will later be renamed multiwall carbon nanotubes (MWCNTs). In 1993, the synthesis of single-walled
carbon nanotubes (SWCNTs) was reported by optimizing the method of synthesis by an electric
arc [106,107]. The multisheet nanotubes consist of several graphene sheets wound concentrically with
a spacing between two sheets of approximately 3.6 Å, slightly greater than the spacing between two
sheets in graphite. The diameter of the nanotubes varies, depending on the number of sheets, from 1 to
50 nm, and their lengths can reach 1 µm [43,105,108–110]. SWCNTs consist of a graphene sheet wound
on itself, and they form a tube whose diameter is between 0.4 and 3 nm. Carbon nanotubes are therefore
composed of one or more sheets of carbon atoms, as in graphite, wound on themselves forming a
tube. Carbon nanotubes have good mechanical properties, good adhesion, and excellent electrical
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conductivity [43,111–113]. Some of these nanotubes have metallic properties [75,114,115], while others
are semiconductors [116–121]. SWCNTs and MWCNTs are manufactured by almost the same method;
the only distinction can appear on the use of the metal catalyst, generally nickel, iron, or cobalt, which is
essential for the synthesis of fullerenes. They can be prepared mainly by arc discharge, laser ablation,
and chemical vapor deposition [109,120,122–126], involving one of the following as carbon precursors:
xylene, acetylene, toluene, methane, benzene, etc. [43]. On the industrial level, carbon nanotubes,
with the particularity that they possess, residing in a small amount of impurities, are used in many
forms such as the reinforcing elements of polymers and composites, nanoporous materials for energy
storage, passive (nanometric conductors) or active components (diodes and transistors), and systems
allowing for the vectorization of drug molecules for the treatment of certain diseases [120–122,127–132].

5. Activated Carbon

Activated carbon is porous, amorphous organic material with a complex structure, characterized
by high carbon content [133]. These materials include a wide range of carbonaceous substances
with different properties and characteristics (porosity, specific surface, chemical nature of the surface,
density, etc.). Activated carbon can be produced from any substance with a high carbon content,
whether of a vegetable, fossil, or material of a synthetic nature; examples include date stones [134,135],
coffee grounds [133,136,137], almond shell [138], coconut shell [139], corncob wastes [140], Acacia glauca
sawdust [141], waste potato residue [142,143], rice husk [144], sunflower piths [145], tomato stem [146],
banana peel [147], etc.

5.1. Preparation of Activated Carbon

Generally, activated carbon is prepared in two stages. The first step is the carbonization of raw
material to produce a carbon surface. This step is followed by the activation by chemical oxidation or
heat treatment in order to further boost the surface of the material obtained (Figure 3).
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5.1.1. Pyrolysis

Pyrolysis (carbonization) is the thermal decomposition of carbonaceous materials at high temperature
between 400 and 800 ◦C, under an inert atmosphere. The resulting material is an amorphous solid rich in
carbon. The remaining carbon atoms are grouped in sheets that arrange themselves irregularly, leaving
gaps between them. These interstices give rise to a primary porosity of the charred product. It should
be noted that the heat treatment strongly influences the texture of the materials [148]. Indeed, a gentle
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heating rate slightly modifies the carbon structure compared to the original structure of the material used
and regenerates a reduced rate of volatile compounds. In the same context, the pyrolysis temperature and
the residence time determine the mass loss and the nature of the surface of the biochar prepared.

The activated carbon can be obtained by the pyrolysis of carbon gels obtained by the sol-gel
process. This process involves polycondensation reactions of organic precursors. In 1989, Pekala et al.
introduced for the first time the synthesis of carbon aerogel by the polycondensation of resorcinol
and formaldehyde in the presence of sodium carbonate as a basic catalyst [149,150]. Subsequently,
numerous studies have vested in the preparation of polymers and activated carbon precursors by the
condensation of hydroxylated benzene (phenol, catechol, 4-methylcatechol, m-cresol, hydroquinone,
phloroglucinol, resorcinol, etc.) with aldehyde (formaldehyde, furfural, etc.) [151–158].

5.1.2. Activation

To improve the textural characteristics of the carbonate, it is necessary to subject it to an activation
step. This involves opening the initial porosity and increasing accessibility to the internal structure,
as well as creating new pores, eliminating the tar that clogs the pores and creating surface functions.
This operation, therefore, leads to a loss of mass, and the estimation of the degree of activation can be
determined by the “burn-off”:

Burn− off (%)= ((m i−mf) 100)/mi) (1)

where mi is initial mass and mf is final mass. The burn-off provides information on the rate of activation
progress and the nature of porosity. Activation can be carried out by a physical or chemical process.

