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Abstract: The brake effect of the freestanding adjustable combination electromagnetic brake
(FAC-EMBr) and EMBr ruler on the behavior of molten steel flow and the level fluctuation were
investigated with the numerical method. The effects of the horizontal magnetic pole position
(EMBr ruler), magnetic induction intensity, and casting speed on two types of electromagnetic brakes
were studied. The numerical simulation results show that the magnetic field caused by the EMBr
ruler is mainly distributed under the submerged entry nozzle (SEN), and it is very weak nearby the
meniscus area. After the FAC-EMBr is applied, the magnetic field is mainly distributed in the area
below the submerged entry nozzle, the upper roll region, and in the meniscus region. The application
of the electromagnetic brake can effectively suppress the impact of the jet and decrease the molten
steel velocity in the meniscus area. The brake effect of the EMBr ruler on the behavior of the molten
steel flow and the level fluctuation is significantly influenced by the horizontal magnetic pole position.
The increasing of the magnetic flux density can significantly increase the velocity of molten steel in
the upper roll region and lead to an intense fluctuation in the steel/slag interface, as the horizontal
magnetic field cannot cover the three key regions. The brake effect of the FAC-EMBr is less influenced
by the variation of the process parameters due to the addition of vertical magnetic poles. Additionally,
the “secondary braking effect” of the vertical magnetic poles can help to lower the increase of velocity
in the upper roll region caused by the excessive magnetic induction intensity and the high casting
speed. Therefore, even under the high casting speed conditions, the application of a new type of
FAC-EMBr is also an efficient way to suppress the molten steel flow and level fluctuation at the
meniscus area and decrease the possibility of slag entrapment.

Keywords: continuous casting; mold; electromagnetic brake

1. Introduction

In the slab continuous casting process, the slab quality is highly related with the melt behavior in
the mold [1–3]. Due to the involvement of the submerged entry nozzle (SEN), the jet flow from the
SEN usually generates an upper roll and a downwards roll flow, separated by an impingement point
nearby the narrow face (NF) of the slab mold. A strong upper roll flow can cause the fluctuation of
the meniscus and further leads to the aggravation of the fluctuation of the molten steel–liquid slag
interface. If the liquid slag is captured by the initially solidified shell, the internal quality defects of
continuous casting slab will be formed [4,5]; however, too-low velocity in the upper roll region could
result in a low and nonuniform liquid temperature distribution in the meniscus region, which is not
good in terms of melting and the infiltration of mold powder, even leading to meniscus freezing and
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hook formation and, finally, cause the surface quality defects in the continuous casting slab [6]. For the
downwards roll-flow region, nonmetallic inclusions and small argon bubbles could be trapped in the
initial solidification shell zone. The internal quality defects such as cracks, slivers, and blisters in the
final product will be formed, especially under high casting speeds. During the subsequent annealing
processes, the trapped argon bubbles elongate during rolling and in low-strength steel and may expand
to create surface blisters and “pencil pipe” defects [7–11]. For the impingement point region, the jet
was formed when the fresh molten steel left the SEN port and impinged against the solidifying shell.
The fresh molten steel carries superheat that erodes the solidifying shell and even leads to a costly
breakout, where the high-temperature molten steel bursts through the solidifying shell [7]. Clearly,
to control the molten steel flow behavior effectively could help to achieve a high quality of the slab.

Electromagnetic braking (EMBr) is an efficient way to control the flow in the slab mold.
The so-called electromagnetic brake technology is to impose a steady magnetic field with a perpendicular
direction to the molten steel jet flow on the broad face of the slab mold. When the conductive molten
steel passes through the magnetic field, an induced current is generated in the molten steel. With the
interaction of the induced current and the steady magnetic field, a Lorentz force in opposite direction
to the molten steel velocity is generated; therefore, the flow of the melt is slowed down. At present,
the EMBr technology has been successfully applied in metallurgical industrial production processes.

