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Abstract: Flat plate solar collector has been presented as an example of a heat-exchanger with two
input signals, solar radiation intensity and temperature of working medium on the input, and one
output signal, the temperature of a working medium on the output. The dynamics of heat exchange
were analyzed for two models of a solar collector—an analog one using a thermoelectric analogy, and a
digital one—determined experimentally in on-line mode using the parametric identification method.
The characteristics of both models were compared in terms of their step and frequency response
for selected construction and operational parameters. Tests of step responses determined for the
analog model indicate that the dynamics of heat exchange in the solar collector depending on two
input signals is varied. For step-forcing of input signals of the analog model, in both cases, a stable
steady state is achieved, but while the first of the signals is inertial, the second one is oscillatory.
The phenomenon of temperature oscillation at the collector outlet suggests the need to introduce
a new physical quantity in the thermoelectric analogy-thermal inductance. Such an assessment
of the dynamics of the solar collector can be useful for proper designing (construction parameters
simulation) and diagnostics (operational parameters simulation) of the device.

Keywords: heat transfer; heat exchanger; solar collector; step response; thermoelectric analogy

1. Introduction

The main tasks of solar systems are effectively collection, processing, and accumulation of
solar energy. It is connected with the need to recognize the thermal processes occurring in the
solar collector, as well as to define the impact of the device construction and/or operational parameters
on these processes. This task is connected not only with proper design of the components of such a
system but also with automation of its functioning, especially if it is one of the segments of hybrid
energy system (HES) [1,2]. The solution of control and regulation problems requires identification of
dynamic properties of all cooperating component appliances, even at the stage of designing them best.
Summarizing, proper recognition of heat transfer phenomena occurring in the solar collector in relation
to construction and operational device parameters is directly related to the identification of the impact
of these parameters on the dynamics of device operation. Therefore, this publication presents the
dynamics of heating up of solar collector’s working medium.

In the available studies, mathematical and physical models of solar collector are theoretical [3,4],
based on energy balance differential equations. There are also digital models created on the basis of
data from long-term measurements (monitoring system) [5,6].

In the papers [7,8], the dynamic properties of collector have been specified by the determination of
heating characteristics of working medium with the assumption that solar radiation is the only input
excitation signal and temperature at the collector’s output is the output signal. The characteristics can
be specified theoretically or experimentally. The theoretical characteristics is a solution of a differential
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equation describing heat transfer in the non-steady state [9,10]. Introducing certain simplifying
assumptions is its disadvantage, but the possibility of conducting simulation research is its advantage.
The step responses determined experimentally requires the measurements of temperature changes
over time on the real object [11]. Time consumption and cost consumption are disadvantages of
such a solution. Other elements of a solar heating installation are sometimes included in a steering
block diagram, e.g., a hot water storage tank [12].

In automation, a solar collector is most often treated as a heating object with the inertial nature [13].
By analyzing the device frequency response, the recognition of dynamic properties in more detail
is possible. Analysis of frequency responses is not widely common in solar collector modeling.
More common is describing of solar radiation conditions using frequency characteristics for dynamic
modeling of solar collector and heat exchanger [14–16]. A solar collector certainly can be treated as a
heat exchanger.

The scientific literature describes the analysis of the impact of changes in solar collector parameters
on device efficiency [17]. Additionally, the analyses on the influence of changes in the construction
parameters on the collector efficiency and the working medium temperature rise not only in relation
to flat-plate, vacuum tube but also in relation to the air collectors, parabolic trough collectors. Even the
collectors made of plastic and concrete are performed as a result of simulation tests [18–28].

In addition to the construction parameters, there are analyses of operating parameters, such as:
solar collector tilt angle [18,29], the volumetric flow rate of working medium [30] or working medium
mass flow rate [28,31], and even the influence of weather conditions on device’s efficiency [32].
In addition, the influence of the wind speed and flow rate of the working medium on the final outlet
temperature has been studied for years [33]. The analyses concern the basic solar heating systems for
water heating [34,35] and more complex hybrid [36] or industrial ones [37].