Physical Activation

Physical activation consists of oxidation of biochar at high temperature (>700 ◦C) under a stream
of an oxidizing gas such as water vapor, oxygen, and carbon dioxide. The reactions are shown in
Equations (1)–(4).

C + H2O → CO + H2C + H (1)

C + O2 → CO2C + O (2)

C + 1/2 O2 → COC + O (3)

C + CO2 → 2 COC + CO (4)

During physical activation, the development of the porosity of the biochar depends on the nature of
the oxidizing gas used, and the pores changes from micro- to mesopores and macropores [27,31,159,160].
The porosity is more developed in the presence of water vapor than in the presence of carbon dioxide.
Indeed, the size of the water molecules is smaller than that of carbon dioxide, which gives it a greater
diffusion in the pores of carbon, thus causing the enlargement of the micropores in mesopores and
macropores. Generally, carbon dioxide promotes the formation of a microporous network, while water
vapor generates a mesoporous or macroporous network [29,31,159–161]. Furthermore, the use of
oxygen is accompanied by a significant loss in mass [27,159]. It should be noted here that physical
activation is preferred because of the low cost of preparation and its simple operation, making it
possible to optimize the pyrolysis step and therefore producing better control of the porosity of the
activated carbon. In fact, optimization of the yield and surface properties of activated carbon lies in
optimizing the temperature, the activation time, and the flow rate of the gas (CO2, vapor, N2) [27,160].

Chemical Activation

The chemical activation is carried out with chemical reagents that promote dehydration and
a structural reorganization of the pores of the carbonaceous material. The procedure consists of
impregnating the carbonaceous material with the chemical agent then undergoing a heat treatment at a
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temperature between 400 and 900 ◦C. Various chemical agents can be used, namely salts of alkali metals
(AlCl3, ZnCl2), acids (H3PO4, H2SO4), or bases (KOH, NaOH, K2CO3, Na2CO3) [134,140,162,163].
Zinc chloride was the main chemical activator used on a large scale. It is now abandoned due to
environmental problems linked to the toxicity of residual zinc-derived compounds. Alkali metal
hydroxides (KOH, NaOH) are also used successfully to obtain a high surface area reaching
3000 m2/g [164]. Alkali metal hydroxides are often used to enlarge microporosity, while zinc chloride
is used to develop strong microporosity alongside small mesoporosity. It turns out that KOH is the
most effective activator (effective in terms of large specific surface area and high microporosity) for
preparing activated carbon from biomass [31,165–167]. Furthermore, orthophosphoric acid (H3PO4) is
widely used in industry to impregnate lignocellulosic precursors and synthetic materials to provide
active carbon with smaller pores than those activated with ZnCl2 [168]. Indeed, phosphoric acid plays
both the role of an acid catalyst to favor the reactions of the depolymerization of the macromolecules
that constitute biomass (cellulose, hemicellulose, and lignin) while promoting the formation of
crosslinking through reactions of dehydration, cyclization, and condensation, and a combining agent
that subsequently reacts with organic matter to form phosphate esters and polyphosphates, both of
which serve as bridges between the fragments of biopolymers that constitute the lignocellulosic
biomass [31,169,170]. Furthermore, the addition (or insertion) of phosphate groups leads to a process
of expansion of the carbonaceous material which, after the elimination of the acid, leaves the matrix in
a developed state with an accessible porous structure [31].

5.2. Different Forms of Activated Carbon

Activated carbon is widely used in the industry for a variety of applications [171]. Each application
requires a type and form of activated carbon. The most available forms in the markets are seen in
Figure 4 and also presented in the following subsections.
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5.2.1. Activated Carbon Powder (CAP)

It occurs in the form of fine particles of size less than 100 µm with average pore diameters of
between 0.15 and 0.25 µm (Figure 4a). They are characterized by a large external surface and pores
of reduced depths. This type of carbon is frequently used for the treatment of liquid effluents in
batch mode.
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5.2.2. Granular Activated Carbon (CAG)

The granular or granular activated carbon is formed by grains with a size between 0.5 and 10 mm
(Figure 4b). These grains are known by a small pore diameter, a large internal surface, and a relatively
small external surface. This type of carbon is intended for the treatment of gases and liquid effluents.

5.2.3. Extruded Activated Carbon

To make extruded activated carbon, the carbonaceous raw material is finely ground; a binder is
added to this powder in order to obtain a paste which, by an extrusion device, produces extrudates of
a determined length and width (Figure 4c). These extrudates are then charred and activated under a
gas flow. These materials are used for gas phase applications.

