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Abstract: The compressible and turbulent gas–solid multiphase flow inside a fluidized bed opposed jet
mill was systematically investigated through numerical simulations using the Euler–Euler approach
along with the kinetic theory of granular flow and frictional models. The solid holdup and nozzle
inlet air velocity effects on the gas–solid dynamics were assessed through a detailed analysis of the
time-averaged volume fraction, the time-averaged velocity, the time-averaged streamlines, and the
time-averaged vector field distributions of both phases. The simulated results were compared with
the experimental observations available in the literature. The numerical simulations contributed to a
better understanding of the particle–flow dynamics in a fluidized bed opposed gas jet mill which are
of fundamental importance for the milling process performance.

Keywords: granular temperature; OpenFOAM; particle velocity; compressible flow; turbulent
flow; comminution

1. Introduction

Comminution is a major size reduction process in solids processing. To break a particle, critical
stress must be provided to the material. The number of stressing events and the magnitude of each
event depends on the design of the apparatus. Comminution by stresses induced by mechanical forces
is performed for instance in ball mills, hammer mills, planetary mills, oscillating mills, and fluidized
bed jet mills which are in widespread use in various industries such as minerals, foods, pharmaceuticals,
and ceramics. Concerning achieving a desired size and shape distribution of the product, comminution
poses many challenges, stemming from the material characteristics, for example, initial size, elasticity
and plasticity of the material, and process conditions [1].

A fluidized bed opposed jet mill is commonly comprised of three different regions: the grinding
region, where the pressurized air is injected through the nozzles; the transport region, where the
particles are pushed upward by the nozzles’ gas jets in the grinding region; and the classifying region,
at the top of the equipment which consists of one or more classifier wheels rotating at a certain velocity
depending on the desired particle cut size. The coarse fraction is recycled to the grinding region,
whereas the fine ones are discharged as product. This equipment, which is used for instance in
the production of dry abrasion- and contamination-free pharmaceutical powders, involve complex
particle–particle and particle–fluid interactions due to the presence of a highly expanded and turbulent
gas jet which are still poorly understood [2].

Thus far, a limited number of works has focused on the investigation of the influence of operating
parameters, such as solid holdup, inlet air pressure, and jet nozzle number and configuration, on the
particle dynamics behavior in a fluidized bed opposed jet mill. Their design and prediction of
performance are until now, largely empirical [1–6]. Especially the dynamic interaction of the fluid with
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the solid phase, for instance at the focal point of the jets (grinding region), is poorly understood—in
part because of the difficulties in measurement of the process conditions at this point.

Numerical simulation, based on the governing principles of mass and momentum transfer, can be
utilized to fundamentally investigate the fluid–solids interaction inside different equipment, connect
material properties and process conditions to measured results, thus sequentially removing empiricism
towards predictive design and operation. For multiphase modeling of granular flow, i.e., the fluid–solid
interaction, the Euler–Euler, and the Euler–Lagrange approaches are commonly used [7,8].

In the Euler–Euler approach, all phases are treated as interpenetrating continua, i.e., the solid
particles are treated as a continuous phase with effective parameters. The corresponding differential
equations of momentum, mass, and energy are solved on a Eulerian frame of reference. This approach
is utilized in many computational fluid dynamics techniques (CFD) [9].

In the Euler–Lagrange approach, the fluid phase is treated as continuum while each particle in
the disperse phase is tracked solving Newton’s second law, thus allowing resolving particle–particle,
particle–boundary, and particle–flow interaction. The Euler–Lagrange approach is implemented by
coupling CFD techniques, for fluid phases, and, e.g., the Discrete Element Method (DEM), for solid
phases [10].

A major drawback of the Euler–Lagrange approach is the substantial numerical effort required
with systems comprised of large number of particles and high Re-numbers, such as those found in
fluidized bed jet mills. Thus, this approach is commonly restricted to reduced scale equipment under
low flow rates. On the other hand, the Euler–Euler approach has been successfully applied in the
prediction of the fluid-particle dynamics in different processes [8,11–13].

