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Abstract: This article developed an improved statistical pattern analysis (SPA) monitoring strategy
for fault detection of complex multivariate processes using empirical likelihood. The technique based
on statistical pattern analysis performs fault detection by inspecting change in the statistics of process
variables (e.g., mean value, correlation coefficient, variance, kurtosis, etc.). It is capable of monitoring
non-Gaussian or even nonlinear processes. However, the original SPA framework explicitly computes
all the high-order statistics, which significantly increases the scale and dimensionality of the problem,
especially in the case of complex multivariate processes. To alleviate this difficulty, we propose
monitoring changes in the statistics with the same order using empirical likelihood, which is a
widely used estimation method to construct confidence limits or regions for parameters with similar
properties. As a result, changes in statistics of the same order can be translated into a single index;
hence more information on the faulty conditions can be observed. Furthermore, by considering
statistics of the same order, the scale of the problem is reduced significantly. The improved statistical
pattern analysis monitoring strategy is suitable for monitoring complex multivariate processes.
The performance of the improved method is illustrated by an application study to fault detection of
the Tennessee Eastman (TE) process.

Keywords: statistical pattern analysis; empirical likelihood; higher-order statistics; moving window

1. Introduction

The last decades have witnessed great research progress in the field of fault detection and
diagnosis using multivariate statistical process control techniques (MSPC). Among all MSPC techniques,
traditional methods such as principal component analysis (PCA) [1–3], principal component regression
(PCR) [4,5], and partial least squares (PLS) [6,7] are perhaps the most popular. One of the limitations
of traditional methods is that they are designed for Gaussian processes, while it is commonly
acknowledged that industrial systems are generally non-Gaussian or even nonlinear. To deal with
non-Gaussian or nonlinear processes, different kinds of independent component analysis (ICA) [8–13]
based approaches have been proposed. The basic idea of ICA based approaches is to decompose the
process data into independent components so that non-Gaussian and Gaussian components can be
separated. By considering statistical independence of the extracted components, ICA involves higher
order statistics of process data implicitly.

More recently, He and Wang [14] suggested the use of statistical pattern analysis to monitor
non-Gaussian batch processes and further extended it to the monitoring of continuous process. Unlike
ICA based approaches, the SPA framework considers high order statistics of process data explicitly.
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It examines change in the variance-covariance (e.g., mean, variance, cross-correlation, autocorrelation
etc.) as well other higher order statistics of the process data using a window based approach.
These statistics are called statistical patterns (SPs). It is assumed that the considered SPs followed a
Gaussian distribution so that PCA could be applied to determine whether there was a faulty condition.
The advantages of SPA are obvious: it does not employ a data preprocessing step and by using various
statistics of process variables, it can capture different process characteristics. However, since the SPA
framework uses the statistics of process variables explicitly, a large number of statistics may be required
to fully capture the process characteristics; hence, significantly increasing the scale and dimensionality
of the problem. As a result, it is not suitable for the monitoring of complex multivariate processes
because the monitoring sensitivity will be reduced by considering a large number of statistics.

In this work, we proposed monitoring the statistics of process variables with the same order
using empirical likelihood [15] to increase sensitivity and reduce the dimensionality of the SP
matrix. Empirical likelihood is a nonparametric method used to construct confidence regions for
finite-dimensional parameters [16]. It is widely used to test, for example, symmetry about zero, change
in distribution, independence, etc. [17]. By considering the change in statistics with the same order,
it is possible to know which kind of characteristics have changed in the process variables and hence
reveal more information about the potential process faults.

The rest of the paper is organized as follows. The next section presents the basic idea of statistical
pattern analysis based monitoring strategy. In Section 3, empirical likelihood is introduced. Section 4
proposes the improved SPA monitoring strategy, followed by a demonstration of the application of the
methodology in Section 5. Finally, a concluding summary is given in Section 6.