The application of analog model proposed by the Aleksiejuk et al. in [6] gives the possibility
to simulate changes in solar collector construction and operational parameters without need for
time-consuming and cost-consuming experiments. This publication presents the impact of changes
in construction and operational parameters on the dynamics of heating up of solar collectors
working medium.

In the process of designing or diagnostics of solar heating systems the collector plays a major role.
It is important to choose such a level of detail in the model in order to be able to distinguish the influence
of particular construction and operating parameters of a solar collector on the dynamics of the device.
So far, the proposed models are first order models and treat the solar collector as a homogeneous
body and therefore they are first-order models [11,13]. The article presents the application of the solar
collector analog model, which distinguishes three homogeneous bodies: glass cover, absorber plate,
and working medium. Hence, the analog model presented in the article is a third-order model.
Two models in the form of electric four-terminal networks have been developed for the analysis of
collector operation dynamics. They have one input signal (solar radiation intensity and, alternatively,
the temperature of working medium on the collector input) and one output signal (temperature of
the working medium on the collector output). In automation, such models are referred to as SISO
(single input single output).

2. Materials and Methods

Both the analog and digital model were presented for the same device—flat plate solar collector.
The flat plate solar collector is a part of an HES. Tested system is used to prepare hot water for the
hotel and utility building. In addition to flat plate solar collectors, the HES includes vacuum tube
solar collectors and heat pump, for which the lower energy source is a vertical ground exchanger
(Figure 1). The main hot utility water tank has a capacity of 1000 dm3, and a supplementary one
300 dm3. The solar installation supplies thermal energy to a 2000 dm3 tank, which, in turn, serves as
energy storage for the heat pump. The HES is fully monitored, and the results of measurements of all
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the physical quantities (temperature, intensity of solar radiation, flow rate of working media, etc.) are
registered daily with a resolution of one minute [38].
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The authors have used the method of equivalent thermal network (ETN) based on thermoelectric
analogy for building the analog model of a flat plate solar collector [6]. The analysis of heat exchange
in a solar collector was carried out by solving an electrical circuit (Figure A1). Two collector models
were developed, transforming its basic electrical circuit into two four-terminal networks, in which
one input and one output signal (SISO models) were distinguished. The input signals are the solar
radiation intensity P(t) and the input temperature of the working medium Tfin(t) and the output signal
is the output temperature of the working medium Tfout(t). This allows the influence of the input signals
on the collector dynamics to be analyzed separately.

The assumption adopted in the construction of the electric circuit diagram of the collector is to divide
the collector into three homogeneous bodies whose physical properties are concentrated in the nodes of
the circuit, respectively: 1—glass cover, 2—absorber plate, and 3—working medium. Nodes 1, 2, and 3
are connected with each other and the environment by thermal resistance. Heat streams flow between the
nodes and the environment. Each node has been assigned a corresponding heat capacity Ci = (mc)i.
The transient heat exchange is described in Equation (1):
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The basic circuit diagram on the basis of which the four-terminal networks were developed and
solved is shown in Appendix A in Figure A1 and described in detail in [6]. Dynamic properties of the
modeled collector are represented by the operator transmissions of two electric four-terminal networks.
It was determined using Laplace transformation for a differential equation describing the dependence
of the output signal on the input signal for a given four-terminal network. The collector can be
presented as two separate SISO models represented by Equations (4) and (5):

G1(s) =
T f out(s)

P(s)
=

b′1s + b′0
s3 + a′2s2 + a′1s + a′0

(4)

and

G2(s) =
T f out(s)

T f in(s)
=

b′′2 s2 + b′′1 s + b′′0
s3 + a′′2 s2 + a′′1 s + a′′0

(5)

transfer functions describing the relationships between the particular input (in)/output (out) signals:
P(s)—transform of solar radiation intensity, Tf(s)—transform of working medium temperature.
The coefficients of both the transfer functions depend on resistances and heat capacities of mentioned
above flat plate solar collector (Tables A1–A4. The polynomial degree of the denominator in both
transfer functions G1(s) and G2(s) is of the third degree. In this publication, the analog model has
been applied for simulation the changes in construction and operational parameters of a flat plate
solar collector. It was a theoretical simulation. For the method verification, analog model was compared
to the results achieved for the digital model described in detail in [6].