Only very few numerical studies have been performed so far concerning the particle dynamics in
fluidized bed jet mills [14,15], whereas the majority of the simulations in jet mills are restricted to spiral
jet-mill systems [16–20]. Furthermore, experimental data of the particle–flow dynamics in a fluidized
opposed gas jet mill, which are of crucial importance for the numerical model validation, are extremely
scarce in the literature. Most of the experimental studies are focused on the milling process itself.

Thus, the objective of this work is a fundamental study of the particle–fluid dynamics behavior
in a fluidized bed opposed jet mill. The compressible and turbulent gas–solid multiphase flow was
simulated through the Euler–Euler approach along with the kinetic theory of granular flow and
frictional models. The effects of solid holdup and nozzle inlet air velocity on the particle behavior
were accessed. The simulation results were compared with the available experimental observations in
the literature.

The structure of the contribution is as follows: First, Section 2 describes the suitable set of formulation
in the Euler–Euler approach for the simulation of the turbulent and compressible solid–gas multiphase
flow in a fluidized bed opposed jet mill. The fluidized bed geometry, material properties, and operating
conditions are also described. Section 3 is devoted to the presentation and discussion of the numerical
results based on the experimental observations reported in the literature. The paper is closed with
conclusions in Section 4.

2. Materials and Methods

2.1. Fluidized Bed Opposed Jet Mill Unit and Material Properties

The fluidized bed geometry and operating conditions used in all simulations were based on the
experimental works available in the literature [2,3,6].

A schematic representation of the fluidized bed opposed gas jet mill (AFG 100, Hosokawa Alpine,
Augsburg, Germany) and all the geometric parameters are shown in Figure 1 and Table 1, respectively.

The jet mill is composed of a classifier wheel of 0.05 m in outer diameter, placed at the upper part
of the equipment (classifying region), and three Laval nozzles with an exit diameter of 2.4 mm (Dnozzle)
positioned in the grinding region, one at the bottom, and two at the lateral wall of the equipment
inclined at an angle of 30◦ and separated by a distance of 65.4 mm (Figure 1). Glass microspheres with
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a mean diameter of 55 µm and a density of 2500 kg/m3 [6], were used. The porosity of the packed bed
was of 0.38.Processes 2020, 8, x FOR PEER REVIEW 3 of 20 
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Table 1. Geometric parameters of the fluidized bed opposed jet mill unit according to Figure 1.

Parameter Value Parameter Value Parameter Value

L1 0.1985 m L4 0.0654 m D2 0.0500 m
L2 0.0465 m L5 0.0850 m θ 30◦

L3 0.0662 m D1 0.1000 m Dnozzle (exit) 2.4 mm

2.2. Eulerian Multiphase Modeling

In the Euler–Euler approach, both gas and solid phases are treated as interpenetrating continua
whose fundamental and constitutive equations are solved on a Eulerian frame of reference. To model the
viscous solid stress tensor, the kinetic theory of granular flow, developed by Lun et al. [9], was applied.

Due to the high-velocity gas jets inside the fluidized bed (high Reynolds number), the effects
of turbulence and compressibility on the solid-fluid flow were taken into consideration. The kf-εf
turbulence model was used to estimate the fluctuations of the gas’ properties due to turbulence.
To account for the gas compressibility, the state equation of the ideal gas was employed.

The main equations are summarized in the following: Equations (1) and (2) represent the mass
conservation, while Equations (3) and (4) represent the momentum conservation for the gas and solid
phases (compressible flow), respectively:

∂
∂t

(
ρ f α f

)
+∇.

(
ρ f α f

→
v f

)
= 0 (1)

∂
∂t
(ρs αs) +∇.

(
ρs αs

→
vs

)
= 0 (2)

∂
∂t

(
α f ρ f

→
v f

)
+∇.

(
α f ρ f

→
v f

→
v f

)
= −α f ∇p +∇.

=
τ f+α f ρ f

→
g+

[
β
(
→
vs −

→
v f

)]
(3)

∂
∂t

(
αs ρs

→
vs

)
+∇.