2. Statistical Pattern Analysis Based Monitoring Strategy

The rationale of SPA based monitoring strategy is that statistics of process variables under
abnormal conditions will be different from those under normal operational conditions. Hence, process
faults can be detected by considering the statistics of process variables instead of the process variables
themselves. The SPA based monitoring strategy consists of two steps: construction of statistical patterns,
and quantification of dissimilarity. A statistical pattern is a statistic calculated from a consecutive set
of process measurements through a window based strategy. These statistics include the mean value,
variance, and skewness, which capture the characteristics of individual variables; correlation coefficient
that captures the interactions among variables as well as autocorrelation and cross-correlation that
captures the process dynamics. In other words, statistics that capture different kinds of characteristics
of complex multivariate processes can be considered.

Generation of statistical patterns can be achieved by a moving window approach. Denote the
process measurement at time instance k by x(k), x(k) ∈ Rm,where m is the number of process variables,
and a window of process measurements can be generated as

Xk = [x1 x2 · · · xm] =


x1(k−w + 1) x2(k−w + 1) · · · xm(k−w + 1)
x1(k−w + 2) x2(k−w + 2) · · · xm(k−w + 2)

...
...

. . .
...

x1(k) x2(k) . . . xm(k)

 (1)

where w is the window length and xi(k), i = 1, 2, · · · , m is the most recent measurement of xi.
The statistical patterns are generated from Equation (1). The authors in [14,15] considered four sets of
process statistics

S ≡ [µ|Σ|Ξ1|Ξ2 ] (2)
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In Equation (2), µ ∈ RM1 relates to variable means, or first order statistics, which are calculated
from Equation (1) as

µi =
1
w

w−1∑
l=0

xi(k− l) (3)

where M1 is the number of first order statistics. On the other hand, Σ ∈ RM2 represents the second
order statistics including variance υi, correlation ri, j, autocorrelation rd

i , and cross correlation rd
i, j.

These statistics can be computed as

υi =
1
w

w−1∑
l=0

[xi(k− l) − µi]
2 (4)

ri, j =
1
w

w−1∑
l=0

[xi(k− l) − µi]
[
x j(k− l) − µ j

]
√
υiυ j

(5)

rd
i =

1
w− d

w−1∑
l=d

[xi(k− l) − µi][xi(k + d− l) − µi]

υi
(6)

rd
i, j =

1
w− d

w−1∑
l=d

[xi(k− l) − µi]
[
x j(k + d− l) − µi

]
√
υiυ j

(7)

where d is the time lag between variables and M2 is the number of second order statistics.
Finally, Ξ1 ∈ RM3 represents the third order statistics like skewness γi and Ξ2 ∈ RM4 relates to the

fourth order statistics like kurtosis κi, which can be calculated as

γi =

1
w

w−1∑
l=0

[xi(k− l) − µi]
3

(
1
w

w−1∑
l=0

[xi(k− l) − µi]
2
)3/2

(8)

κi =

1
w

w−1∑
l=0

[xi(k− l) − µi]
4

(
1
w

w−1∑
l=0

[xi(k− l) − µi]
2
)2 − 3 (9)

where M3 and M4 are the numbers of the third and fourth order statistics. Statistics higher than
four orders can also be considered, however, for the sake of simplicity, only the above statistics were
considered here. With different statistics calculated, a statistical pattern vector can be obtained by
putting together all the statistical patterns in a row vector. The row vector reflects the statistical
properties of process variables at the window from k-w + 1 to k, so that an SP matrix can be obtained as
S ∈ RM×w, where M is the number of SPs and M = M1 + M2 + M3 + M4.

By inspecting the statistical pattern vector at different windows using principal component
analysis, the fault can be detected. The SPA monitoring framework considers the statistics quantifying
the non-Gaussianity and nonlinearity of process data; it is capable of monitoring non-Gaussian and
nonlinear processes. However, for complex multivariate processes, there is a large number of variables.
Using the SPA framework may lead to consideration of too many statistics. For example, for a six
variable process, considering the statistics listed from Equations (3)–(9) may involve six mean values,
21 variance and covariance components, six skewness values, and six kurtosis values. There was a total
of 39 statistics, not to mention other terms like autocorrelation and cross correlation terms. To simplify
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the monitoring task, we used empirical likelihood to monitor changes in statistics with the same order,
so that only four monitoring statistics were needed.

