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Abstract: Selenate removal in drinking water is being vigorously debated due to the various health
issues concerned. As a viable treatment option, this study investigated a fixed-bed biofilm reactor
(FBBR) with internal recycling. The experimental design tested how hydraulic loading rate and
electron donor affect selenate reduction together with other oxyanions. The tested accompanying
oxyanions were nitrate and perchlorate and experiments were designed to test how an FBBR responded
to the limited electron donor condition. The results showed that the reactor achieved almost complete
selenate reduction with the initial hydraulic loading rate of 12 m3/m2/day (influent concentration
of 1416 µg SeO4

2−/L). Increasing the hydraulic loading rates to 16.24 and 48 m3/m2/day led to a
gradual decline in selenate removal efficiency. A sufficient external carbon source (C:N of 3.3:1)
achieved an almost complete reduction of nitrate as well as selenate. The FBBR acclimated to selenate
instantaneously and reduced nitrate via synergistic denitrification. An experiment with another
oxyanion addition, perchlorate (459 µg ClO4

−/L), revealed that perchlorate-reducing bacteria were
more strongly associated with carbon limitation than selenate-reducing bacteria, which can help us to
understand parallel reactions in FBBRs. This research provides a framework to further study the
use of electron donor-controlled FBBRs for simultaneous reduction of selenate and other oxyanions
threatening the drinking water-related environment and public health.
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1. Introduction

Selenium (Se) is an essential element for human and animal nutrition but exposure to an excess
amount of Se is toxic to living organisms and can cause adverse health effects in humans, such as hair
loss, nail discoloration, damage to the kidney, liver congestion and problems with the nervous and
circulatory systems [1,2]. The US Environmental Protection Agency set the maximum concentration
limit (MCL) of total Se as 50 µg/L and national regulations set the MCL of Se in primary drinking water
as <5 µg/L [3].

Selenium is released into the environment from both natural and anthropogenic sources. Soils,
rocks, natural water, atmosphere and so on are the natural sources while the anthropogenic sources are
photocells, semiconductor pigments, pesticides and metal processing industries [4,5].

Although inorganic selenium may show a wide range of oxidation states, from +6 to −2, selenate
(SeO4

2−) and selenite (SeO3
2−) are abundant in surface water [5,6]. One important source of Se in

water may be agricultural irrigation or drainage and thus high concentrations of nitrate and sulfate
may be cocontaminants. Many countries, including the US, have given great attention to these
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multiple contaminants because of their adverse impact on and toxicity with regard to the ecosystem [7].
Wastewaters generated from mining are another important source of selenate contamination in surface
or groundwater that can be a potential source of drinking water from a water recycle viewpoint [8].

Although various physicochemical methods, such as membranes, ion exchange, reducing agents,
metal powders, green rusts, etc., may be applicable to selenate reduction, the existence of other
oxyanions, problematic byproducts generation, slow reaction kinetics, low pH, etc., make the process
costly [9,10]. Meanwhile, selenate can be biologically reduced to insoluble elemental Se (Se0) in
an economical way under an anaerobic environment [6,9]. Although low concentration makes
the biological reduction slow due to microbial kinetics, microorganisms eventually utilize such
electron acceptors in anaerobic heterotrophic respiration, autotrophic hydrogen oxidation and so on.
If other oxyanions, such as nitrate and sulfate, are abundant, nitrate-reducing and sulfate-reducing
microorganisms can compete for biodegradable dissolved organic carbon (DOC) with selenate-reducing
bacteria for carbon and energy sources. This makes the overall reaction limiting and bacterial
growth slow.

Previous research demonstrated simultaneous bioreduction of selenate and nitrate in sequencing
batch reactors cultivating acclimated selenate-reducing bacteria [11]. To reduce selenate at very low
concentrations, a fixed-bed biofilm reactor (FBBR) might be more suitable from the engineering point
of view than a suspended growth reactor because it is designed to prevent microbial washout while
keeping the biocatalysts, i.e., selenate reducing bacteria, in the system longer. Moreover, the potential
of biofilm reactors can be extended via a long acclimation period [12], which can simultaneously
reduce selenate and other anions, such as nitrate and perchlorate, even in diluted agricultural or
coal-mining drainage [13]. However, such simultaneous reductions make it difficult to rationalize how
the microbial acclimation affects selenate reduction with other oxyanions and how the carbon and
energy source limitations alter the reduction of selenate and other oxyanions in the biofilm reactor.
Guided by experimental design, this study further verifies the microbial competition for carbon
between oxyanion-reducing bacteria in the biofilm reactor. This research, therefore, set out to gain
mechanistic insight into the anaerobic heterotrophic respiration of microorganisms for reducing the
adverse environmental effects of oxyanions on the ecosystem.