A digital model was developed on the basis of a database of the real measurement results of
the hybrid energy system. The method of parametric identification has been used for building the
digital model; it models the process of the output signal on the basis of measurement results registered in
online mode. It also allows for determining the dynamics of the modeled object by determining transfer
function (G1′(s), G2′(s) according to the analog model) and step responses on its basis. The applied IT
tool was MATLAB package System Identification Toolbox (SIT). ARX [na,nb,nk], the most frequently
recommended one for modeling, has been selected from among the ones proposed for applying in
the package of parametric models. The best matching with the process of the input signal has been
the selection criterion of a parametric model, which corresponds to the minimization of the value of
root mean square error (RMS). In this publication the accuracy of digital model has been increased.
The process of selecting the appropriate digital model is described below. Selected model is the one
with the highest degree of fit to the actual measurements.

Due to fact that the polynomial degree of the denominator in both transfer functions G1′(s), G2′(s),
is of the third degree (the same as for the analog model), attention has been paid to whether we achieve
minimization for the RMS error for the digital model with na = 3.

The choice of nk parameter connected with the measurements of the analyzed phenomenon is
very important. The correct increment of temperature of the working medium ∆Tf = Tfout − Tfin,
being the difference between temperature measured on the output of the collector Tfout and on the
input Tfin, requires taking into account certain delay time in reading the measurement results of both
temperatures [39–41]. It is connected with the time of working medium flowing through the collector.
This time depends on the length of the flow canal and the yield of the working medium (working
medium flow rate). The difference of temperature values on the input and output of the collector cannot
be from the same moment of time. The more slowly the working medium flows, the higher temperature
it heats to, but the delay of reading temperature on the output is higher. And the other way around,
if the length of the stream of working medium is higher, the delay time is shorter. This means that
the temperature measurement Tfin(t1 − n∆t) ought to correspond to the temperature measurement
result Tfout(t1) at the moment t1, where ∆t is a cycle of measurements (a period connected with the
frequency of measurements), and n is a number of retrograde measurement steps that must be taken
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into account for the accuracy of specifying ∆Tf. Similarly, one ought to consider entering the delay time
upon reading the influence of the intensity of solar radiation. Therefore, the following doubts appear:

• Whether the delay time ought to be the same for both input signals, e.g., one measurement step or
maybe a different one?

It seems that the process of heating elements of the collector under the influence of solar radiation
intensity lasts longer than the flow of the working medium. The influence of nk on the degree of
matching the process of the modeled and real output signal (over 90%) and the convergence of step
responses of both models (the analog and digital ones) have been checked before the final choice of a
parametric model.

Matlab, a simulation program, determines a model’s matching without the analysis of the physics
of the phenomenon (black-box modeling). The choice of appropriate models depends on its creator
(in the assumption of an expert in the field). The following models have been chosen:

• ARX [3,2,3] for transfer function G1′(s) due to the best matching of step responses curve (Figure 2a)
as well as due to the high 90.28% degree of model matching; the delay time of 120 s has been
applied (2 measurement steps “backwards”),

• ARX [3,2,2] for transfer function G2′(s) due to the best matching of step responses curve (Figure 2b),
as well as due to the highest 92.73% degree of model matching; the delay time of 60 s has been
applied (1 measurement step “backwards”) taking into account the calculated time of the working
medium flow through the collector from inlet to its outlet.
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The curve of the step responses shown in Figure 2a,b are the justification of decisions made.
The model ARX [3,2,3] and the step responses determined from the real measurements matches best the
step responses of the analog model in the case of transfer function G1(s). The delay time of 120 s (2 steps)
has been introduced here. The parametric model of ARX [3,2,2] with the delay of 1 measurement step
(60 s), this is the time of the working medium flow through the collector, is the best solution for transfer
function G2(s), respectively. The nature of dynamics of the collector is inertial for the transfer function
G1(s) of the analog model; and it is a nonminimal phase one for the digital model. According to two
separate SISO models in the analog model, there were also two digital models chosen for comparison.