(
αs ρs

→
vs
→
vs

)
= −αs ∇p − ∇ps +∇.

=
τs+αs ρs

→
g +

[
β
(
→
v f −

→
vs

)]
(4)
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where
→
v f ,

→
vs, α f , αs, ρ f , ρs, p, ps,

=
τ f ,

=
τs,

→
g , and β are, respectively, the gas and solid velocity

vectors, the gas and solid volume fractions, the gas and solid densities, the gas and solid pressures,
the gas and solid viscous stress tensors, the gravity acceleration vector, and the solid–gas momentum
exchange coefficient.

The constitutive equations for the Euler–Euler approach closure are summarized in Table 2.

Table 2. Constitutive equations for the Euler–Euler approach formulation.

Constitutive Equations:

Viscous stress tensor of the fluid phase:

=
τ f = α f µe f f

[
∇
→
v f +

(
∇
→
v f

)T]
−

2α f

3
µe f f

(
∇.
→
v f

) =
I

(5)

Viscous stress tensor of the solid phase:

=
τs= αs µs

[
∇
→
vs +

(
∇
→
vs

)T]
+αs

(
λs −

2
3
µs

)(
∇.
→
vs

) =
I (6)

Total granular viscosity:

µs = µs,kin + µs,col + µs, f r
(7)

Kinetic (µs,kin) and collisional (µs,col) granular viscosity:

µs,kin =
4
5
αsρsg0,ssd(1 + es)

√
ψs/π (8)

µs,col =
1

15

√
ψsπρsdg0,ssα

2
s (1 + es) +

1
16

√
ψsπρsdsαs +

10
96

√
ψsπ

ρsd
g0,ss(1 + es)

(9)

Frictional viscosity (Schaeffer’s model [21]):

µs, f r =
pssin(β fr

)
2
√

I2D

(10)

Total granular pressure:

ps = ps,kin + ps,col + ps, f r
(11)

Kinetic (ps,kin) and collisional (ps,col) granular pressure:

ps,kin + ps,col= αsρsψs+2 ρs(1 + es)α
2
s g0,ssψs

(12)

Frictional pressure (Johnson and Jackson’s model [22]):

ps, f r = 0.05
(αs − αsc)

2

(αs,max − αs)
5

(13)

Radial distribution function:

g0,ss =

1−( αs

αs,max

) 1
3

−1

(14)

Solid bulk viscosity:

λs =
4
3
α2

s ρsd
(15)

Conductivity of granular temperature:

kθs =
150 ρsd

√
ψsπ

384(1 + es)g0,ss

[
1+

6
5
(1 + es)αsg0,ss

]2
+2 α2

s ρsd g0,ss(1 + es)

√
ψs

π

(16)
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Table 2. Cont.

Constitutive Equations:

Kinetic energy dissipation due to inelastic collisions:

γθs= 3
(
1− e2

s

)
α2

sρs g0,ss ψs

4
d

√
ψs

π
−∇.

→
vs

 (17)

Kinetic energy dissipation due to fluid friction:

ϕfs= −3β ψs
(18)

Solid–gas momentum exchange coefficient (Gidaspow’s model [23]):

β =


150αs(1−α f )µ f

α f d2
s

+
1.75αsρ f

∣∣∣∣→vs −
→

v f

∣∣∣∣
ds

i f α f < 0.8

3
4 CD

αsα fρ f

∣∣∣∣→vs −
→

v f

∣∣∣∣
ds

α−2.65
f i f α f ≥ 0.8

(19)

CD =

 24
α f Rep

[
1 + 0.15

(
α f Rep

)0.687
]

i f Rep < 1000

0.44 i f Rep ≥ 1000
(20)

Rep =
ρ f ds

∣∣∣∣→vs −
→
v f

∣∣∣∣
µ f

(21)

The kinetic, and collisional granular viscosity and pressure are functions of the granular
temperature (ψs), which measures the particle velocity fluctuation in analogy with the thermodynamic
temperature [9]. The transport equation for granular temperature is given as follows:

3
2

[
∂
∂t
(ρsαsψs) + ∇.