2. Materials and Methods

2.1. Experimental Set-Up of the FBBR

Figure 1 presents a schematic of the FBBR used in this study. The reactor was constructed using
an acrylic column (40 cm length and 8 cm internal diameter) body with an empty bed volume of 2 L.
The flow pattern and internal recycling in the reactor are represented by arrows. High porosity plastic
rings, whose specifications were a specific gravity of 0.9 kg/m3 and a specific surface area of 361 m2/m3,
were packed to make the media-bed depth 40 cm. A rigid acrylic screen was located above 2.0 cm from
the bottom to provide a mixing zone for homogeneous distribution of influent. A bolted flange with a
rubber O-ring, located at the top of the column, minimized oxygen diffusion into the reactor.

Processes 2020, 8, x FOR PEER REVIEW 2 of 8 

 

contaminants because of their adverse impact on and toxicity with regard to the ecosystem [7]. 

Wastewaters generated from mining are another important source of selenate contamination in 

surface or groundwater that can be a potential source of drinking water from a water recycle 

viewpoint [8]. 

Although various physicochemical methods, such as membranes, ion exchange, reducing 

agents, metal powders, green rusts, etc., may be applicable to selenate reduction, the existence of 

other oxyanions, problematic byproducts generation, slow reaction kinetics, low pH, etc., make the 

process costly [9,10]. Meanwhile, selenate can be biologically reduced to insoluble elemental Se (Se0) 

in an economical way under an anaerobic environment [6,9]. Although low concentration makes the 

biological reduction slow due to microbial kinetics, microorganisms eventually utilize such electron 

acceptors in anaerobic heterotrophic respiration, autotrophic hydrogen oxidation and so on. If other 

oxyanions, such as nitrate and sulfate, are abundant, nitrate-reducing and sulfate-reducing 

microorganisms can compete for biodegradable dissolved organic carbon (DOC) with 

selenate-reducing bacteria for carbon and energy sources. This makes the overall reaction limiting 

and bacterial growth slow. 

Previous research demonstrated simultaneous bioreduction of selenate and nitrate in 

sequencing batch reactors cultivating acclimated selenate-reducing bacteria [11]. To reduce selenate 

at very low concentrations, a fixed-bed biofilm reactor (FBBR) might be more suitable from the 

engineering point of view than a suspended growth reactor because it is designed to prevent 

microbial washout while keeping the biocatalysts, i.e., selenate reducing bacteria, in the system 

longer. Moreover, the potential of biofilm reactors can be extended via a long acclimation period 

[12], which can simultaneously reduce selenate and other anions, such as nitrate and perchlorate, 

even in diluted agricultural or coal-mining drainage [13]. However, such simultaneous reductions 

make it difficult to rationalize how the microbial acclimation affects selenate reduction with other 

oxyanions and how the carbon and energy source limitations alter the reduction of selenate and 

other oxyanions in the biofilm reactor. Guided by experimental design, this study further verifies the 

microbial competition for carbon between oxyanion-reducing bacteria in the biofilm reactor. This 

research, therefore, set out to gain mechanistic insight into the anaerobic heterotrophic respiration of 

microorganisms for reducing the adverse environmental effects of oxyanions on the ecosystem. 

2. Materials and Methods 

2.1. Experimental Set-up of the FBBR 

Figure 1 presents a schematic of the FBBR used in this study. The reactor was constructed using 

an acrylic column (40 cm length and 8 cm internal diameter) body with an empty bed volume of 2 L. 