Contrary to the analog model, it is not possible to divide an influence of the input signal on the
end temperature in the digital model, as it is created on the real measurements results taken in the
online mode. Regardless of the fact if we determine transfer function G1′(s) = Tfout(s)/P(s) or G2′(s) =
Tfout(s)/Tfin(s), the other of input signals affects a measurement result. Therefore, step responses of the
digital model can differ from the ones presented for the analog model.
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The digital model, obtained on the basis of real measurements, does not allow us to conduct
simulation tests. For this reason, the next chapter presents simulations of changes in construction and
operational parameters on the basis of an analog model.

3. Results

Table 1 contains the list of basic values of construction and operational parameters according to
investigated solar collector. The diagrams of step response curves show the changes in parameters in
relative values related to the parameters of the real collector. The scope of changes in the parameters
retains a logical sense. The simulation was performed using the Matlab software.

Table 1. Study object construction and operational parameters: basic values.

Construction Parameters

Thickness of glass σs (mm) 4
Thickness of absorber σa (mm) 2

Diameter of flow channels d (mm) 12

Operational Parameters

Working medium flow rate Q (dm3/min) 1.25
Ambient temperature Ta (◦C) 22.5

In the case of influence of solar radiation intensity, frequency responses for the particular simulation
variants were listed in Figures 3–6 below. For both input signals cases, the step responses for the
particular simulation variants were listed in Figures 3–9 below. On each of the figure, in the legend,
changes in the parameters are marked with a down arrow (below the basic value) or up arrow (above
the basic value) with a value corresponding to its change i.e., 0.7 with the down arrow is equal to
0.7 times the basic value. The response for the digital model is indicated by the bold yellow line in
each of graphs (added to compare, because the analog model is a theoretical one and digital is an
experimental one as the result of real measurements). It is the point of reference for the comparison.
The differences in the courses of the step and frequency responses caused by the simulation of the
construction and operational parameters are the results of changes in the values of resistances (through
the change in the heat exchange factors) and heat capacities. These quantities affect in turn the
coefficient values of the polynomials of numerator and denominator of the transfer functions, being the
quintessence of the collector dynamics.Processes 2020, 8, x FOR PEER REVIEW 7 of 17 

  

(a) (b) 

Figure 3. Segment G1 step (a) and frequency responses (b) for simulation of changes in thickness of 

absorber. 

  

(a) (b) 

Figure 4. Segment G1 step (a) and frequency responses (b) for simulation of changes in diameter of 

flow channels. 

 
 

(a) (b) 

Figure 5. Segment G1 step (a) and frequency responses (b) for simulation of changes in working 

medium flow rate. 

  

Figure 3. Segment G1 step (a) and frequency responses (b) for simulation of changes in thickness
of absorber.



Processes 2020, 8, 1607 7 of 15

Processes 2020, 8, x FOR PEER REVIEW 7 of 17 

  

(a) (b) 

Figure 3. Segment G1 step (a) and frequency responses (b) for simulation of changes in thickness of 

absorber. 

  

(a) (b) 

Figure 4. Segment G1 step (a) and frequency responses (b) for simulation of changes in diameter of 

flow channels. 

 
 

(a) (b) 

Figure 5. Segment G1 step (a) and frequency responses (b) for simulation of changes in working 

medium flow rate. 

  

Figure 4. Segment G1 step (a) and frequency responses (b) for simulation of changes in diameter of
flow channels.

Processes 2020, 8, x FOR PEER REVIEW 7 of 17 

  

(a) (b) 

Figure 3. Segment G1 step (a) and frequency responses (b) for simulation of changes in thickness of 

absorber. 

  

(a) (b) 

Figure 4. Segment G1 step (a) and frequency responses (b) for simulation of changes in diameter of 

flow channels. 

 
 

(a) (b) 

Figure 5. Segment G1 step (a) and frequency responses (b) for simulation of changes in working 

medium flow rate. 

  

Figure 5. Segment G1 step (a) and frequency responses (b) for simulation of changes in working
medium flow rate.Processes 2020, 8, x FOR PEER REVIEW 8 of 17 

 
 

(a) (b) 

Figure 6. Segment G1 step (a) and frequency responses (b) for simulation of changes in ambient 

temperature. 