5.2.4. Impregnated Activated Carbon

Activated carbon can also be impregnated with a reagent to optimize its adsorption capacities for
certain molecules (Figure 4d). Thus, the removal of certain impurities from gas is facilitated by this
type of material, whereas it would have been impossible on a conventional carbon adsorbent.

5.2.5. Activated Carbon Fabric (CAT)

The active carbon tissues are obtained by the carbonization of a synthetic precursor tissue of
viscose or polyacrylonitrile type followed by activation Figure 4e). These fabrics are extremely porous
materials with a very high specific surface of up to 2000 m2/g and a distribution of micropores of 90%
of the total pore volume. These materials are known for their medicinal applications and in catalysis.

5.3. Application of Activated Carbon for Wastewater Treatment

Activated carbon has long been one of the most widely used materials in the industrial sector
due to its essential role in the purification of liquids and the filtration of gases. However, innovations
in the manufacture and use of activated carbon are driven by the need to reuse natural resources
and prevent environmental pollution. Thus, a lot of progress has been made on the optimization of
these carbonaceous materials, both in terms of their manufacture and their regeneration. This has
prompted several industries—for example, the metallurgical, petroleum, food, pharmaceutical,
chemical, and automotive industries—to use activated carbon for various uses. Currently, the main
application of activated carbon lies in the adsorption processes of pollutants in the gas or liquid
phases. In fact, activated carbon is in the category of amorphous carbon, which has been chemically
improved into a porous structure, mostly microporous with a surface functionality that offers active
carbon the properties of excellent materials for the adsorption of various chemical species [43,172–174].
This adsorption phenomenon is due to the existence of van der Waals type physical forces, inducing a
higher concentration of the adsorbate at the interface than in the fluid. Adsorption can also be caused
by the formation of covalent bonds between the active sites present on the surface of the carbon and
the adsorbate, which is similar to a phenomenon of chemisorption. In this regard, a limited overview
is presented on the use of active carbon for the adsorption of pollutants in the liquid phase, and in
particular, the field of wastewater treatment. The physicochemical surface properties of activated
carbon are generally governed by the nature of the starting materials, the activation methods, and the
preparation conditions (Table 1).
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Table 1. The experimental conditions for activated carbons production, specific surface area (SBET), and adsorption capacities against various toxicants.

Carbon Precursor Activ. Temp./Activ.
Time Activation Reagent SBET (m2/g) Dose (g/L) Pollutant Qmax (mg/g)/C0

(mg/L) Ref.

Acacia erioloba 600 ◦C/1 h Chemical H2SO4 10.4 1 MB 1.5/25–500 [175]

Acacia glauca 450 ◦C/1 h Chemical H3PO4 311.2 2 4-NP 204.7/50–500 [141]

Acrylic fibrous waste 1200 ◦C Physical O2 280 2 MB 8.7/2–10 [176]

Apricot shell 400 ◦C/1.5 h Chemical H3PO4 307 - Tetracycline 76.9 (FBA) [177]

Ashitaba waste 800 ◦C/1.5 h Chemical ZnCl2 1228.5
0.01 Congo Red 345.1/0–100 [178]
0.01 MB 289.2/0–50

Bamboo 600 ◦C/4 h Chemical H3PO4 1400 1 Reactive Black 5 489.9/10–1000 [179]

Bamboo waste + Ms 550 ◦C/0.5 h Chemical ZnCl2 289.5 8 Phenol 25.3/227.5 [180]

Banana peels

MW 700W/10 min Chemical KOH/NaOH 1038 2.5 MG 22.5/10 [147]

800 ◦C/0.5 h Chemical K2CO3 1188 0.4
Me-Red 400/40–220 [181]

MB 454.5/40–220

Banyan tree 500 ◦C/1 h Chemical KOH 988 2.5 Phenol 26.9/20–100 [182]

Bermuda grass 450 ◦C/2 h Chemical KOH 1833.6 0.5 Cr(VI) 403.2/0–200 [183]

Black cumin seeds 40 ◦C/48 h Chemical H2SO4 - 2 MB 16.8/100 [184]
2 Pb2+ 17.9/100

Black wattle bark waste 700 ◦C/2 h Chemical ZnCl2 414 1 Phenol 85.7/50–500 [185]

Caesalpinia ferrea 600 ◦C Chemical ZnCl2 1480 1.5 Captopril 535/120–2500 [186]

Carya illinoinensis 700 ◦C/2 h Chemical +
Physical

NaCl, CaCl2,
KCl/CO2

490–808 2 Cu2+, Cd2+,
Ni2+, Zn2+

0.011–0.368
mmol/g [187]

Chamerion angustifolium 450 ◦C/0.5 h Physical - 117.7 0.8
Co2+ 9.8/1–40 [188]
Ni2+ 10.1/1–40

Citrus limetta peels
250 ◦C/2 h Chemical FeCl3 - 1 F− 4.9/5–30 [28]
500 ◦C/2 h Chemical FeCl3 - 1 F− 9.7/5–30
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Table 1. Cont.