(
ρsαs

→
vsψs

)]
=

(
−ps

=
I +

=
τs

)
: ∇
→
vs +∇.(kθs∇ψs) − γθs + ϕfs (22)

where kθs, γθs , and ϕ f s are the conductivity of the granular temperature (Equation (16)), the kinetic
energy dissipation due to inelastic collisions (Equation (17)), and the kinetic energy dissipation due to
fluid friction (Equation (18)), respectively.

Frictional effects take place when the particle concentration reaches a critical value (αsc). In this
work, Schaeffer’s model [21] (Equation (10)), and Johnson and Jackson’s model [22] (Equation (13))
were used to calculate the frictional viscosity and the frictional pressure, respectively. The following
parameters were used for the Eulerian granular models shown in Table 2: αsc = 0.5, αs,max = 0.62,
es = 0.94, and β f r = 28.5.

To calculate the effective fluid viscosity (µe f f = µ f + µ f T) for the fluid viscous stress tensor
(Equation (5)), which is a function of the fluid dynamic viscosity (µ f ) and the turbulent fluid viscosity
(µ f T), the kf-εf turbulent model was used. In this model, the turbulent viscosity is represented by
µ f T = Cµρ f k2

f /ε f , whose kf and εf values are calculated as follows:

∂
∂t

(
α f ρ f k f

)
+∇.

(
α f ρ f

→
v f k f

)
= ∇.

(
α f

µ f T

σk
∇k f

)
+ α f

(
G − ρ f ε f

)
+

∏
kw

(23)

∂
∂t

(
α f ρ f ε f

)
+∇.

(
α f ρ f

→
v f ε f

)
= ∇.

(
α f

µ f T

σε
∇ε f

)
+ α f

ε f

k f

(
C1G−C2ρ f ε f

)
+

∏
εw

(24)

where kf and εf are, respectively, the turbulent kinetic energy and the turbulent kinetic energy dissipation
rate,

∏
kw and

∏
εw are the dispersed phase turbulence influences on the continuous phase [24,25],

and G is the turbulent kinetic energy production rate. The empirical constants are: Cµ = 0.09, C1 = 1.44,
C2 = 1.92, σk = 1.0, and σε = 1.3 [26].
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To take into consideration viscous dissipation in the fluid at high fluid velocity in the internal
energy and flow compressibility, the energy equation was also solved (Equation (25)). The subscript
index “i” stands for either solid or fluid phases.

∂
∂t
[αi ρi( hi + ki )] +∇.

[
αi ρi( hi + ki )

→
vi
]
= αi

∂p
∂t

+∇.
(
αi αe f f ∇hi

)
+hT∆T (25)

where h, k, αe f f , and hT∆T are the enthalpy, the kinetic energy, the effective thermal diffusivity,
and the convective heat transfer between the solid and fluid phases, respectively. The convective heat
transfer coefficient is represented by hT =

(
kgasNu

)
/ds, where kgas is the thermal fluid conductivity,

ds is the particle diameter, and Nu is the Nusselt number calculated herein by Ranz and Marshall’s
correlation [27].

Finally, to model the momentum transfer between fluid and solid phase, the Gidaspow drag
model [23] was used. Gidaspow [23] proposed a combination of the Wen and Yu drag model [28]
(Equation (19)) for dilute systems (α f ≥ 0.8) and the Ergun model [29] (Equation (20)) for dense
systems (α f < 0.8). This model has been successfully applied for the particle–fluid dynamics studies
in different systems [11,30,31].

An interesting comparison between different drag models can be found in Upadhyay et al. [32].

2.3. Numerical and Boundary Conditions

For all transient, compressible, and turbulent simulations, the open-source CFD code OpenFOAM®,
version 5.x (twoPhaseEulerFoam solver), and the open-source multi-platform data analysis and
visualization software ParaView®, version 5.8.1, were used.