The traditional electromagnetic brake mainly includes three types—namely, the first generation of
local EMBr, second generation of EMBr ruler, and flow-control mold (FC-Mold). Many researchers
have done a lot of study on the flow of molten steel [5,12,13], the level fluctuation [14,15], the removal
of inclusions [5,16], the distribution of bubbles [17,18], and the effect of electromagnetic brakes [19].
It is clearly shown that EMBr is an effective way to control the molten steel flow in the mold.
However, the brake effect of a traditional electromagnetic brake is significantly affected by the process
and electromagnetic parameters. For example, firstly, due to the limitation of the magnetic field
region, the flow control effect of the local EMBr is influenced by the position of the magnetic pole,
magnetic induction intensity, and SEN parameters, such as the SEN immersion depth and port angle;
secondly, for the EMBr ruler, although the applied magnetic pole can cover the whole width of the
mold and can well brake the molten steel flow of the downwards roll flow, it is difficult to brake the
upper roll and stabilize the level fluctuation because of the limitation of the horizontal magnetic pole
position. Unreasonable SEN parameters will even strengthen the molten steel velocity of the upper roll
and cause intensified level fluctuations; finally, the base on the EMBr ruler, the other pair of horizontal
magnetic poles, is installed at the meniscus area for the FC-Mold to reduce the molten steel velocity.
However, because of the addition of the upper magnetic poles, the configuration of the FC-Mold
becomes more complex and huge. In addition, in order to achieve a better braking effect, the current
intensity of the coils should be matched with the variation of the process and structure parameters of
the SEN, even the casting speed. Therefore, it makes the optimization of the FC-Mold brake effect
become more complex.

The current work proposed a novel form of an electromagnetic braking device—namely,
FAC-EMBr—with the aim to overcome the shortcomings and deficiencies of the conventional
electromagnetic brake in the electromagnetic continuous casting process. The basic magnetic pole
structure of the FAC-EMBr is that a pair of horizontal magnetic poles (similar to the EMBr ruler) is
arranged below the SEN, and two pairs of vertical magnetic poles are arranged on the wide face (WF)
in the vicinity of NF of the mold, respectively. In this way, on one hand, the magnetic field produced
by the horizontal magnetic poles can be used to brake the high-speed jet flow and decrease the molten
steel velocity of the downwards roll flow, so as to decrease the impinging depth of the downwards roll
flow and facilitate the fine argon bubbles and nonmetallic inclusions to float up; on the other hand,
the vertical magnetic field between the vertical magnetic poles can cover the upper roll and meniscus
region, which can be used to suppress the high-speed upper roll and stabilize the level fluctuation.
The structural schematic diagram of the FAC-EMBr and the arrangement of the magnetic poles are
shown in Figure 1.
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Figure 1. Schematic diagram of the freestanding adjustable combination electromagnetic brake
(FAC-EMBr) configuration. SEN: submerged entry nozzle.

More details of the concept were already introduced in a previous paper [20]. The authors studied
the effects of FAC-EMBr on the behavior of molten steel flow and level fluctuation in the continuous
casting mold using the numerical method. The present paper aims to further compare the braking effect
of the traditional electromagnetic brake (EMBr ruler) with the FAC-EMBr. As an important parameter,
the casting speed not only affects the output of the continuous casting but, also, directly affects the
quality of the continuous casting slab. Therefore, the numerical simulations were conducted to study
the brake effect of the EMBr ruler (traditional form) and FAC-EMBr (new form) on the condition of
different casting speeds. Furthermore, the effects of the magnetic induction intensity and the horizontal
magnetic pole position on the braking effect were also analyzed.

The layout of this paper is organized as follows. Section 2 presents the geometrical and material
descriptions of the EMBr ruler and FAC-EMBr device and the numerical setup. The numerical results
of this study are presented in Section 3, where the electromagnetic and flow characteristic with different
electromagnetic brakes are discussed through comparison. Finally, conclusions are made in Section 4.

2. Numerical Setup

2.1. Configuration of EMBr Ruler and FAC-EMBr

The geometric parameter of the fluid region, horizontal pole of EMBr ruler, vertical pole,
and horizontal pole of the FAC-EMBr are shown in Figure 2, respectively. The origin of coordinates O
of the fluid region is shown in Figure 2c.