Carbon Precursor Activ. Temp./Activ.
Time Activation Reagent SBET (m2/g) Dose (g/L) Pollutant Qmax (mg/g)/C0

(mg/L) Ref.

Coconut husk 350 ◦C/3 h Chemical KOH 1448 - F− 6.7 (FBA) [139]

Coconut shell 600 ◦C/1 h Chemical NaOH 876 1 MB 200/25–250 [189]

Cocos nucifera shell 275 ◦C/2 h Physico
chemical

ZnCl2/H2O 1652 1
Phenol Red 351/500 [190]

Phenol 264/500

Coffee grounds

800 ◦C/1 h Physico
chemical

KOH/CO2 1865
1 Phenol 211/10–200 [136]
1 MB 390/50–500

950 ◦C/3 h Physical CO2 2407.8
0.66 MB 680/20−150 [29]
0.66 MO 612/20−150

Coffee husk
800 ◦C/0.5h Physical H2O 383 1

Ni2+
57.1/30–120 [191]

Coffee spent 464 0.8 51.9/30–120

Corncob 400 ◦C/1.5 h Chemical H3PO4 1097 2 NH4+ 17/10–40 [140]

Corncob 800 ◦C/1 h Chemical KOH 1054.2 0.02 Hg(II) 2.3/0.02–0.1 [192]

Corncob 800 ◦C/1.5 h Chemical NaOH 2381 0.2 Pb2+ 381/10–500 [193]

Corncob 892 ◦C/40 min Physical H2O - 0.4 Roxarsone 309.6/40–350 [194]

Date palm petiole 600 ◦C/2 h Chemical NaOH 655 4 Indigo carmine 53.7/10–200 [135]

Durian shell 900 ◦C/15 min Physical CO2 917
10 AMX 142.7/250 [195]
10 Tetracycline 126/250

Eucalyptus residue 400 ◦C/3 h Chemical H3PO4 1545 0.2 MB 977/140–260 [196]

Eucalyptus sawdust 700 ◦C/75 min Chemical FeCl3 645.2 1 MB 162.8/50–500 [197]

Fox nutshell
600 ◦C/1 h

Chemical
ZnCl2

2869 5 Phenol 75.3 [198]
0.4 MB 968.7

700 ◦C/1 h H3PO4 2636 0.4 Cr(VI) 74.9/35 [199]



Processes 2020, 8, 1651 11 of 29

Table 1. Cont.

Carbon Precursor Activ. Temp./Activ.
Time Activation Reagent SBET (m2/g) Dose (g/L) Pollutant Qmax (mg/g)/C0

(mg/L) Ref.

Grape waste 600 ◦C/1 h Chemical ZnCl2.5 1455 0.6
MY 386/200–900 [200]
MB 417/200–900

Grapefruit peels 800 ◦C/0.5 h Chemical K2CO3 1198 0.4
Me-Red 454.5/40–220 [181]

MB 456.2/40–220

Guava seeds 750 ◦C/1.5 h Chemical NaOH 2573.6 1 AMX 570.4/400–800 [162]

Jackfruit-PPI-1 600 ◦C/1 h Chemical K2CO3 987 1 Disperse Blue 14 178.5/10–120 [201]

Maghara coal 550 ◦C/1.5 h Chemical NaOH 49 0.5 MB 28/10–50 [202]

Mandarin peels 800 ◦C/0.5 h Chemical K2CO3 1077 0.4
Me-Red 357.1/40–220

[181]
MB 400/40–220

Olive stones 500 ◦C/3 h Physical N2 9.1 1 MB 769/50–1000 [203]

Opuntia ficus-indica 600 ◦C/2 h Chemical NaOH 331.5 6 4-NP 16.1/10–150 [204]

Palm shell 900 ◦C/1 h Chemical
H2SO4 +
K2S2O8

770 -

Bis-A 45.45

[205]

4-ClP 163.9

4-NP 166.7

2,4-DNP 250.0

2,4,6-TNP 142.0

PAN 800 ◦C/0.5 h Chemical

K2CO3 2217 -
MCPA 4.2 mmol/g

[206]
2,4-D 3.4 mmol/g

KOH 2828 - MCPA 5.1 mmol/g

2,4-D 4.4 mmol/g

Parthenium
hysterophorus 500 ◦C/2h Chemical H3PO4 256.5 90 Cr 0.7/40–100 [207]
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Table 1. Cont.