3.2. Influence of Temperature of Working Medium on the Input 

The construction parameters, for which the simulation studies were performed, include 

thickness of glass cover, thickness of absorber, and diameter of flow channels. The operational 

parameters, for which the simulation studies were performed, include working medium flow rate 

and ambient temperature. 

  
(a) (b) 

Figure 7. Segment G2 step responses for simulation of changes in thickness of glass (a) and thickness 

of absorber (b). 

 

Figure 8. Segment G2 step responses for simulation of changes in diameter of flow channel. 

Figure 6. Segment G1 step (a) and frequency responses (b) for simulation of changes in ambient temperature.

Processes 2020, 8, x FOR PEER REVIEW 8 of 17 

 
 

(a) (b) 

Figure 6. Segment G1 step (a) and frequency responses (b) for simulation of changes in ambient 

temperature. 

3.2. Influence of Temperature of Working Medium on the Input 

The construction parameters, for which the simulation studies were performed, include 

thickness of glass cover, thickness of absorber, and diameter of flow channels. The operational 

parameters, for which the simulation studies were performed, include working medium flow rate 

and ambient temperature. 

  
(a) (b) 

Figure 7. Segment G2 step responses for simulation of changes in thickness of glass (a) and thickness 

of absorber (b). 

 

Figure 8. Segment G2 step responses for simulation of changes in diameter of flow channel. 

Figure 7. Segment G2 step responses for simulation of changes in thickness of glass (a) and thickness
of absorber (b).



Processes 2020, 8, 1607 8 of 15

Processes 2020, 8, x FOR PEER REVIEW 8 of 17 

 
 

(a) (b) 

Figure 6. Segment G1 step (a) and frequency responses (b) for simulation of changes in ambient 

temperature. 

3.2. Influence of Temperature of Working Medium on the Input 

The construction parameters, for which the simulation studies were performed, include 

thickness of glass cover, thickness of absorber, and diameter of flow channels. The operational 

parameters, for which the simulation studies were performed, include working medium flow rate 

and ambient temperature. 

  
(a) (b) 

Figure 7. Segment G2 step responses for simulation of changes in thickness of glass (a) and thickness 

of absorber (b). 

 

Figure 8. Segment G2 step responses for simulation of changes in diameter of flow channel. 
Figure 8. Segment G2 step responses for simulation of changes in diameter of flow channel.Processes 2020, 8, x FOR PEER REVIEW 9 of 17 

  
(a) (b) 

Figure 9. Segment G2 step responses for simulation of changes in working medium flow rate (a) and 

ambient temperature (b). 

In the dynamics of heat exchange in the solar collector, for which the step response is 

determined, interesting phenomena of oscillatory changes appear in the analog model. 

4. Discussion 

From the step and frequency responses presented in Figures 3–9 it results that the second input, 

on the side of the signal—the temperature at the collector’s input—has the stronger influence on the 

collector dynamics. For the digital model, this is the nonminimum phase character, i.e., the short-

term slight temperature reduction appears first, then the inertial increase of the working medium 

temperature takes place. For analog model, this phenomenon is more complicated. The step response 

is of an inertial nature but with initial quickly damping oscillations of small value. The phenomenon 

is not clear and requires further studies. The other authors pay also attention to this fact in their 

studies [16,43–46]. The emerging oscillations on the step responses are related to the G2 segment 

where 

𝐺2(𝑠) =
𝑇𝑓𝑜𝑢𝑡(𝑠)

𝑇𝑓𝑖𝑛(𝑠)
 (6) 

which is a typical heat exchanger. 

The influence of the intensity solar radiation on the working medium temperature rise for both 

the analog and digital models is not surprising. It is characterized by the inertia. However, for the 

digital model, inertia is bigger than for analog model. This probably results from the model creation 

technique. The analog model analyses the influence of the input signals separately, as opposed to the 

digital model, which cannot separate the influence of the input signals, because it is determined 

experimentally in the on-line mode. 

In case of changes in the thickness of glass cover, the higher influence on the dynamics from the 

second segment (transfer function G2(s)) is observed. The time constant increases with the increase 

of the thickness of cover, the temperature oscillations are smaller. In case of the influence of the solar 

radiation intensity, the insignificant increase of the steady-state level for the thickest glass is observed. 