For the EMBr ruler, a pair of horizontal poles with the section size of 1.2 m × 0.15 m (width × high)
are arranged below the SEN. The variable P is defined as the distance between the bottom of SEN and
the top of the horizontal pole. In this paper, three different horizontal pole positions are considered;
that is, Case 1: P = 20 mm, in which the horizontal magnetic pole can cover the jet impingement
point and part of both upper roll and downwards roll-flow regions, Case 2: P = 120 mm, in which
the horizontal magnetic pole can cover the jet impingement point and part of downwards roll-flow
region, and Case 3: P = 220 mm, in which the horizontal magnetic pole can only cover the downwards
roll-flow region in the vicinity of the jet impact point.
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For the FAC-EMBr, vertical magnetic poles I and II with the section size of 0.42 m × 0.1 m
(high ×width) are arranged at the WF region inthevicinityof the NF of the mold, respectively. One pair
of horizontal poles with the same section size of the EMBr ruler is arranged below the SEN. The geometric
size of the fluid region in the mold is1.2 m× 0.1 m× 2.53 m (width× thickness× high), and the thickness
of the liquid slag layer is 0.03 m. The dimensions of the SEN and the ports are shown in Figure 2c.
The physical properties of the molten steel and liquid slag are shown in Table 1. The parameters used
in the computational simulation are shown in Table 2.
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Table 1. Physical properties of the molten steel (1600 °C) and liquid slag phases [21].

Material Density ρ (kg m s−1) Dynamic Viscosity µ (kg m−1 s−1) Electrical Conductivity σ (S m−1)

Steel 7100 0.006 7.14 × 105

Slag 2700 0.2 1 × 10−5

Table 2. Parameters used in the computational simulation.

Variables Values

Current I(EMBr ruler), A IH = 350, 450, 650

Current I(FAC-EMBr), A (IV = 100, IH = 350), (IV = 150, IH = 350), (IV = 250, IH = 350), (IV = 350, IH = 350)

Pole position(EMBrruler)P, mm 20, 120, 220

Immersion depth of SENDSEN, m 0.18

Port angle of SEN θP, deg −15

Dimension of the SEN port, m 0.065 × 0.083

Inner/outer diameter of the SEN, m 0.07/0.12

Casting speed VC, m/min, 1.6, 1.8, 2.0, 2.2

IV and IH: the current of the vertical and horizontal magnetic poles. FAC-EMBr: freestanding adjustable combination
electromagnetic brake and SEN: submerged entry nozzle.

2.2. MathematicalModel

In the simulations, the turbulence model, magnetohydrodynamics model (MHD), and the volume
of fluid (VOF) model were employed. Each model is described as follows:

(a) Continuity Equation:
∇ · u = 0 (1)

(b) Reynolds average Navier–Stokes (RANS) equations:

∂xiUi = 0 (2)

∂tUi + ρ∂x j(UiU j) = −∂xiP + ∂x j(2µSi j − ρu′i u
′

j) + Fm + ρgi (3)

where Sij is the mean strain-rate tensor:

Si j =
1
2
(∂x jUi + ∂xiU j) (4)

−u′i u
′

j is the Reynolds stress tensor. U and P are the mean parts of u and p, respectively. u′ is the
fluctuation part of u.

(c) k − ε equations

∂t(ρk) + ∂x j(ρkU j) = τi j∂xjUi − ε+ ∂xj[(ν+
νt

σk
)∂xjk] (5)

∂t(ρε) + ∂x j(ρεU j) = C1ε
ε
k
τi j∂x jUi −C2ε

ε2

k
+ ∂x j [(ν+

νt

σε
)∂x jε] (6)

where σk and σε denote the turbulent Prandtl numbers for k and ε, respectively. C1ε and C2ε are
constant values: 1.44 and 1.92.

(d) MHD model
The Lorentz force equations:

Fm = j× B (7)

The induced current:
j = σ(−∇φ+ u× B) (8)
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(e) VOF model
∂t(αstρ) + ∇ · (αstρUi) = 0 (9)

For the liquid slag phase, the volume of the fraction is obtained by the constrain condition:

αst + αsl = 1 (10)

2.3. Boundary Condition Setup and Mesh of Computational Domain

The computational domain of the fluid is shown in Figure 3a. The velocity inlet condition was
applied for the inlet, and the value of the inlet velocity was calculated according to the actual casting
speed. At the outlet, the fluid flow was assumed as a fully developed flow, and the normal gradient for
all variables was zero. For the mold walls, a nonslip condition was adopted. The symmetry boundary
condition was selected for the top surface of the liquid slag layer; the normal gradients of all variables
and velocity component were set to zero. Hexahedral unstructured grid was adopted in the fluid
region, and the mesh in the region near the mold wall and the steel/slag interface was refined.
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(b) the mesh of the domain.