Carbon Precursor Activ. Temp./Activ.
Time Activation Reagent SBET (m2/g) Dose (g/L) Pollutant Qmax (mg/g)/C0

(mg/L) Ref.

Peanut shells 700 ◦C/3 h Chemical H2SO4 570 20
2,4-DNT-3-SO3

+
2,4-DNT-5-SO3

32 [208]

PET 800 ◦C/0.5 h Chemical

K2CO3 1206
- MCPA 2.4 mmol/g

[206]
- 2,4-D 1.9 mmol/g

KOH 1439
- MCPA 2.6 mmol/g

- 2,4-D 2.5 mmol/g

Phoenix dactylifera L.

500 ◦C/1 h Chemical KOH 817 0.15 Levofloxacin 101.3/50–250 [134]

300 ◦C/ 0.5 h Chemical H3PO4 1225.5 5.25 Rh-B 196 [209]

500 ◦C/1 h Chemical K2CO3 852 -
Ciprofloxacin 2 (FBA)

[210]
Norfloxacin 1.9 (FBA)

Pinus eldarica 750 ◦C/3 h Chemical K2CO3 1201 0.1 SDS 347/10–125 [211]

Pomelo peels 800 ◦C/0.5 h Chemical K2CO3 836 0.4
Me-Red 208.3/40–220

[181]
MB 222.2/40–220

Potato peels 400 ◦C/1 h Chemical H3PO4 904.5 0.5 Bis-A 445.9/0–300 [212]

Potato peels 500 ◦C/ 0.5 h Chemical H3PO4 676 10 Pb2+ 8.9/100 [143]

Residue from biomass
gasification 600 ◦C/1 h Chemical ZnCl2 259 5

Fe2+ 20.5/25–125

[213]Cu2+ 23.1/25–125

Ni2+ 18.2/25–125

Rice husk 950 ◦C/1 h Chemical K2CO3 1330 1 NO3− 8.1/15 [144]

Rice husk 800 ◦C/1.5 h Chemical NaOH 2786 0.2 Pb2+ 492/10–500 [193]

Sargassum fusiforme 900 ◦C/0.5 h Physical CO2 1329 0.8 Congo Red 234/50–200 [159]

Sewage sludge 500 ◦C/1 h Chemical ZnCl2 721 0.1
FL, ANT, PYR,

BeP, OP, NP,
DBP, DEHP

0.07–2.8/
0.01–0.3 [214]



Processes 2020, 8, 1651 13 of 29

Table 1. Cont.

Carbon Precursor Activ. Temp./Activ.
Time Activation Reagent SBET (m2/g) Dose (g/L) Pollutant Qmax (mg/g)/C0

(mg/L) Ref.

Sugarcane
bagasse

550 ◦C/0.5 h Chemical ZnCl2 182.9 0.2 Hg2+ 11.5/1
[30]

300 ◦C/1 h Chemical H3PO4 7.4 0.2 Hg2+ 13.6/1

Sunflower piths 700 ◦C/1 h Chemical
NaOH 2690 1 MB 965/50–1000

[145]
KOH 2090 1 MB 580/50–1000

Syzygium cumini seed 900 ◦C/1 h Chemical KOH 747 6 F− 1.2/20.04 [215]

Tomato stem 700 ◦C/1 h Chemical FeCl2 971 1 Congo red 158.7/100–500 [146]

Tomato waste 600 ◦C/1 h Chemical ZnCl2 1093 0.6
MY 385/200–900

[216]
MB 400/200–900

Tyre 750 ◦C Chemical KOH 700 0.5 Bis-A 123/5–80 [217]

Ulva lactuca 800 ◦C/3 h Chemical KOH 345.4 0.06

Cu2+ 84.7/5–80

[163]Cd2+ 84.6/5–80

Cr3+ 82/5–80

Pb2+ 83.3/5–80

Walnut shell 900 ◦C/1.5 h Chemical ZnCl2 1626.9
0.01 Congo Red 281.4/0–100

[178]
0.01 MB 314.1/0–50

Waste carpets 700 ◦C/4 h Chemical H3PO4 953 8 MB 769.2/50–800 [218]