The flow pattern and internal recycling in the reactor are represented by arrows. High porosity 

plastic rings, whose specifications were a specific gravity of 0.9 kg/m3 and a specific surface area of 

361 m2/m3, were packed to make the media-bed depth 40 cm. A rigid acrylic screen was located 

above 2.0 cm from the bottom to provide a mixing zone for homogeneous distribution of influent. A 

bolted flange with a rubber O-ring, located at the top of the column, minimized oxygen diffusion 

into the reactor. 

 

Figure 1. Schematic diagram on a picture of the fixed-bed biofilm reactor (FBBR) system.



Processes 2020, 8, 1645 3 of 8

2.2. Inoculum and Culture Media

As a seed sludge, activated sludge was obtained from a local municipal wastewater treatment
plant of I-city, South Korea. To prepare the inoculum of the FBBR, selenate reducing bacteria was
selectively precultured before inoculation in a bench-scale sequencing batch reactor (SBR), following
previous studies [11]. Under the anoxic condition, the acclimation period was maintained for more
than a month. Using selenate as a sole electron acceptor, selective pressure was supplied, keeping the
temperature at 30 ◦C [14]. The feed solution for acclimated inoculum contained SeO4

2− (50 mg/L or
0.35 µM), CH3COO− (200 mg/L or 3.39 µM), (NH4)2SO4 (46 mg/L or 0.35 µM), K2HPO4 (13.7 mg/L or
0.08 µM), NaHCO3 (84 mg/L or 1.0 µM), MgSO4·7H2O (51.3 mg/L or 0.21 µM), CaSO4·2H2O (43 mg/L
or 0.25 µM) and FeSO4·7H2O (2.5 mg/L or 0.009 µM). CH3COO− was used as a sole source of organic
carbon. We monitored SeO4

2− concentration as an indicator of the acclimation.
Synthetic groundwater, culture media, containing selenate was prepared using distilled water,

Na2SeO4, CH3COOH, (NH4)2SO4 and K2HPO4 following the experimental design. To supply alkalinity
of 100 mg/L as CaCO3, NaHCO3 was added. The groundwater also contained 5 mg/L of Mg2+, 10 mg/L
of Ca2+ and 0.5 mg/L of Fe2+ by adding 51.3 mg/L MgSO4·7H2O, 43.0 mg/L CaSO4·2H2O and 2.5 mg/L
FeSO4·7H2O as inorganic macronutrients. It was presumed that other trace minerals required for
biofilm growth were sufficient due to the inoculation step bringing such micronutrients.

2.3. Operating Conditions of Continuous FBBR Experiments for Oxyanions and Carbon Source Experiment

Table 1 summarizes the experimental design of this study. After the acclimation period,
the continuous operation of the FBBR was conducted, keeping the substrate conditions of each phase
as shown in Table 1. Samples were collected every day and stored at 4 ◦C before chemical analyses.

Table 1. Experimental design to test the effects of various oxyanions and carbon source conditions on
biological selenate reduction. EBCT, empty bed contact time.

Phase Flowrate
(L/d)

EBCT
(h)

Hydraulic
Surface

Loading Rate
(m3/m2/d)

SeO42−

(µg/L)
NO3−

(mg/L)
ClO4−

(µg/L)
CH3COO−

(mg/L)

SeO42−

Loading
Rate

(g/m3/d)

NO3−

Loading
Rate

(g/m3/d)

ClO4−

Loading
Rate

(g/m3/d)

1 6 8 12 1470 a 0 0 10 d 4.3 0 0
2 8 6 16 1470 a 0 0 10 d 5.3 0 0
3 12 4 24 1470 a 0 0 10 d 8.5 0 0
4 24 2 48 1470 a 0 0 10 d 18.1 0 0
5 6 8 12 1470 a 62 b 0 120 e 5.8 192 0
6 6 8 12 1470 a 62 b 0 50 f 3.8 178.5 0
7 6 8 12 1470 a 0 440 c 50 f 3.8 0 1.4
8 6 8 12 1470 a 0 440 c 10 d 5.0 0 1.3

a � 10 µM; b � 1.0 µM; c � 4.4 µM; d � 0.17 µM; e � 2.0 µM; f � 0.85 µM.