It is necessary to confirm the quantity of the grid and the flow time in the calculation process before
the numerical simulations. In our numerical simulations, a hexahedral unstructured grid was selected,
and the total number of grids in the computation domain was about 463,000. The process for the grid
independence test and determination of the flow time, please see Reference [20]. The flow time for the
molten steel flow was set to 15 s. Meanwhile, the mathematical model and solution method were also
illustrated in detail in Reference [20]. All the numerical simulations were conducted in ANSYS Fluent®

software. In the numerical simulation process, the magnetic fields with different current intensities
were first calculated by ANSYS mechanical, and then, the magnetic field results were imported to
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the magnetohydrodynamics model as an initial boundary condition. In the magnetohydrodynamics
model, the electric potential method is utilized to solve the induced current density.

2.4. Model Validation

As a newly proposed electromagnetic brake device and technology, no industrial test or even
physical model test has been carried out for the time being. Therefore, a similar physical model
(vertical electromagnetic brake) was used to verify the accuracy of the mathematical model before
our numerical simulations, such as the electromagnetic field, the fluid flow, and the steel/slag level
fluctuation. Firstly, the accuracy of the magnetic field distribution in the vertical electromagnetic
braking mold was verified by experimental measurements [22]. The distribution of the magnetic
induction intensity along the wide direction is shown in Figure 4a. It can be seen that the tendency
of the magnetic induction intensity along the width direction is the same between the predicted and
measured results. Therefore, the calculation method of the magnetic field in this paper is consistent
with that in Reference [22]. The difference is that the mold wall thickness is considered in the calculation
of the magnetic field in this paper, which is not considered in Reference [22]. Therefore, under the
same current conditions, the magnetic induction intensity of the FAC-EMBr is slightly less than that of
the vertical electromagnetic brake (V-EMBr). Secondly, physical experiments with a low melting point
alloy (Pb-Sn-Bi) as the medium were used to verify the accuracy of the fluid flow and the steel/slag
level fluctuation [23]. The experiment results of the level fluctuation in the vertical electromagnetic
brake mold under the effects of different currents are shown in Figure 4b. In this paper, the same
mathematical model and solution method are used to solve the flow of molten steel and the level
fluctuation of the steel/slag interface under the effects of the FAC-EMBr mold.
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3. Simulation Result and Discussion

3.1. Distribution of Electromagnetic Field

Figure 5a,b shows the distribution of the magnetic induction intensity in the fluid region with
application of the EMBr ruler and FAC-EMBr, respectively. The same input currents value (IH = 350 A)
of the horizontal coil is selected for two type of EMBr, and the casting speed VC = 1.8 m/min. For the
EMBr ruler, the horizontal magnetic pole position P = 120 mm. The same distance of P = 120 mm is
selected for the FAC-EMBr, and the current intensity is IV = 250 A.
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It can be seen from Figure 5a, in the case where the EMBr ruler is applied, the magnetic field
is mainly distributed in the region where the horizontal magnetic pole is covered, and the magnetic
induction intensity is almost zero in the meniscus region and at the outlet. However, in the case where
the FAC-EMBr is applied, not only under the SEN region but, also, in the upper roll and meniscus
regions, the steady magnetic field with uniform distribution can be formed. Therefore, the control of
the velocity in the meniscus region and the level fluctuation can be realized.