Waste tires 750 ◦C Chemical KOH 265

0.3 Pb2+ 49.7/5–100
[219]0.3 Cd2+ 10.4/5–100

0.3 Cr3+ 29.4/5–100

White sugar 700 ◦C/2 h Chemical NaOH 1144.7 0.8 Rh-B 123.4/25–100 [220]
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As a result, the adsorption properties of activated carbon vary from source to source. Biomass is
widely used for the production of activated carbon because of its great abundance, its renewability,
and its low cost. In fact, various biomass wastes have been used to produce adsorbents by chemical or
physical activation. Nowicki et al. [181] studied the influence of the precursor on the structural and
sorption properties of methyl red (Me-Red) and methylene blue (MB)of activated carbon obtained by
chemical activation with potassium carbonate involving grapefruit, mandarin, pomelo, and banana
peels as precursors. They confirmed that this waste can be successfully used as precursors for the
preparation of activated carbon that show a well-developed porous structure with specific surfaces
of 836, 1198, 1077, and 1188 m2/g, respectively, optimizing the conditions activation (temperature,
time, impregnation ratio). It turns out that the efficiency of removal of Me-Red and MB from aqueous
solutions depends on the type of precursor used and that the adsorption capacity increases with
the increase in the specific surface area of the adsorbent. Charcoal from grapefruit peels was found
to be the most effective adsorbent with a sorption capacity of 456.2and 454.5 mg/g for MB and
Me-Red, respectively. In the same context, Baysal et al. [145] found that the adsorption capacity of MB
increases from 580 to 965 mg/g when the surface area of activated carbon obtained from sunflower
piths increases from 2090 to 2690 m2/g. The increase in specific surface area was attributed to the
nature of the activating agent where the highest value was obtained with sodium hydroxide [138].
Activation by potassium hydroxide mainly caused the development of micropores with a very narrow
pore distribution. Thus, the sodium hydroxide appeared to be more reactive, which resulted in
the micropores fusing to form mesopores [135,145,193,204]. Indeed, several studies have reported
that potassium hydroxide is an activator that promotes the formation of activated carbon with a
microporous structure [166,167,183,206,221]. However, some authors obtained a mesoporous structure
by activation with potassium hydroxide [134]. Indeed, the structural properties of activated carbon
also depend on the temperature and the duration of activation as well as the impregnation ratio.
For example, the activated carbon obtained from a near of corn passes from a macroporous structure
for a pyrolysis temperature of 800 ◦C and duration of 1 h [192] to a microporous structure for a
pyrolysis temperature of 850 ◦C and duration of 3 h [221]. Likewise, the specific surface increases
from 1054 to 1618 m2/g [192,221]. In this respect, the variation in the parameters of preparation of
the activated carbon offers varied in the textural and structural properties. Consequently, there is
a variation of the porosity, both in shape and in dimensions, of the functional groups and of the
pHZCN. These properties with the conditions of application determine the applicability of the activated
carbon. Large-pore activated carbon is effectively used for the adsorption of large pollutants and vice
versa [135,179,204,206].

Da Paixao Cansado et al. [206] did a comparative study of the adsorption of pesticides on
chemically prepared activated carbon involving K2CO3 and KOH. The aim was to obtain activated
carbon from polymer waste (Polyacrylonitrile (PAN) and Polyethyleneterephthalate (PET)) and to
determine their main characteristics, namely the characterization of their porosity, their functional
groups on the surface, and their adsorption capacities for 4-chloro-2-methylphenoxyacetic acid (MCPA)
and 2,4-dichlorophenoxyacetic acid (2,4-D). The results showed that these pollutants were better
adsorbed on the activated carbon obtained with KOH, which has a microporosity and a specific surface
area greater than that obtained with K2CO3 [206]. In the same context, Laksaci et al. [136] studied
the influence of the combination of CO2 with KOH on the morphological properties and the sorption
capacities of adsorbents from coffee grounds for phenol and MB. Activation by KOH under CO2 flow
considerably improves the porous structure of the adsorbents. Indeed, the use of CO2 makes it possible
to increase the diameter of the pores and develop a narrow distribution of the size of the pores [136].
This improves the microporosity of the activated carbon and increases the adsorption for large organic
molecules. The results showed that MB adsorbs better than phenol with adsorption capacities of 390
and 211 mg/g, respectively [136].