Continuous FBBR experiments consisted of eight phases. Keeping influent SeO4
2− as 1470 mg/L,

the initial four phases tested the effect of the selenate loading rate on the selenate reduction. Phases 5
to 6 verified the impact of organic carbon concentration on the simultaneous selenate and nitrate
reduction. The concentration of CH3COO− was determined based on the theoretical C:N mass ratio
(1.13:1) of biological denitrification using acetate [15]. Then, phases 7 and 8 tested how organic carbon
limitation affected the simultaneous selenate and perchlorate reduction. The change of loading was
controlled by varying the flowrate from 6 to 24 L/d during phases 1 to 4. The corresponding average
empty bed contact time (EBCT) ranged between 8 and 2 h. After finding the flowrate to be in the
optimal condition during the initial phases, the contents of the electron acceptors (NO3

− or ClO4
−) or

the sole electron donor (CH3COO−) were varied for phases 5 to 8. The recirculation was kept constant
at one-tenth of the influent flowrate throughout the experiment to maintain a relatively homogeneous
reaction in the FBBR [16].
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2.4. Analytical Methods

Influent and effluent samples were taken every day from the sampling ports of the FBBR and
instantaneously filtered using a 0.2 µm syringe filter kept in a refrigerator at 4 ◦C before physical
and chemical analyses. All anions were monitored using an ion chromatograph (Dionex ICS-1100,
Sunnyvale, CA, USA). Selenate was determined using 36.5 mM NaOH eluent and a 100 µL sample
loop with an IonPac AS15 analytical column and AG15 guard column. Perchlorate was measured
using 50 mM NaOH eluent and a 1000 µL sample loop with an IonPac AS16 analytical column and
AG16 guard column. For nitrate and acetate concentrations, 9 mM Na2CO3 eluent was prepared and a
25 µL sample loop was used with an IonPac AS9-HC analytical column and AG9-HC guard column.
The detection limits of selenate and perchlorate were both 5 µg/L while those of acetate and nitrate
were both 0.5 mg/L. A total organic carbon analyzer (TOC-L, Shimadzu, Japan) determined the DOC
to quantify remaining electron donors for bacterial growth.

3. Results and Discussion

3.1. Selenate Reduction in a Continuous FBBR Operation

Figure 2 shows the dynamics of effluent selenate in the FBBR during phases 1 to 4. Table 2
summarizes the average FBBR performance for effluent selenate concentration and selenate reduction
efficiency according to the selenate loading rate and EBCT during phases 1 to 4. Although the influent
selenate concentration fluctuated due to the man-made influent solution as well as complex pump
linings, relatively high selenate concentration compared to that found in the literature was maintained
at 1470 µg/L on average with a standard deviation of 223 µg/L.
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Figure 2. Variation of effluent selenate concentration according to the selenate loading rate and EBCT
during phases 1 to 4.

Table 2. Effluent selenate concentration and selenate removal efficiency obtained in an FBBR according
to the selenate loading rate.

Division Operating Conditions of FBBR
Phase Phase 1 Phase 2 Phase 3 Phase 4

EBCT (hours) 8 6 4 2
Hydraulic loading rate (m3/m2/d) 12 16 24 48

Selenate loading rate (g/m3/d) 4.3 5.3 8.5 18.1
Influent selenate (µg/L) 1470 ± 223
Effluent selenate (µg/L) BDL a 41 245 356

Selenate removal efficiency (%) 99.9 97.2 83.3 75.8
a Below detection limit.
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At phase 1, almost complete selenate reduction was observed under the selenate loading of
4.3 g/m3/d, thus all the determination was recorded to be below the detection limit (BDL). This indicates
that the acclimated biofilm successfully reduced most of the selenate as an electron acceptor to form
elemental selenate [15] and the reduction must have initiated instantaneously right after the start of
continuous operation. When the selenate loading rate was increased to 5.3 g/m3/d, the FBBR did not
show a significant change in the effluent selenate. Despite the selenate detection of ~486 µg/L in the
middle of phase 2, it eventually decreased to BDL afterward.

This result demonstrates that the FBBR could effectively withstand the selenate loading rate
despite shorter EBCT (6 h), recording a selenate removal efficiency of 97.2% on average (Table 2).
When the selenate loading was further increased to 8.5 g/m3/d at phase 3 and 18.1 g/m3/d at phase 4,
the effluent selenate concentration drastically increased up to ~1134 µg/L (phase 3) and ~1484 µg/L
(phase 4), though it demonstrated a decreasing trend down to around 400 µg/L at the end of phases 3
and 4, respectively. Average removal efficiencies of phase 3 and phase 4 were recorded as 83.3% and
75.8% despite the 4 h and 2 h EBCTs, respectively (Table 2).