Figure 6a,b shows the magnetic induction intensity distribution along the mold height direction in
the thickness center plane of the mold under different coil current intensities with the EMBr ruler and
FAC-EMBr. It can be seen from the Figure 6a, in the case where the EMBr ruler is applied, the maximum
magnetic induction intensity is formed at the height center line of the horizontal magnetic pole and
increased with the current intensity. The position of the maximum value of the magnetic induction
intensity changes with the moving of the horizontal magnetic pole position P.
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As the FAC-EMBr is applied, the distribution of the magnetic induction intensity along line x = 0
and line x = 0.55 in the thickness center plane (z = 0) are shown in Figure 6b. Along the line x = 0,
as the increase of the current intensity, the distribution law of the magnetic induction intensity is the
same as the EMBr ruler, which forms a peak value at the height center of the horizontal magnetic pole.
However, compared with the EMBr ruler, the magnetic induction intensity is significantly increased
along the line x = 0.55, and the distribution of the magnetic induction intensity becomes more uniform.

Figure 7a,b shows the vector distribution of the induced current at the thickness center plane
(z = 0) under the two EMBr with the same current intensity (IH = 350 A). The input current value
IV = 250 A. It can be seen from the Figure 7 that the vector magnitude and distribution of the induced
current under the SEN are very similar as the EMBr ruler and FAC-EMBr are applied, which are
distributed in the impact area of molten steel jet flow on both sides of the SEN port. This is mainly due
to the horizontal magnetic pole position, and the current intensity for the EMBr ruler and FAC-EMBr
are the same. However, with FAC-EMBr applied, strong induced currents are also formed in the upper
roll and meniscus regions of mold, which is conducive to suppressing the velocity in the upper roll
and meniscus regions and to stabilize the level fluctuation.

Figure 8a,b shows the distribution of Lorentz force F at the thickness center plane of the mold
under the same operating parameters as EMBr ruler and FAC-EMBr were applied. It can be clearly
seen that, in the case where the EMBr ruler is applied, the Lorentz force F is mainly formed in the
jet impact region and the downwards roll-flow region, while the Lorentz force in the upper roll and
meniscus regions are very small and even can be ignored. However, the Lorentz force in the upper roll
and meniscus regions increase significantly after the FAC-EMBr is applied.
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3.2. Influence of EMBr Ruler and FAC-EMBr on the Molten Steel Flow Field

Figures 9 and 10 show the molten steel flow field and the streamline in the downwards roll-flow
region at the thickness center plane (z = 0) under the effects of the EMBr ruler and FAC-EMBr with
different casting speed conditions, respectively. As the EMBr ruler is applied, the horizontal magnetic
pole position is P = 120 mm. The current intensity for the EMBr ruler and FAC-EMBr are IV = 250 A
and IH = 350 A. It can be found from Figures 9 and 10 that the flow pattern of molten steel is similar in
the downwards roll-flow region when the EMBr ruler and FAC-EMBr are applied, and the center of
the vortex moves downward as the casting speed is increased. This is due to the fact that the EMBr
ruler and FAC-EMBr have the same horizontal magnetic pole position and similar magnetic induction
intensity, so the braking effects of the EMBr ruler and FAC-EMBr on the downwards roll flow are
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similar. However, it can also be seen from Figures 9 and 10 that the velocity in the upper roll region
changes significantly as different EMBr are applied. When the EMBr is applied, the velocity increases
obviously with the increase of the casting speed, especially near the meniscus region. However,
when the FAC-EMBr was added, the molten steel velocity decreased significantly at the same casting
speed. This is mainly because of the magnetic field generated by the vertical magnetic pole of the
FAC-EMBr, which brakes the molten steel flow at the upper roll region and near the meniscus region
for the second time (the first brake effect comes from the horizontal magnetic pole) and reduces the
velocity of the molten steel. Due to the restriction by the interaction region of the horizontal magnetic
pole, the application of the EMBr ruler cannot effectively restrain the flow in the upper roll region and
near the meniscus region. Therefore, at the same casting speed, the molten steel velocity under the
effect of the EMBr ruler is larger than that of the FAC-EMBr.