The geometry and computational mesh for the CFD simulations were built within the open-source
software Gmsh©, version 4.6.0. To accurately simulate the highly expanded and turbulent gas jets in
the grinding region, a high spatial and temporal numerical resolution is required. Thus, taking into
consideration the computational demands, a hybrid 2D computational mesh, comprised of a suitable
mesh refinement at the grinding region, was used. Since OpenFOAM® can only import 3D models,
a 3D mesh with a unit thickness in the z-direction was generated and the solver was set to not calculate
in this direction for the case of 2D simulations.

The grid lines were aligned with the nozzles’ flow to avoid numerical diffusion, and fine grid size
were used at the nozzles’ inlet boundaries—the nozzle diameter (2.4 mm) was represented by at least
30 computational cells—to guarantee an accurate simulation of the nozzles’ flow (gas jets). Figure 2
depicts the computational mesh along with some quality parameters.

For pressure-velocity coupling, the PIMPLE algorithm, which is a combination of the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) and PISO (Pressure-Implicit with Split-Operator)
algorithms, was used [33]. Second-order discretization schemes were applied for numerical discretization
of all transport equations (divergence, Laplacian, and gradient terms). The first-order-bounded implicit
Euler scheme was used for all unsteady terms (i.e., temporal discretization).

In this work, a time step of about 10−8 s was adopted in all simulations. The steady-state condition
(periodic behavior of the flow properties) was reached after approximately 2 s. The convergence
criteria for pressure, velocities, granular temperature, volume fractions, enthalpy, and kf-εf variables
were set to 10−6, 10−8, 10−6, 10−9, 10−6, and 10−5, respectively. Even though an implicit scheme was
used, the Courant-Friedrich-Levy number (CFL) was kept less than 0.5 for a time-accurate solution.

No-slip wall boundary conditions were used for both fluid and solid phases. Suitable wall
functions were used to bridge the region between the wall and the fully turbulent region. A rotating
wall boundary condition was applied at the classifier wall (rotation speed of 12,500 rpm, corresponding
to a particle cut size less than the particle diameter used herein) which was comprised of 30 evenly
spaced vanes. Only the air flow was able to leave the equipment through the gaps between the vanes
in the classifier (batch condition).
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For the solid holdup, two different values were used: 400 g and 700 g. Those masses corresponded
to the initial particle bed heights shown in Figure 3a,b, respectively, for the Euler–Euler simulations.
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equivalent to an initial bed height of 0.064 m; (b) solid holdup of 700 g, equivalent to an initial bed
height of 0.088 m.
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The jet injection velocities of about 256.0 and 326.7 m/s, which correspond to Laval nozzle inlet
pressures (gauge pressure) of 0.5 and 1 bar, respectively, were applied in the simulations. The nozzle
outlet velocities were calculated according to

vnozzle =

√√√√
TR
M

2γ
γ− 1

1−
(

pe

p

) γ−1
γ

 (26)

where vnozzle, T, R, M, pe, p, and γ are the velocity at the nozzle exit, the absolute temperature of the
inlet gas, the universal gas law constant, the gas molecular mass, the absolute pressure at the nozzle
exit, the absolute pressure of the inlet gas, and the isentropic expansion factor, respectively.

To calculate the volumetric particle velocity in the entire calculation domain (Vp_average),
the following equation was used:

Vp_average =
1
ϑ

∫
Vpdϑ (27)

where ϑ, and Vp are the total calculation domain volume, and the local time-averaged particle
velocity, respectively.

3. Results and Discussion

3.1. Influence of the Solid Holdup and the Nozzle Inlet Pressure on the Volumetric Average Particle Velocities

Due to the highly turbulent flow inside the fluidized bed opposed jet mill, a steady-state condition
was considered herein to be established when the volumetric particle velocity, calculated by integrating
the local particle velocity over the whole calculation domain (Equation (27)), reached a periodic behavior.

Figure 4 shows the temporal distribution of the volumetric particle velocity, under a periodic-
behavior condition, as a function of the solid holdup and the nozzle inlet pressure. The corresponding
time-averaged values are depicted in Figure 5.
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As can been seen in Figures 4 and 5, the volumetric average particle velocity increases with
increasing both, the nozzle inlet air and the solids holdup. Since the curves in Figure 5 are approximately
parallel, the increment in the solid holdup from 400 to 700 g caused a similar proportional increment in
the volumetric particle velocity for both nozzle pressure values. Furthermore, the solid holdup effect
on the volumetric particle velocity was shown to be more pronounced than the nozzle inlet effect,
for the conditions investigated herein. These effects can be attributed to the complex particle–flow
interaction in the grinding and transport regions, which will be explored in the next sections.