3. Empirical Likelihood

Empirical likelihood is a nonparametric approach used to define confidence regions for omnibus
hypothesis testing. As a nonparametric approach, it is distribution free; the error of the confidence
region obtained by empirical likelihood is Bartlett correctable [16].

As pointed out in Section 2, as there were too many statistics considered in the original
SPA framework, we considered monitoring the change in statistics with the same order using
empirical likelihood. Assume we have N normal data samples and the statistical pattern matrix
¯
S =

[
¯
µ

¯
Σ

¯
Ξ1

¯
Ξ2

]
has been calculated from the original data. As a new data sample xN+1 arrives,

a moving window approach can be used to obtain the SP vector by considering the statistics of{
x(N −w + 2), · · · , x(N + 1)

}
, denoted as SN+1 = [µN+1 ΣN+1 Ξ1,N+1 Ξ2,N+1]. Take the first order

statistic, for example, to monitor the change in first order statistics µN+1, another moving window
approach should be considered (i.e., µN−s+2, µN−s+3, · · · ,µN+1). Denote the probability density
function of µN−s+2, µN−s+3, · · · ,µN+1 as p(µ), and the following hypothesis test can be constructed

H0 :
¯
µ = µ0 ↔ H1 :

¯
µ , µ0 (10)

where µ0 is the mean value of µN−s+2, µN−s+3, · · · ,µN+1 and s is the length of the sliding window.
If the alternative hypothesis holds, then the new data sample xN+1 is a faulty sample with a fault in the
first order statistics.

With the hypothesis test in Equation (10), it is possible to detect fault in the first order statistics.
However, the hypothesis test cannot be used only when the confidence limit is available, which can be
obtained by maximizing the following empirical likelihood function

L =
∏

N+1
i=N−s+2pi (11)

subject to the following constraints

N+1∑
i=N+s−2

pi = 1,
N+1∑

i=N+s−2

piµi =
¯
µ (12)

where pi is the probability of µi. The maximum can be reached if and only if pi =
1
s for all pi, so that

the null hypothesis
¯
µ = µ0 holds. Otherwise,

¯
µ , µ0 holds and faults in the first order statistic can

be observed.
To obtain the probability pi, consider the following log-likelihood ratio

L̃ = − log

∏N+1
i=N−s+2 pi

s−s = −
N+1∑

i=N−s+2

log(spi) (13)

subject to the constraints in Equation (12).
Using the Lagrange multiplier, we have

G =
N+1∑

i=N−s+2

log(spi) − sλT
N+1∑

i=N−s+2

(
µi −

¯
µ

)
+ γ

 N+1∑
i=N−s+2

pi − 1

 (14)
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Differentiating Equation (14) and setting it to be zero, the probability pi can be obtained as

pi =
1
s

1

1 + λT(µi −
¯
µ)

(15)

where λ is the solution of the following equation

J(λ) =
1
n

N+1∑
i=N−s+2

µi −
¯
µ

1 + λT(µi −
¯
µ)

= 0 (16)

Equation (16) can be solved using gradient search as follows

λ(t + 1) = λ(t) − α
∂J(λ(t))
∂λ(t)

(17)

where λ(t) and λ(t + 1) are the values of λ at the t-th and (t + 1)-th iteration of the gradient search; α is

the learning rate; ∂J(λ(t))
∂λ(t) is the derivative of J(λ) at λ(t) and can be obtained as

∂J(λ(t))
∂λ(t)

= −
1
n

N+1∑
i=N−s+2

(
µi −

¯
µ

)2

(
1 + λT(µi −

¯
µ)

)2 (18)

Combining Equations (17) and (18), the updating formula of λ in the gradient search can be
obtained as follows.