The contours of the turbulent kinetic energy near the NF of the mold (x = 0.595) on the effects of
the EMBr ruler and FAC-EMBr are shown in Figure 11. It can be seen that the maximum value of the
turbulent kinetic energy appears in the jet impact region. The distributions of the turbulent kinetic
energy of molten steel below the impact point are similar for the applications of the EMBr ruler and
FAC-EMBr. With application of the EMBr ruler, the turbulent kinetic energy below the meniscus region
increases with the increasing of the casting speed. As the FAC-EMBr is applied, the turbulent kinetic
energy does not change significantly at the same condition of the casting speed. This is mainly due to
the application of the vertical magnetic pole to brake the velocity of the upper roll and weaken the
impact of the upper roll on the meniscus. The reduction of the turbulent kinetic energy at the meniscus
is beneficial to stabilize the level fluctuation and decrease the possibility of slag entrapment.
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plane (z = 0) with the EMBr ruler: (a) VC = 1.6 m/min, (b) VC = 1.8 m/min, and (c) VC = 2.0 m/min.
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In order to further illustrate the influence of different magnetic fields on the molten steel flow
at the steel/slag interface (y = −0.03), Figures 12 and 13 show the velocity vector distribution and
contours of the molten steel with applications of the EMBr ruler and FAC-EMBr, respectively. It can be
seen from Figure 12 that, under the effects of the EMBr ruler, with an increase of the casting speed,
the molten steel velocity at the steel/slag interface, especially at the position close to the NF of the mold,
increases significantly. It is mainly due to the fact that the molten steel flow in the meniscus region is
not restrained by the horizontal magnetic field. However, as the FAC-EMBr is applied, the molten steel
velocity at the steel/slag interface is significantly reduced under the same casting speed conditions.
Excessive flow velocity at the steel/slag interface easily forms “slag eye”, which leads to secondary
oxidation of the liquid steel and is not conducive to improvement of the slab quality.
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Figure 14 shows the effects of the EMBr ruler on the velocity distribution of molten steel in
plane z = 0 m, plane y = −0.03 m, and the distribution of the surface velocity. It can be seen from
Figures 12 and 14 that the maximum velocity appears at the position about 0.46 m away from the
nozzle, and the results are consistent. In addition, it also can be found from Figures 12–14 that, overall,
the surface velocity is very close to 0.1 m/s or even less. It is because the definition of plane y = −0.03 m
is the interface of molten steel and liquid slag at a flow time t = 0 s. With the increase of the casting
speed and flow time, the position of the steel/slag interface will change. It can be seen from Figure 14
that the position of the cut plane y = −0.03 m is mostly located in the liquid slag area, so the speed is
small (because the viscosity of the slag is much larger than that of molten steel).
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3.3. Effects of the EMBr Ruler and FAC-EMBr on the Flow Velocity

Figure 15a,b show the influence of the casting speed on the surface velocity (line y = −0.03)
and the vertical velocity (line x = 0.595) of molten steel as the EMBr ruler and FAC-EMBr are
applied, respectively.

For the EMBr ruler, the current intensity of the horizontal pole is IH = 350 A. For the FAC-EMBr,
the current intensity of the horizontal pole is IH = 350 A, and IV = 250 A is selected for the vertical
magnetic pole. It can be seen that, as the EMBr ruler is applied, the surface velocity and the vertical
velocity in the upper roll and downwards roll-flow regions are increased with the increasing of the
casting speed. The maximum surface velocity increases from 0.18 m/s to 0.24 m/s as the casting speed
increases from 1.6 m/min to 2.2 m/min. Additionally, the maximum vertical velocity increases from
0.37 m/s to 0.51 m/s and increases from 0.43 m/s to 0.57 m/sin the upper roll and downwards roll-flow
regions, respectively. As the FAC-EMBr is applied, the maximum surface velocity increases from
0.11 m/s to 0.20 m/s while the casting speed increases from 1.6 m/min to 2.2 m/min (increases from
0.22 m/s to 0.32 m/s as the EMBr is not applied). The maximum vertical velocity in the upper roll region
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increases from 0.31 m/s to 0.46 m/s and that increases from 0.38 m/s to 0.52 m/s in the downwards
roll-flow region.Processes 2020, 8, x FOR PEER REVIEW 16 of 22 
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It also can be found from Figure 15a,b that, with the same casting speed, the application of the
FAC-EMBr is more beneficial to depress the molten steel velocity in the upper roll region and meniscus
region and then stabilize the level fluctuation.
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3.4. Influence of the EMBr Ruler and FAC-EMBr on the Jet Flow