However, practically, the thickness of cover does not influence on the signal amplification. 

In case of changes in the thickness of absorber, the influence on the dynamics, both on the side 

of the solar radiation intensity signal (G1) and on the side of the input temperature (G2) is observed. 

In case of the first segment, the character of the object is not changed, it is inertial. However, the 

increase of the time constant with the increase of the thickness of absorber is observed. The thicker 

absorber heats up slower, which is logical. When analyzing the second segment, it is observed (just 

like for the glass cover) that the time constant increases with the increase of the thickness of absorber 

and there are slower oscillations. The thinner the absorber, the higher the amplification of the output 

signal (outlet temperature of working medium). The absorber’s heat energy is acquired better by the 

working medium because the transfer losses are smaller. 

Figure 9. Segment G2 step responses for simulation of changes in working medium flow rate (a) and
ambient temperature (b).

3.1. Influence of Solar Radiation Intensity

The construction parameters, for which the simulation studies were performed, include thickness
of absorber and diameter of flow channels. There were not any significant changes in simulation
of the thickness of glass cover. The operational parameters, for which the simulation studies were
performed, include working medium flow rate and ambient temperature. Additional calculations for
the digital model were made only for operational parameters for three working medium flow values
that have taken place. For these flow values, three days for which weather conditions (including
daily distribution of solar radiation intensity and a similar total daily dose of solar radiation energy)
were similar, were selected from the measurement database. Courses of solar radiation intensity were
similar to each other, as well as daily radiation sum. Selection of days with a similar structure (large
fluctuations) of temporary changes in solar radiation intensity was made on purpose. For slow changes
in solar radiation intensity, the collector responds in a correct way, where the reaction is entirely the
result of the effect. The cut-off frequency value indicates how the device suppresses solar radiation
intensity fluctuations. With frequency of changes greater than the cut-off frequency, the collector only
reacts to a certain mean value of radiation. It does not react to temporary high and low values.

Solar radiation intensity is a variable function of the fundamental component (optimal insolation)
and higher harmonic components associated with cloudiness [42]. An analogous change in expenditure
(which is generally constant) is not taken into account.
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3.2. Influence of Temperature of Working Medium on the Input

The construction parameters, for which the simulation studies were performed, include thickness of
glass cover, thickness of absorber, and diameter of flow channels. The operational parameters, for which
the simulation studies were performed, include working medium flow rate and ambient temperature.

In the dynamics of heat exchange in the solar collector, for which the step response is determined,
interesting phenomena of oscillatory changes appear in the analog model.

4. Discussion

From the step and frequency responses presented in Figures 3–9 it results that the second input,
on the side of the signal—the temperature at the collector’s input—has the stronger influence on the
collector dynamics. For the digital model, this is the nonminimum phase character, i.e., the short-term
slight temperature reduction appears first, then the inertial increase of the working medium temperature
takes place. For analog model, this phenomenon is more complicated. The step response is of an inertial
nature but with initial quickly damping oscillations of small value. The phenomenon is not clear and
requires further studies. The other authors pay also attention to this fact in their studies [16,43–46].
The emerging oscillations on the step responses are related to the G2 segment where

G2(s) =
T f out(s)

T f in(s)
(6)

which is a typical heat exchanger.
The influence of the intensity solar radiation on the working medium temperature rise for both

the analog and digital models is not surprising. It is characterized by the inertia. However, for the
digital model, inertia is bigger than for analog model. This probably results from the model creation
technique. The analog model analyses the influence of the input signals separately, as opposed to
the digital model, which cannot separate the influence of the input signals, because it is determined
experimentally in the on-line mode.

In case of changes in the thickness of glass cover, the higher influence on the dynamics from the
second segment (transfer function G2(s)) is observed. The time constant increases with the increase of
the thickness of cover, the temperature oscillations are smaller. In case of the influence of the solar
radiation intensity, the insignificant increase of the steady-state level for the thickest glass is observed.
However, practically, the thickness of cover does not influence on the signal amplification.