λt+1 = λt +
α
n

N+1∑
i=N−s+2

(
µi −

¯
µ

)2

(
1 + λT(µi −

¯
µ)

)2 (19)

Once λ is determined, the probability pi and hence the log-likelihood ratio can be computed from
Equations (13) and (15). Similar procedures can be employed for second order statistics Σ and higher
order statistics Ξ.

4. Process Monitoring Strategy Based on Improved Statistical Pattern Analysis

With the statistical patterns obtained in Section 2, process monitoring can be performed by
constructing monitoring plots using the empirical likelihood method in Section 3. Assume a statistical
pattern matrix S = [µ Σ Ξ1 Ξ2] has already been obtained using the N training data samples by a
moving window approach (with the window length of w). When a new data sample x(N + 1) arrives,
another statistical pattern vector sN+1 = [µN+1 ΣN+1 Ξ1,N+1 Ξ2,N+1] can be obtained based on x(N + 1)
and its previous s-1 samples. The statistical pattern vector is then augmented with the previous w-1
vectors to form a new statistical pattern matrix SN+1. Empirical likelihood can then be performed
between SN+1 and S. Here, we performed a total of four empirical likelihood tests on the SP matrices,
corresponding to the first, second, third, and fourth order statistical patterns. With the log-likelihood
ratios estimated, fault detection can then be performed.

The process monitoring strategy can be divided into an offline training stage and an online
monitoring stage, which are illustrated in Sections 4.1 and 4.2. Figure 1 shows the flowchart of the
process monitoring strategy.
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Figure 1. Flowchart of offline training and online detection.

4.1. Offline Training Stage

The offline training stage can be summarized as follows.
Step 1: Collect N normal samples under normal conditions, set the lengths of the two sliding

windows as s and w.
Step 2: Perform the first moving window processing based on the normal samples, construct

N − s + 1 groups of measurement matrices using Equation (1). Calculate the first order, second order,
third order, and fourth order statistics from the samples in each sub-window to form the statistical
pattern matrix S = [µ Σ Ξ1 Ξ2] based on Equations (3)–(9).

Step 3: Divide the statistical patter matrix S into two parts with equal length, S1 and S2.
Let q = N−w+1

2 , use S1 as the base SP matrix, and divide S2 into a series of q− s + 1 submatrices with
the length of s using the moving window approach.

Step 4: Perform empirical likelihood tests between the four sets of statistics in S1 and those
in the series of q − s + 1 submatrices of S2. Since S1 and S2 contain SPs corresponding to the first-,
second-, third-, and fourth-order statistics, a total of four sets of q− s + 1 log-likelihood ratios, defined
as lm, ls, lv, lk, can be obtained. For each set of log-likelihood ratios, determine its confidence limit
using methods like kernel density estimation, or simply using the 95% or 99% quantiles as the
confidence limits.

4.2. Online Monitoring Stage

Once the confidence limits for the four SPs have been obtained, it is now possible to perform
online monitoring on new data samples. For a new sample xN+1, a new SP vector can be obtained as
sN+1 = [µN+1 ΣN+1 Ξ1,N+1 Ξ2,N+1] can be estimated. Based on sN+1 and its previous w-1 SP vectors,
four SP matrices corresponding to the first-, second-, third-, and fourth-order statistics can be obtained,
following the moving window approach discussed in Section 3.

Empirical likelihood tests are then performed between the SP matrices corresponding to the new
data sample and those in S1 to get the log-likelihood ratios of lm, ls, lv, lk, which are used as monitoring
statistics. If either of the four log-likelihood ratios exceed the confidence limit, a fault is detected and
an alarm is triggered.
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The advantages of the proposed empirical likelihood based monitoring strategy are double folded.
In addition to reducing the size of the problem, it can provide a better understanding of the process
changes. For example, if a change in first-order statistical patterns is detected, then the mean values of
the variable is abnormal. If the second-order statistical patterns change, the fault causes an anomaly in
variances or correlation structure. Third-order statistical patterns such as skewness are used to measure
the degree of skewness of the data. If an anomaly occurs, it indicates that the process variables do not
follow Gaussian distribution. Fourth-order statistical patterns such as kurtosis can be used to test the
nonlinearity of the process data. If there is a violation, it indicates that the process becomes nonlinear.