Figure 16a–f shows the influence of the EMBr ruler on the molten steel velocity under the conditions
of the different current intensity (IH) and different horizontal magnetic pole position (P), respectively
(red color in the figure represents the isosurface of the molten steel velocity; VSteel = 0.3 m/s). The casting
speed is VC = 1.8 m/min. It can be seen from Figure 16a,b that, as the current intensity increases from
350 A to 450 A, the molten steel velocity in the upper roll and downwards roll-flow regions are all
slightly decreased, but the velocity are still above 0.3 m/s. At this time, if the magnetic pole position is
moved up 100 mm to the case1 position (Figure 16c), where the horizontal pole can cover the three key
regions, it is found that the molten steel velocity the in upper roll and downwards roll-flow regions are
all significantly reduced, and the molten steel velocities are all less than 0.3 m/s.

Processes 2020, 8, x FOR PEER REVIEW 17 of 22

roll region increases from 0.31 m/s to 0.46 m/s and that increases from 0.38 m/s to 0.52 m/s in the

downwards roll-flow region.

It also can be found from Figure 15a,b that, with the same casting speed, the application of the

FAC-EMBr is more beneficial to depress the molten steel velocity in the upper roll region and 

meniscus region and then stabilize the level fluctuation.

3.4. Influence of the EMBr Ruler and FAC-EMBr on the Jet Flow

Figure 16a–f shows the influence of the EMBr ruler on the molten steel velocity under the

conditions of the different current intensity (IH) and different horizontal magnetic pole position (P), 

respectively (red color in the figure represents the isosurface of the molten steel velocity; VSteel = 0.3 

m/s).The casting speed is VC = 1.8 m/min. It can be seen from Figure 16a,b that, as the current

intensity increases from 350 A to 450 A, the molten steel velocity in the upper roll and downwards 

roll-flow regions are all slightly decreased, but the velocity are still above 0.3 m/s. At this time, if the 

magnetic pole position is moved up 100 mm to the case1 position (Figure 16c), where the horizontal 

pole can cover the three key regions, it is found that the molten steel velocity the in upper roll and 

downwards roll-flow regions are all significantly reduced, and the molten steel velocities are all less

than 0.3 m/s.

(a) (b) (c) 

(d) (e) (f)
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Figure 16. Molten steel velocity in the isosurface. (a) IH = 350 A and P = 120 mm, (b) IH = 450 A
and P =120 mm, (c) IH = 350 A and P =20 mm, (d) IH = 350 A and P = 220 mm, (e) IH = 450 A and
P = 220 mm, and (f) IH = 650 A and P = 220 mm.

However, when the horizontal magnetic pole is moved to the position ofcase3 (Figure 16d), in the
horizontal magnetic field, it is difficult to suppress the velocity in the upper roll and meniscus regions
due to the long distance between the horizontal magnetic pole and SEN, and the velocity in the upper
roll and meniscus regions all exceed 0.3 m/s. In this case, if the current intensity continues to increase,
only the velocity of the downwards roll flow can be continuously decreased, while the velocity of the
upper roll will no longer be suppressed (Figure 16e,f).In addition, Figure 16 also indicates that the
molten steel flow can be effectively controlled by the EMBr ruler with a reasonable horizontal magnetic
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pole position. Recently, Dennis Schurmannet al. studied the effects of different magnetic pole positions
on the behavior of the molten steel flow under the effects of the EMBr ruler by using the physical
experimental method and obtained similar results with this paper: for a lower brake position and a
higher magnetic induction intensity, the intensity and velocity of the upper roll were all increased [24].

Figure 17a–f shows the molten steel velocity under the conditions of different current intensities
(IH and IV) in the case where the FAC-EMBr is applied, respectively (red color in the figure represents
the isosurface of the molten steel velocity; VSteel = 0.3 m/s). The casting speed is VC = 1.8 m/min. It can
be found from Figure 17a–c that, as the current intensity IV keeps a constant value, the molten steel
velocity in the downwards roll-flow region significantly decreases with the increase of IH (which also
reflects the advantages of the EMBr ruler). When the current intensity IV = 250 A and IH gradually
increased from 250 A to 350 A (Figure 17e,f), the molten steel velocities in the upper roll and downwards
roll-flow regions are significantly reduced, and the velocity in the meniscus region is reduced to less
than 0.3 m/s. In the case of IV = IH =350 A, it can be seen that the brake effect of the FAC-EMBr is
almost the same as that of the EMBr ruler with the optimal magnetic pole position.
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Therefore, with application of the FAC-EMBr, the molten steel velocity in the downwards roll-flow
region can be firstly restrained by adjusting the input current of IH and, then, by adjusting the current
intensity of IV to brake the molten steel flow in the upper roll and meniscus regions, which can achieve
a more ideal flow state. Since the input current in the vertical coil and the horizontal coil can be
adjusted independently, the variation of the SEN depth DSEN and port angle θP have little influence on
the brake effects of the FAC-EMBr.