In case of changes in the thickness of absorber, the influence on the dynamics, both on the side
of the solar radiation intensity signal (G1) and on the side of the input temperature (G2) is observed.
In case of the first segment, the character of the object is not changed, it is inertial. However, the increase
of the time constant with the increase of the thickness of absorber is observed. The thicker absorber
heats up slower, which is logical. When analyzing the second segment, it is observed (just like for the
glass cover) that the time constant increases with the increase of the thickness of absorber and there
are slower oscillations. The thinner the absorber, the higher the amplification of the output signal
(outlet temperature of working medium). The absorber’s heat energy is acquired better by the working
medium because the transfer losses are smaller.

In case of changes in the diameter of flow channels, the flow rate of the working medium
is changed. The influence on the dynamics, both on the side of the solar radiation intensity and on
the side of the input temperature, is also observed here. In case of the first segment, the inertial
character of the object is not changed. The time constant increases with the increase of the diameter of
flow channels. In case of the second segment, the increase of the time constant with the increase of the
diameter of flow channels is observed as well. The collector achieves the lower level of the steady
state for the larger diameters because the flow rate is lower, and the heat transfer coefficient achieves
smaller values.
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From among operational parameters, the working medium flow rate has the greatest influence on
dynamics of the collector operation, which is obviously known in literature. The influence of ambient
temperature within the most common range of 15–25 ◦C is insignificant. If the temperature increases
to the values corresponding to the medium temperature at the inlet of the collector, the heat losses
decreases and the increase of the temperature level of steady state is evident.

Tests of step responses determined for the analog model indicate that the dynamics of heat exchange
in the solar collector depending on two input signals: solar radiation intensity and inlet temperature
of the working medium, is varied. In the analog (theoretical) model, it is possible to run simulations
with only one input signal, if no changes are assumed for the other. There is no such possibility for the
digital model, since it is determined in online mode, for actual parameters, where both solar radiation
intensity and inlet temperature change. For step-forcing of input signals of the analog model, in both
cases a stable steady state is achieved, but while the first signal interacts inertially on the output signal,
the influence of the second one is oscillatory. Oscillations are quickly damped, and their parameters
can be affected by such factors as the diameter of the flow channel (construction parameter) or the
value of the flow of the working medium. Oscillations in the step response of all devices usually
negatively affect work and hinder regulation and adjustment of work parameters. By designing the
collector and selecting the appropriate construction parameters it is possible to reduce the occurrence
of oscillations during its later operation.

The frequency characteristics make it possible to define the frequency of the input signal changes
to which the collector proportionally transfers the changes to the output. Additionally, at what
frequencies it suppresses these changes, reacting to certain average values over the time interval.

For step response in the digital model, these oscillations are not apparent, as the first signal
(intensity of solar radiation) has a strong inertial effect. All the included charts present comparative
characteristics for both models.

The theoretical analog model was built based on thermoelectric analogy. In electrical circuits,
in transient states, voltage oscillations occur when there is a connected capacitive and inductive element
(capacitor and induction coil). Then, the potential energy accumulated in the capacity C is mutually
exchanged into the kinetic energy of the inductance L. Oscillations in the circuit suppressed by resistance
R appear. So, if thermoelectric analogy is assumed to be acceptable in modeling thermal phenomena,
then the potential energy accumulated in the thermal capacities of the structural components of devices
can be converted into kinetic energy of emerging temperature field around these devices; hence the
oscillatory nature of the step response determining the impact of the inlet temperature on the outlet
temperature of the working medium (similarly as in electrical circuits). Therefore, it seems necessary to
consider a solar collector electric diagram that takes this phenomenon into account. It seems necessary
to define and introduce to thermoelectric analogy a new physical quantity-thermal inductance.

5. Conclusions

Having the analog model of the solar collector, it is possible to determine the influence of changes
in the construction and operational parameters on the dynamics of the appliance operation, thus,
to determine design guidelines for solar heating systems. It is not necessary to make prototypes of the
appliances or to change the design at the later stage. In addition, it becomes possible to diagnose the
solar collector as part of a solar heating system. Using the analog model, it is possible to determine
whether a change in the construction and operating parameters has an impact on the time constant,
gain factor, or delay time of the analyzed device model.