3.2. Effect of Organic Carbon on the Simultaneous Selenate and Nitrate Reduction

After phase 4, the FBBR returned to the operating condition of phase 1, which showed the best
stable performance, until the recovery of the selenate reduction performance. Then, the operation was
readjusted to phase 5 after the performance recovery. Following the experimental design, the acetate
concentration was increased to 120 mg/L, making the C:N mass ratio of influent to be 3.3:1 (=4.1:1 as
molar ratio), with a nitrate concentration of 62 mg/L. Phase 6 used a decreased acetate concentration of
50 mg/L resulting in a C:N ratio of 1.3:1 (=1.7:1 as molar ratio). Since the C:N mass ratio of 2:1 has
been reported to be sufficient for denitrification [17], this study compared the performance of an FBBR
under substrate sufficient (phase 5) and limitation (phase 6) conditions (Table 1).

At phase 5, the FBBR experienced sufficient carbon and energy conditions to enable better
bacterial growth, though the existence of nitrate may have led to sharing of electron donors between
selenate-reducing and nitrate-reducing bacteria. Moreover, some microorganisms may reduce both
selenate and nitrate simultaneously [18]. Figure 3 presents the variations of selenate and nitrate in
the FBBR. Enough of the carbon source in the influent may contribute to almost complete reduction
of selenate and nitrate. Although the influent selenate concentration slightly fluctuated, sufficient
electron donors made the effluent selenate concentration BDL. The recorded nitrate concentration was
also as low as ~2 mg/L. Remaining effluent DOC (9.8~20.6 mg C/L) was clear evidence supporting the
steady-state performance of the FBBR in selenate and nitrate reduction without limitation.
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Figure 3. Effluent selenate and nitrate profiles in the FBBR reactor. The C:N mass ratio was controlled,
changing from 3.3:1 (phase 5) to 1.3:1 (phase 6).
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As soon as the influent acetate concentration was decreased to 50 mg/L (C:N mass ratio of 1.3:1) at
phase 6, effluent nitrate concentrations sharply increased to 13.6 mg/L NO3

−. Selenate reduction slowly
responded to the shortage of electron donors by increasing between day 18 (287 µg/L SeO4

2−) and
day 27 (900 µg/L SeO4

2−). After a significant fluctuation period over about 15 days, microorganisms
presented acclimation keeping effluent concentration stable at 330 µg/L SeO4

2−. Average removal
efficiencies of nitrate (77.3%) and selenate (77.1%) drastically declined and fluctuated significantly
while that of DOC increased to over 90%.

These results indicate that keeping enough electron donors was essential for the FBBR to conduct
simultaneous nitrate and selenate reduction and that the nitrate reducing mechanism was more
sensitive to carbon limitation.

3.3. Effect of Organic Carbon on the Simultaneous Selenate and Perchlorate Reduction

Right after the end of phase 6, the rehabilitation of the FBBR was conducted again under the
phase 1 conditions. After confirming performance recovery, phase 7 started with another oxyanion
addition of 440 µg/L ClO4

− together with 1470 µg/L SeO4
2− to investigate any different inhibitory or

synergistic effects (Table 1). Phase 7 used 50 mg/L CH3COO− to achieve an excess supply of electron
donors for the simultaneous perchlorate and selenate reduction, following previous research [19].

As illustrated in Figure 4, monitoring results showed almost complete reduction of both selenate
and perchlorate at phase 7 with 20% DOC consumption under the 8 h of EBCT. Inevitable fluctuations in
influent selenate and acetate concentration did not create any difference in their effluent concentration.
The literature indicates that biological perchlorate reduction can be coupled with cocontaminants
reduction. The results of this study reveal that biological reduction of both selenate and perchlorate is
possible in an FBBR.
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was limited.