Activated carbon obtained from date palm petiole via chemical activation using sodium
hydroxide showed a surface area of 655 m2/g, with a mesoporous structure [135]. This mesoporosity
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is a favorable structural property for use in the elimination of indigo carmine from aqueous
solution in batch and continuous column systems. In batch mode, the adsorption was chemical and
exothermic, and it underwent pseudo-second-order model kinetics. The adsorption mechanism is
related to the physisorption enhanced by chemisorption. The adsorption capacity of the indigo
carmine decreases from 53.76 to 32.57 mg/g if the temperature rises to 40◦C [135]. However,
in continuous mode, this activated carbon provides good efficiency removal of indigo carmine after
three repetition cycles [135]. It appears that the adsorption is largely influenced by the pH of the
solution and the pHZCN. The effect of pH on adsorption can manifest itself through two mechanisms:
an electrostatic interaction between the functional groups of the adsorbent (carboxylic, phenolic,
lactonic, basic functions, etc.) and the adsorbate, or a chemical reaction between adsorbent and
adsorbate. In fact, at pH<pHZCN, the surface of the carbon is positively charged, which promotes the
adsorption of the anions, while the adsorption of cations is favored at pH>pHZCN, where the surface of
the carbon is negatively charged [28–30,135,159,176,184,196,211,222–224]. Tu et al. [183] studied the
sorption properties of Bermuda grass derived activated carbon for Cr(VI) removal. Sorption of Cr(VI)
ions depends on pH of the solution; the best Cr(VI) uptake was reported at pH 2.0 with a maximum
adsorption capacity of 403.2 mg/g, and the removal mechanism was predominantly chemisorption.
The same observations were reported by Bedada et al. [207] using activated carbon produced from
Parthenium hysterophorus weed chemically activated by phosphoric acid. This is to highlight that
mostly metal ions (Pb2+, Cd2+, Cr3+, Fe2+, Cu2+, Ni2+, Co2+, Hg2+, etc.) removal is favorable in the pH
range 2–6 [143,163,188,192,213,219].

In addition, the search for inexpensive alternative resources as well as methods of preparing
activated carbon has attracted the attention of scientific researchers. Several researchers are interested
in converting waste from the polymer and textile industries into activated carbon as a favorable
approach [176,206,217–219,225]. In this context, activated carbon derived from acrylic fiber waste is
obtained by physical activation in the presence of air via controlled heat treatment and used as an
adsorbent for the removal of MB from aqueous media [176]. The results indicate that the adsorption of
MB on activated carbon requires a longer equilibrium time when the initial concentration of dye is
increased with an adsorption capacity of 8.7 mg/g [176]. Likewise, Hassan and Elhadidy transformed
carpet waste into activated carbon by activation with H3PO4 at different impregnation ratios [218].
They found that the specific surface area of activated carbon increases with the impregnation ratio,
which reaches 953 m2/g for an impregnation ratio of 3. This carbon has a mesoporous structure
promoting the adsorption of MB where the capacity of adsorption is 769.2 mg/g [218]. A study of the
effects of the impregnation rate, the carbonization temperature, and the time on the characteristics
of the active carbon produced from tomato waste by chemical activation with ZnCl2, was carried
out by Saygili and Güzel [216]. This study showed that the influence of the operating parameters
on the properties of the pores of the carbons followed a sequence of carbonization temperature>

carbonization time> impregnation rate. The activated carbon produced under optimal conditions has
a specific surface of 1093 m2/g with a mesoporous structure. This carbon has been used effectively
for the adsorption of large MB and metanil yellow (MY) molecules, showing maximum monolayer
adsorption capacities of 400 mg/g for MB and 385 mg/g for MY [216]. The same observations were
made by Wang et al. [167] during the preparation of carbon derived from peanut shell by activation by
potassium hydroxide.

Certain inorganic anions constitute a group of pollutants in wastewater that are known by their
toxic and carcinogenic effects. Among these ions are the nitrates (NO3−) and fluoride (F−) ions.
It was reported that activated charcoal, derived from Rice husk developed by chemical activation
using potassium carbonate as an activating agent followed by modification by urea, could remove
the nitrate ions from aqueous solutions with a maximum adsorption capacity of 8.1 mg/g [144].
In addition, activated carbon has been used effectively for defluorination of water. By way of example,
the citrus limetta peels give, by activation with FeCl3, an activated carbon with a maximum monolayer
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capacity of 9.7 mg/g under the optimal adsorbent dosage conditions 1 g/L, a contact time of 240 min,
and a temperature of 25 ◦C with fluoride concentration ranging from 5 to 30 mg/L [28].