3.5. Effects of the EMBr Ruler and FAC-EMBr on the Level Fluctuation

Figures 18 and 19 show the influence of the casting speed on the level fluctuation under the effects
of the EMBr ruler and FAC-EMBr, respectively. The current intensity IH for the EMBr ruler is 350 A,
and the horizontal magnetic pole position is P =120 mm. As can be seen from Figure 18, while the
casting speed increases from 1.6 m/min to 2.2 m/min, the meniscus wave height near the NF of the
mold gradually increases from 20.3 mm to 45 mm. As the casting speed reaches 2.0 m/min, the liquid
slag layer near the meniscus is pushed away by the upper roll, and the molten steel is exposed to
the air. As the casting speed continues to increase, this phenomenon of the molten steel exposed
to the air becomes worse. This is due to the limitation of the horizontal magnetic field of the EMBr
ruler, which cannot effectively control the upper roll flow, so with the increase of the casting speed,
the molten steel velocity in the upper roll region increases significantly, and the meniscus wave height
increases gradually.
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Figure 19 shows that, with application of the FAC-EMBr, the meniscus wave height increases from
8.5 mm to 21.1 mm as the casting speed increases from 1.6 m/min to 2.2 m/min. It also can be found
that the liquid slag layer near the meniscus is not washed away by the upper roll, as the casting speed
is 2.2 m/min. This is mainly due to the application of the vertical magnetic pole, which effectively
suppress the molten steel velocity in the upper roll region and reduces the impact strength of the
upper roll flow, so that the steel/slag interface tends to be stable, and the meniscus wave height is less
than that of the EMBr ruler under the same conditions. It can be concluded that the application of the
FAC-EMBr is more beneficial to control the molten steel flow in the upper and lower regions with the
condition of a high casting speed and then improve the quality of the continuous casting slab.

4. Conclusions

In this paper, the numerical simulations were conducted to study the behavior of the molten
steel flow and the steel/slag interface fluctuations in the EMBr ruler and FAC-EMBr molds.
The electromagnetic characteristics, molten steel flow characteristics, and the control effects of the
different EMBr forms on the steel/slag interface fluctuations were compared and analyzed. The main
conclusions were as follows:

1. The electromagnetic field of the EMBr ruler was mainly distributed in the horizontal magnetic
pole area. The magnetic induction intensity in the upper roll and meniscus regions was very small.
The Lorentz force was mainly distributed in the molten steel jet impact region and the downwards
roll-flow region near the jet impingement point on both sides of the SEN. The electromagnetic
force was very small in the upper roll and meniscus regions.

2. With the application of the FAC-EMBr, the steady magnetic field was formed in the horizontal
magnetic pole region and the upper roll and meniscus regions, and a strong Lorentz force
could be formed in these regions, so the velocity of the molten steel in these regions could be
significantly reduced.
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3. As the distance between the SEN and the horizontal magnetic pole was far (case 2 and case 3),
the application of the EMBr ruler could not effectively brake the upper roll flow and reduce the
meniscus wave height.

4. For the FAC-EMBr, increasing the current intensity IV could significantly reduce the molten
steel velocity in the upper roll and meniscus regions, decrease the meniscus wave height,
and stabilize the level fluctuations; increasing the current intensity IH could effectively decrease
the impingement of the jet and the molten steel velocity, which was beneficial to the formation of
the piston flow.

5. The FAC-EMBr had independent adjustable characteristics, which made it possible to control the
molten steel flow in the key areas comprehensively and flexibly and achieve a more appropriate
flow state in the mold.
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