Strobel et al. [6] used ductile aluminum microspheres as tracers (particle probe method) to investigate
the glass microspheres impact velocity in a batch fluidized bed opposed jet mill as a function of the solid
holdup and the nozzle pressure. The glass microsphere diameter was the same as that used herein in
the simulation (≈55 µm). Under a solid holdup of 400 g, the measured median impact velocity (Q50)
was less than 10 m/s, regardless of the nozzle inlet pressure (0.5, 1, 2, and 3 bar). On the other hand,
they did not observe significant influence of the solid holdup on the median impact velocity using the
particle probe method but rather only on the distribution of contacts per probe particle. Furthermore,
the authors claimed that, in all cases, the median impact velocity was much lower than the maximum
speed in the expanding gas jets. It is worth mentioning that despite the Euler–Euler simulations give
insights on the bulk particle–fluid flow rather than on the particle level, the volumetric average particle
velocities calculated herein were similar to those reported in the literature.

3.2. Influence of the Solid Holdup and the Nozzle Inlet Pressure on the Time-Averaged Particle Volume Fraction
Distribution

Figure 6 shows the time-averaged particle volume fraction distribution across the fluidized bed
opposed jet mill as a function of the solid holdup (400 and 700 g) and the nozzle inlet pressure (0.5 and 1 bar).

It can be observed that, regardless of the solid holdup and nozzle inlet pressure, the highest values
of particle concentration were found near the classifier wall (Figure 6). In the case of high solid holdup
and low nozzle inlet pressure (Figure 6c), particles also tend to concentrate below the lateral nozzles.
Additionally, the amount of solid accumulated in the classifier region increases with increasing either
the solid holdup or the nozzle inlet pressure. Otherwise, the grinding and transport regions presented
dilute solid volume fractions.

These numerical results are following the experimental observations reported by Köninger et al. [2],
and Köninger et al. [3]. Using a high-speed camera, the authors revealed a remarkably high solid
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concentration near the classifier, which increased by increasing the solid holdup. According to the authors,
increasing the particle concentration can increase the collision frequency and hence the particle
agglomeration. The formation of particle cluster near the classifier strongly affect the classification
performance and consequently the milling process efficiency. Therefore, a complete understanding of particle
transport from the grinding region towards the classifier (transport region) is of fundamental importance.

The time-averaged particle volume fraction plotted over the axial line at the center of the equipment,
covering the grinding and the transporting regions, is shown in Figure 7. 

2 

 
Figure 6. Time-averaged particle volume fraction distribution as a function of the solid holdup and the
nozzle inlet pressure: (a) 400 g and 0.5 bar; (b) 400 g and 1 bar; (c) 700 g and 0.5 bar; (d) 700 g and 1 bar.
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As expected from Figure 6, very low solid volume fractions were observed over the axial position
throughout the fluidized bed, with maximum values at the griding region that decreases towards the
transport region (Figure 7).

The particle concentration in the grinding region increases with increasing the solid holdup and
decreasing the nozzle inlet pressure, since higher grinding pressures reduce the particle residence time
in the grinding region, dragging the particles upwards due to the action of more intense forces.

Therefore, the solid holdup and the nozzle inlet pressure can influence the solid concentration at
the grinding region and the probability of particle–particle collisions, and more possible aggregation
and breakage events. The maximum value of particle concentration was found for a high value of
solid holdup combined with a low value of nozzle inlet pressure.

Similar qualitative behavior was also observed experimentally by Strobel et al. [6] that used a
calibrated capacitance probe to measure the particle concentration distribution over the axial position
in a fluidized bed opposed jet mill.