When the influent acetate concentration was reduced to 10 mg/L CH3COO− (phase 8), it was
observed that the DOC limitation clearly suppressed the perchlorate reduction mechanism and thus
the effluent ClO4

− increased to 310 µg/L ClO4
−. On the contrary, selenate reduction demonstrated no

metabolic inhibition and was recorded to be BDL throughout phase 8. Average perchlorate removal
was as low as 51.1%.

The FBBR showed simultaneous selenate and perchlorate reduction with the excess DOC, which is
relevant with regard to previous research [20]. However, only perchlorate reduction was significantly
inhibited in the FBBR under DOC-limited conditions. This result demonstrates that the cessation
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of perchlorate reduction in the presence of other oxyanions may be linked to the difference in
electron donor affinity between heterotrophic selenate- and perchlorate-reducing bacteria [21,22].
Regarding electron donors, the reported high half-rate constants of perchlorate reducers suppressed
the perchlorate-reducing mechanisms of the FBBR under carbon limitations. While perchlorate
reduction was inhibited by the carbon limitation condition, selenate reduction progressed normally
despite the presence of perchlorate and the limited carbon source due to relatively low half-rate
constants [23]. In addition, perchlorate reduction may not be a less favorable pathway to yield energy
for microorganisms since most perchlorate-reducing bacteria utilize inorganic electron acceptors in
preference to perchlorate [24]. The obtained results support the notion that the carbon limitation may
selectively harm the reduction mechanisms of perchlorate reducers in an FBBR during the concurrent
reduction of other oxyanions.

4. Conclusions

This research investigated the effects of carbon source limitation on the reduction of anions
competing for the same electron donor in an FBBR with internal recirculation. Based on the observed
data, the following conclusions can be summarized as shown below:

(1) Selenate and nitrate were simultaneously reduced almost completely with excess carbon addition.
However, both selenate and nitrate reductions were inhibited under carbon-limited conditions.

(2) An FBBR with internal recirculation can completely reduce selenate at 8 h EBCT (12 m3/m2/d).
Decreasing EBCT reduced the selenate reduction efficiency to as low as 75.8%.

(3) An FBBR acclimated to selenate can instantaneously reduce nitrate. The concurrent reduction
was possible under the excess DOC condition (C:N of 3.3:1); otherwise, the reduction of both
anions was significantly inhibited.

(4) An FBBR acclimated to selenate and nitrate can conduct immediate reduction of perchlorate.
Enough DOC enables the FBBR to achieve a complete reduction of both anions but low
DOC conditions limit perchlorate reduction only while maintaining almost complete reduction
of selenate.

Overall, with the control of electron donors, an FBBR with internal recirculation can be a viable
option for the simultaneous reduction of low oxyanions harmful to the environment and to public
health in sources of drinking water.

Author Contributions: Conceptualization, H.-W.K., S.H.H., and H.C.; Methodology, H.C. and S.H.H.; Software,
S.H.H.; Validation, S.H.H. and H.C.; Formal Analysis, S.H.H.; Investigation, H.-W.K., S.H.H. and H.C.; Resources,
H.C.; Data Curation, H.-W.K. and H.C.; Writing—Original Draft Preparation, H.-W.K. and H.C.; Writing—Review
& Editing, H.-W.K. and H.C.; Visualization, H.-W.K. and H.C.; Supervision, H.C.; Funding Acquisition, H.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Wonkwang University in 2018.

Acknowledgments: The authors are grateful to the Wonkwang University for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stranges, S.; Navas-Acien, A.; Rayman, M.P.; Guallar, E.J.N. Selenium status and cardiometabolic health:
State of the evidence. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 754–760. [CrossRef] [PubMed]

2. USEPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-
water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 9 September 2019).

3. WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva,
Switzerland, 2017.

4. Snyder, M.M.; Um, W. Adsorption Mechanisms and Transport Behavior between Selenate and Selenite on
Different Sorbents. Int. J. Waste Resour. 2014, 4, 144. [CrossRef]



Processes 2020, 8, 1645 8 of 8

5. Nancharaiah, Y.V.; Lens, P.J.M.; Reviews, M.B. Ecology and Biotechnology of Selenium-Respiring Bacteria.
Microbiol. Mol. Biol. Rev. 2015, 79, 61–80. [CrossRef] [PubMed]

6. Nancharaiah, Y.V.; Lens, P.N. Selenium biomineralization for biotechnological applications. Trends Biotechnol.
2015, 33, 323–330. [CrossRef] [PubMed]

7. Sandy, T.; DiSante, C. Review of Available Technologies for the Removal of Selenium from Water—Prepared for North
American Metals Council; CH2M Hill Inc.: Englewood, CO, USA, 2010.