5. Application Study

This section examines the performance of the improved statistical pattern analysis method on fault
detection of the Tennessee Eastman (TE) process. The TE process is a simulation of a chemical process
that has been widely used to test the performance of fault diagnosis and process control technologies.
It was initially published by the Tennessee Eastman company [18] for academic research. The process
contains 12 manipulated variables and 41 measured variables. There are four main operation units:
reactor, condenser, compressor, and product separator. Four reactants labeled as Feed A, Feed C,
Feed D, and Feed E were fed into the process and two products were produced. In addition, the process
defines different constraints, process disturbances, and operating modes. Figure 2 presents a simplified
diagram of the process.
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Figure 2. Simplified diagram of the Tennessee Eastman (TE) process.

Following the recommendation of [19], 22 measured variables and 11 manipulated variables were
selected for process monitoring, as listed in Table 1.

For the purpose of fault detection, a normal dataset containing 500 samples was generated.
A typical fault (i.e., fault 5) was considered and tested, which contained 960 samples. Fault 5 involves
a step change in the condenser cooling water inlet temperature, which was introduced after the 160th
sample. During the fault, the cooling ability was influenced and hence a change in the vapor–liquid
ratio of the input flow separator was observed.
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Table 1. Selected process variables for process monitoring. (RCW: reactor cooling water, CCW:
condenser cooling water).

No. Variable No. Variable No. Variable

x1 A feed x12 Product separator level x23 D feed flow valve
x2 D feed x13 Product separator pressure x24 E feed flow valve
x3 E feed x14 Product separator underflow x25 A feed flow rate
x4 Total feed x15 Stripper level x26 total feed flow valve
x5 Recycle flow x16 Stripper pressure x27 compressor recycle valve
x6 Reactor feed rate x17 Stripper underflow x28 purge valve
x7 Reactor pressure x18 Stripper temp. x29 separator pot liquid flow valve
x8 Reactor level x19 Stripper steam flow x30 stripper liquid product flow valve
x9 Reactor temp. x20 Compressor work x31 stripper steam valve
x10 Purge rate x21 RCW outlet temp. x32 RCW flow
x11 Product separator temp. x22 CCW outlet temp. x33 CCW flow

For the purpose of fault detection, both window lengths of w, s were set as 50. Statistical
pattern matrices involving mean value, variance, skewness, and kurtosis were constructed. Empirical
likelihood was then used to construct the monitoring statistic for each of the pattern matrices and four
statistics lm, ls, lv, lk were then constructed. The monitoring results are shown in Figure 3.
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In Figure 3, lm is the monitoring statistic for the first order statistics (mean value); lv is for the
second order statistics (variance); ls is for the third order statistics (skewness); and lk is for the fourth
order statistics (kurtosis). It should be noted that due to the introduction of two moving windows,
the length of the monitoring statistics was reduced from 960 to 860, indicating that if correctly detected,
the fault will cause violations in the statistics of Figure 3 after the 60th sample. From Figure 3, it can
be seen that some violations could be observed for lm and lk after the 60th sample. At a later time,
the fault becomes more severe and a significant number of violations were observed for lm, especially
after the 250th sample. Hence, the fault was successfully detected by the statistic lm, which indicates
that the fault influences both the mean values of process variables, resulting in a certain degree of
nonlinearity in the process data. It should also be noted that the monitoring statistic lm becomes a
constant in the later stage. This was due to the fact that at the later stage, the impact of the fault on the
mean values becomes so severe that the estimated log-likelihood values become very great. Hence,
a cut-off line was introduced.