Köninger et al. [2], who experimentally studied the comminution of glass microspheres in a
lab-scale fluidized bed opposed jet mill, reported that the grinding kinetics was strongly affected by the
solid holdup. According to the authors, increasing the solid holdup led to an increase in the product
mass flow rate with finer particles.

To further investigate the particle distribution inside the fluidized bed mill, Figure 8 depicts the
radial distribution of the time-averaged particle volume fraction in the transport region at a fixed axial
position of 0.145 m from the bottom of the fluidized bed.

Figure 8 shows that, regardless of the solid holdup and the nozzle inlet pressure values, the particle
concentrations are low at the center and increase towards the fluidized bed wall forming a core-annulus
flow. Similar to the axial distribution shown in Figure 7, an overall increase in the solid concentration
is observed by increasing the solid holdup and decreasing the nozzle inlet pressure. Asymmetric
behavior of the solid distribution can also be seen in Figure 7, which is intrinsic to a complex turbulent
and compressible system such that found in a fluidized bed opposed jet mill.
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The same qualitative trend was reported by Köninger et al. [2]. In this work, the particle concentration
measurement, using a capacitance probe, was restricted only to one half of the equipment probably due to
an assumption of symmetric flow behavior. The authors explained that the solid material not separated
by the classifier wheel (below the cut size) is sent back to the grinding chamber along the fluidized bed
wall and that the solid flow towards the classifier increases with increasing the solid holdup.



Processes 2020, 8, 1621 12 of 19

3.3. Analysis of the Particle–Fluid Dynamics Inside the Fluidized Bed Opposed Jet Mill

To shed new light on the complex particle–fluid behavior inside a fluidized bed gas opposed
jet mill, the time-averaged velocity, the time-averaged streamlines, and the time-averaged resultant
velocity vector distributions of both phases are systematically analyzed in this section.

Figures 9–12, show the velocity distribution and the resultant velocity vector fields for the air and
particulate phases, respectively, for different combinations of solids holdup and nozzle inlet pressures.
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As also observed by Strobel et al. [6] and Rajeswari et al. [14], the particle velocity is much lower
than the air velocity, independently of the solids’ holdup and nozzle inlet pressure (Figures 9–12).
The highest values of the air velocity ranged from 260 to 330 m/s, whereas the corresponding values
for the particles ranged from 27 to 86 m/s.

The jets from the nozzle and their focal point in the grinding region can be seen in detail in
Figure 10 (air velocity vector fields), while the particle movement in the same region is depicted in
Figure 12 (solid velocity vector fields). This region is characterized by a stressing zone where intense
particle–particle collision take place and breakage may occur. As expected, the solids holdup and the
nozzle pressure strongly affect the particle–fluid interaction in this region. Despite the highest values
of solid holdup and nozzle pressure condition resulting in the overall highest values of particle velocity
(Figure 12d), particle collisions seem to be strengthened by the contribution of the three nozzles’ jet in
the effective formation of a focal point for particle collisions, as shown in Figure 12c. As can be seen
in Figure 12a,b, the nozzle at the fluidized bed bottom does not effectively contribute to focalizing
the particle flow. This behavior can also be seen in Figure 11, that shows the time-averaged particle
velocity distribution in the apparatus.

To further analyze this observation, Figure 13 presents the time-averaged particle velocity over
the axial line along the center of the equipment, from the fluidized bed bottom (axial position equal to
zero) to the transport region.
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from the bottom nozzle to the lower wall of the classifier.

As previously observed, high solids holdups induced higher particle velocities in the grinding
region (Figure 13). The highest value of particle velocity in the grinding region was observed for a
solids holdup of 700 g and a nozzle inlet pressure of 0.5 bar, although the overall highest value of
particle velocity was found for a solids holdup of 700 g and a nozzle inlet pressure of 1 bar in the
transport region. On the one hand, higher particle velocity in the transport region than in the grinding
region can lead to a higher rate of coarser products. On the other hand, higher particle velocity in the
grinding region, which affects the kinetic energy during collisions and hence the breakage probability,
lead to a higher rate of finer products.