It should be noted that an understanding of the activation process is a fundamental step for optimizing
the preparation of activated carbon. Indeed, various chemical, physical, and physicochemical processes are
used for the synthesis of activated carbon from different natural or synthetic resources. Chemical treatment
involves the use of activating agents by impregnation followed by pyrolysis, whereas the physical process
involves a high temperature heat treatment in the presence of vapor or carbon dioxide. However,
the combination of these two methods has also been used for the production of activated carbon.
It remains difficult to predict the physicochemical and morphological properties of carbons according to
the treatment applied. It seems that the morphological, the physicochemical, the textural, and the surface
properties of activated carbon change significantly by changing the activation time and temperature
and the nature of the precursor used. The chemical nature of the surface of activated carbon depends
on the type of heteroatoms, such as oxygen, nitrogen, sulfur, etc., that are present on the surface.
These hetero atoms or groups accumulated on the surface either come from the starting material itself,
or are incorporated during the activation process. This is largely related to the nature of the precursor.
All these properties are of great importance for the use of carbons as an adsorbent of pollutants in
aqueous solutions. Indeed, the adsorption of pollutants onto activated carbon is a complicated process,
and various interactions can coexist during the process involving physical actions and/or chemical
bonds. Thus, the adsorption mechanism referred to as electrostatic interactions, hydrogen bonds, π–π
stacking interactions, pore filling, hydrophobic interactions, ion exchange, and also other interactions
(n–π interactions, etc.) and complexation reactions can take place [30,184,187,194,197,203,205,220,226–228].
Figure 5 illustrates the principal interaction methods for adsorption of pollutants on activated carbon.
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The micropores and mesopores of the porous network of activated carbon contribute to the
adsorption of pollutants by pore-filling mechanisms according to their total volume and the size of
the pollutant molecules, and this is influenced by the affinity of the adsorbent with respect to the
pollutant [229]. The π–π stacking interactions are suggested for the sorption of aromatic compounds on
the surface of activated carbon containing aromatic rings, suggesting the presence of graphene in the
carbon [205]. Electrostatic interactions are encountered during the adsorption of ionic and ionizable
compounds [30,135,230]. Positively charged compounds will tend to sorb onto negatively charged
carbon surfaces, while anionic compounds will bind to positively charged sites. These interactions also
involve the weak interaction forces and hydrogen bonds between the functional groups (carboxylic,
lactonic, phenolic, etc.) present on the surface of the activated carbon and the functional groups
of the adsorbate. In fact, the polar groups on the surface of the carbon facilitate the sorption of
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water and promote the formation of hydrogen bonds between the carbon and the sorbates containing
electronegative elements [30,135,230,231]. Furthermore, the ion exchange and complexation processes
are induced by the presence of cations or metal ions in the structure of the activated carbon [226,230,232].

6. Conclusions

Carbon materials are one of the most studied areas in the scientific community. Indeed, these
materials have remarkable physical and chemical properties, and this explains their uses in various fields
such as biology, chemistry of materials, energy storage, electrochemistry, and wastewater treatment.
In addition, despite several advances made, researchers face many challenges concerning the synthesis,
morphological uniformity, and reproducibility of carbonaceous materials. Graphene and graphite offer
excellent electrical mobility that favors their use for the photodegradation of organic pollutants and
the manufacture of anodes for lithium-ion batteries and pollution sensors. Thus, materials derived
from graphene offer greater flexibility in modifying the properties of the catalyst according to specific
requirements. In this respect, the morphological properties of carbon nanotubes combined with their
chemical and thermal conduction properties give them an interesting future as a catalyst support.
In the same context, activated carbon is widely used in the field of water treatment because of their
adsorption properties that result from the diversity of chemical, structural, and textural composition.
These properties are related to the precursors and the method of preparation of the activated carbon.
In this review, the performance of the retention of pollutants from wastewater was detailed on the
basis of recent examples from the literature. It turns out that mastering the methods of preparing
carbonaceous materials for larger-scale production and understanding the many properties of these
materials are important steps to be taken in order to be able to assist with their applications in the
various areas of interest.
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Abbreviations

2,4-DNP 2,4-Dinitrophenol
2,4-DNT-3-SO3 2,4-dinitrotoluene-3-sulfonate
2,4-DNT-5-SO3 2,4-dinitrotoluene-5-sulfonate
2,4,6-TNP 2,4,6-Trinitrphenol
4-ClP 4-Chlorophenol
4-NP 4-nitrophenol
Activ. Temp. Activation temperature
Activ. Time Activation time
AMX Amoxicillin
Bis-A Bisphenol A
C0 Concentration initial
FBA Fixed bed adsorption
MB Methylene blue
Me-Red Methyl red
MG Malachite green
MO Methyl orange
Ms Municipal sludge
MW Microwave
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MWCNTs Multiwalled carbon nanotubes
MY Metanil yellow
PAN Polyacrylonitrile
PET Polyethyleneterephthalate
pHZCN pH of the point of zero charge
Qmax Maximum adsorption capacity
RB5 Reactive Black 5
Rh-B Rhodamine B
SBET Brunauer–Emmett–Teller area
SDS Sodium dodecylbenzene sulfonate
SWCNTs Single-walled carbon nanotubes
TMA TriMethylAmine
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