On the other hand, the second order statistic lv and third order statistic ls could hardly detect any
violation, indicating no change happened in the second and third order statistical patterns. In addition,
fault 5 also influenced the fourth order statistic lk, indicating that the fault introduced some kinds of
process nonlinearity. This can be explained as step change in the cooling water inlet temperature may
influence the process setpoint and introduce process nonlinearity.
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After the fault is detected, it is important to isolate which variable is affected by the fault. Since few
violations are detected in the skewness and kurtosis in this monitoring model, they are not considered
in fault isolation. The deviations of mean values and kurtoses between normal and faulty samples for
the 33 variables are shown in Figure 4. For a clearer inspection, Table 2 presents the variables with the
most significant deviations in mean values and kurtoses due to the fault.
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Table 2. Variables with the most significant deviations in mean values and kurtoses due to fault 5.

Statistics Variables with the Most Significant Deviations in Means and Kurtoses

Mean x9 x21
Kurtosis x16 x28 x11 x7 x31 x32 x33

It can be seen from Table 2 that the variables x9, x21, x16, x11, x7, x31, x32, and x33 had significant
deviations. This can be explained as fault 5 involves a step change in the inlet temperature of the
condenser cooling water, so the reactor cooling water outlet temperature x21 of the cooling water of
the separator will be affected. In addition, since the gas flow is cooled by the condenser and fed into
the separator, it will cause the product separator temperature x11, the separator cooling water flow
x33, and the separator pot liquid flow x29.The separated steam is recycled into the reactor through
the compressor, causing changes in the reactor temperature x9, reactor cooling water flow rate x32,
and reactor cooling water outlet temperature x21.

For comparison, the SPA monitoring method proposed in [14] was also tested. In SPA monitoring,
four sets of statistical patterns (i.e., mean, variance, skewness and kurtosis) are considered and a SP
matrix with 132 statistical patterns was obtained by setting the window length as 50. It was found that
retaining eight principal components was sufficient to capture 95.3% variance. Hence, the number of
principal components was set as eight. The monitoring results are shown in Figure 5. It can be seen
from Figure 5 that the fault was successfully detected by the T2 and Q statistics of SPA monitoring,
however, it did not reveal any information on fault type. Furthermore, the SP matrix included a total
of 132 patterns, which may cause difficulties in subsequent fault isolation.
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It can be seen from Figures 3 and 5 that the improved statistical pattern analysis based on empirical
likelihood not only successfully detected the fault, but could also learn the type of fault and the specific
information of faulty variables while reducing the scale of the monitoring model, leading to a simple
and parsimonious model. Although the SPA monitoring method in [14] also successfully detected
the step fault, it could not provide any further fault information. Therefore, the improved statistical
pattern analysis based on empirical likelihood is more effective and comprehensive than the SPA
monitoring method. One additional issue about the proposed method is that it involves a solution of an
optimization problem for each online sample, resulting in greater computation load. In this case study,
the average computation time for the empirical likelihood method was 0.0325s on a personal computer
with the configuration of an Intel (R) Core (TM) i7-6700 CPU @ 3.40 GHz, RAM: 8.0 GB, which is
acceptable for online application. Hence, the computation load does not pose a serious problem for
our method.

6. Conclusions

This article proposed an improved statistical pattern analysis monitoring method based on
empirical likelihood. The basic idea is to monitor the statistical patterns with the same order
independently using empirical likelihood. As a result, changes in statistical patterns with specific
orders can be detected independently and faults occurring in each order can be isolated.

Compared to the original SPA framework, the improved method reduced the scale of the
monitoring problem and provides more information on the faulty conditions. A case study on the TE
process demonstrated that the improved statistical pattern analysis monitoring strategy detected the
different effects of faults on various statistics, provided more fault information, and is suitable for the
monitoring of complex multivariate processes with the change in statistics of each order.
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