The streamlines in Figures 14 and 15 present the trajectories of the air and solid phases, respectively,
where zones of fluid and particle recirculation can be identified.
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and 1 bar.



Processes 2020, 8, 1621 16 of 19

Asymmetric behaviors of the particle and fluid flows can be seen in Figures 14 and 15, which can
directly affect the particle residence time in the grinding region and the transport of the particles
towards the classifier. Interestingly, the more symmetric behavior was observed for a holdup of 700 g
and a nozzle pressure of 0.5 bar (Figures 14c and 15c).

As only the air can leave the equipment through the gaps between the classifier vanes
(Figures 14 and 15), particles are dragged from the grinding chamber towards the classifier and
are recycled to the grinding region, since the classifier is considered herein to rotate with a particle cut
size less than the particle diameter and are not discharged (Figure 15).

As can also be noted in Figure 15, the particles flow back to the griding region along the fluidized
bed wall, which is in line with the experimental observations reported in the literature [2] and with the
numerical results of the particle volume fraction distribution shown in the previous section, where high
particle volume fractions were found to be at the fluidized bed wall (Figure 8).

Figure 16 shows the radial distribution of the time-averaged y-component of the particle velocity
(vertical direction) in the transport region at a fixed axial position of 0.145 m from the fluidized bed
bottom. The maximum particle velocities were attained at the center of the fluidized bed (positive
values) whereas negative values were found at the wall indicating that particles are flowing back to
the grinding region along the wall, as previously discussed (Figure 16).
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Finally, the granular temperature distribution, which comprises an important characterization
of the particle velocity fluctuations [34] and can indicate the regions inside the fluidized bed jet mill
under intense particle–particle interactions, is shown in Figure 17 for different conditions of solids
holdup and nozzle inlet pressure.

In general, the highest particle–particle interactions (higher granular temperatures) were observed
in the grinding region, mainly for the cases of high solids holdup (Figure 17). For the case of a
solids holdup of 700 g and a nozzle inlet pressure of 0.5 bar, the high particle–particle interactions
seem to be exclusively promoted by the nozzles’ air jets (Figure 17c), whereas for the same solids
holdup but rather for a nozzle inlet pressure of 1 bar, the equipment walls at the grinding chamber,
cylinder part, and classifier bottom, strongly affected the particle–particle interactions. Furthermore,
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a significant particle–particle interaction can also be seen during the particle flow in the transporting
region. Therefore, depending on the operating conditions, not only the air jets but also the equipment
walls can significantly contribute to the particle breakage and to comminution process performance.
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4. Conclusions

The Euler–Euler approach along with the kinetic theory of granular flow and frictional models
was applied to systematically investigate gas–solid multiphase flow inside an opposed gas jet fluidized
bed. Using this approach, the solids movement and concentration within the apparatus under different
operating conditions were modeled. The main conclusions are:

• Simulation results are in qualitative agreement with respect to published experimental results,
not just in terms of movement and distribution but also with respect to particle collision velocity.
The significant influence of the classifier on solids movement observed in operation of these mills
was also observed in the model. This enables further study on solids flow around the classifier
and determine process limits of classification with respect to solids over-loading and decreases
process performance;

• Furthermore, asymmetric behavior of the particle and fluid flows were observed, indicating
spatial and temporal periodic behavior within the apparatus. These oscillations may affect the
particle residence time and stressing conditions in the grinding region and the transport of the
particles towards the classifier. Onset and magnitude of these oscillations can be investigated by
the proposed model, utilizing methods from system dynamics, leading to regime maps that may
be linked to product properties;
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• Apart from the particle–particle interactions in the grinding region, significant particle–particle
interactions at the walls of the grinding chamber, the cylindrical lateral’s wall, and the classifier’s
wall were observed, indicating that not only the air jets but also the equipment walls are
contributing to particle breakage and comminution efficiency.

Future work will focus on the solids movement and distribution of polydisperse particles and
explicitly consider size reduction by breakage. Furthermore, an in-depth study of solids concentration
and movement in the vicinity of the classifier will be performed, with the aim of elucidating the effect
of solids on operation and efficiency of the classifier.
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