8. Khamkhash, A.; Srivastava, V.; Ghosh, T.; Akdogan, G.; Ganguli, R.; Aggarwal, S.J.M. Mining-Related
Selenium Contamination in Alaska, and the State of Current Knowledge. Minerals 2017, 7, 46. [CrossRef]

9. Tan, L.C.; Nancharaiah, Y.V.; Van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance,
pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [CrossRef]

10. Refait, P.; Simon, L.; Génin, J.-M.R. Reduction of SeO4
2− Anions and Anoxic Formation of Iron(II)−Iron(III)

Hydroxy-Selenate Green Rust. Environ. Sci. Technol. 2000, 34, 819–825. [CrossRef]
11. Kim, H.-W.; Hong, S.H.; Choi, H. Effect of Nitrate and Perchlorate on Selenate Reduction in a Sequencing

Batch Reactor. Processes 2020, 8, 344. [CrossRef]
12. Hung, J.C.; Rittmann, B.E.; Wright, W.F.; Bowman, R.H. Simultaneous Bio-reduction of Nitrate, Perchlorate,

Selenate, Chromate, Arsenate, and Dibromochloropropane Using a Hydrogen-based Membrane Biofilm
Reactor. Biodegradation 2007, 18, 199–209. [CrossRef]

13. Tan, L.C.; Espinosa-Ortiz, E.J.; Nancharaiah, Y.V.; Van Hullebusch, E.D.; Gerlach, R.; Lens, P.N. Selenate
removal in biofilm systems: Effect of nitrate and sulfate on selenium removal efficiency, biofilm structure
and microbial community. J. Chem. Technol. Biotechnol. 2018, 93, 2380–2389. [CrossRef]

14. Hageman, S.P.; Van Der Weijden, R.D.; Weijma, J.; Buisman, C.J. Microbiological selenate to selenite conversion
for selenium removal. Water Res. 2013, 47, 2118–2128. [CrossRef] [PubMed]

15. Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Resource Recovery;
McGraw-Hill: New York, NY, USA, 2014.

16. Choi, H.; Silverstein, J. Effluent recirculation to improve perchlorate reduction in a fixed biofilm reactor.
Biotechnol. Bioeng. 2007, 98, 132–140. [CrossRef] [PubMed]

17. Oh, J.; Silverstein, J. Acetate Limitation and Nitrite Accumulation during Denitrification. J. Environ. Eng.
1999, 125, 234–242. [CrossRef]

18. Subedi, G.; Taylor, J.; Hatam, I.; Baldwin, S.A. Simultaneous selenate reduction and denitrification by a
consortium of enriched mine site bacteria. Chemosphere 2017, 183, 536–545. [CrossRef]

19. Gullick, R.Q.; Lechvallier, M.W.; Barhorst, T.A.S. Occurrence of perchlorate IN DRINKING WATER SOURCES.
J. Am. Water Work. Assoc. 2001, 93, 66–77. [CrossRef]

20. Choi, H.; Silverstein, J. Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor. J. Hazard.
Mater. 2008, 159, 440–445. [CrossRef]

21. Hatzinger, P.B. Perchlorate Biodegradation for Water Treatment. Environ. Sci. Technol. 2005, 39, 239A–247A.
[CrossRef]

22. Logan, B.E.; Zhang, H.; Mulvaney, P.; Milner, M.G.; Head, I.M.; Unz, R.F. Kinetics of Perchlorate- and
Chlorate-Respiring Bacteria. Appl. Environ. Microbiol. 2001, 67, 2499–2506. [CrossRef]

23. Schilling, K.; VillaRomero, J.F.; Pallud, C. Selenate reduction rates and kinetics across depth in littoral
sediment of the Salton Sea, California. Biogeochemistry 2018, 140, 285–298. [CrossRef]

24. Bardiya, N.; Bae, J.-H. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 2011, 166, 237–254.
[CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