From among the construction parameters selected for the analysis, the following parameters
have the greatest influence on the dynamics of the object: the thickness of absorber and the diameter
of flow channels. The thickness of glass cover has definitely a lower influence on the dynamics of
the object. When analyzing the diameter of flow channels, the changes in the amplification factor
and the slight changes in the time constant values were observed. These studies should be extended
by additional analyses in aspects of collector diagnostics. In case of the step responses for the
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second segment, the oscillating character of the phenomenon was observed. This issue should be
developed in further studies. It seems that in modeling heating devices, using a thermoelectric analogy,
it is necessary to introduce thermal inductance, which would explain the oscillatory nature of the G2
segment’s influence on the output temperature in the solar collector. Other works have also highlighted
this phenomenon [16,45].

In addition to the construction parameters, the operational parameters of the fluid solar collector
operation are also an important aspect. While simulating the changes in the operational parameters
the scale of their impact on the solar collector operation was shown.

By appropriate selection of the collector’s construction parameters, it is possible to shape the expected
course of step responses. It seems possible to obtain an inertial course (attenuation of oscillation) for G2(s)
transfer function for a given range of changes in operating parameters.

Author Contributions: Conceptualization and methodology, A.C. and J.A.-G.; software, J.A.-G.; validation,
A.C. and J.A.-G.; formal analysis, investigation and data curation, A.C. and J.A.-G.; writing—original draft
preparation and writing—review and editing, A.C. and J.A.-G.; project administration, A.C.; funding acquisition,
A.C. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Centre (Poland), project/grant number NN313 033336.
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Table A1. Description of resistances and heat capacities of a modeled flat-plate solar collector.

Symbol and Description Unit

R10—resistance to glass conductivity and heat transfer from the outer surface of the glass
cover to the ambient environment K/W

R12—resistance between glass cover and absorber K/W
R23—resistance being the sum of resistance to conductivity through the absorber and to
transfer to the working medium K/W

R20—resistance being the total resistance of conductivity through the insulation surface, air
gap and heat transfer to the ambient environment from the bottom surface of the collector K/W

Rf—thermal resistance of the working medium K/W
Rλs—thermal resistance through the glass K/W
Rαs—thermal resistance from the outer surface of the glass cover K/W
Ras—thermal resistance between the absorber and the inner surface of the glass cover K/W
Rλa—thermal resistance through the absorber K/W
Rα—thermal resistance through the working medium K/W
Rλp—thermal resistance through the total air gap K/W
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Table A1. Cont.

Symbol and Description Unit

Rλiz—thermal resistance through the insulation K/W
Rλd—thermal resistance through the collector bottom casing K/W
Rαd—thermal resistance from the external bottom casing to the environment K/W
αas—heat transfer coefficient between the absorber and the inner surface of the glass cover W/(m2

·K)
αs—heat transfer coefficient from the external surface of the glass cover W/(m2

·K)
αd—heat transfer coefficient for the bottom casing of the collector W/(m2

·K)
α—heat transfer coefficient of the working medium W/(m2

·K)
λs—thermal conductivity of glass W/(m·K)
λ—thermal conductivity of working medium W/(m·K)
λa—thermal conductivity of absorber material W/(m·K)
λp—thermal conductivity of air W/(m·K)
λiz—thermal conductivity of insulation material W/(m·K)
λd—thermal conductivity of bottom casing material W/(m·K)
σs—glass thickness m
σa—absorber thickness m
σiz—insulation thickness m
σd—bottom casing thickness m
Σσp—total air gap between the absorber and the insulation and the insulation and the
bottom casing of the collector m

Ss—glass cover surface m2

Sas—arithmetic mean of Sa and Ss m2

Sk—total internal surface area of the flow channels of the absorber m2

Sa—absorber surface m2

Sd—bottom casing surface m2

cp—specific heat of the working medium J/(m3
·K)

Q—working medium flow m3/s
mc1—heat capacity of the glass cover J/K
mc2—heat capacity of the absorber J/K
mc3—heat capacity of the working medium J/K

Table A2. List of equations used for thermal resistances and heat capacities calculation.

Equations Number

R1,o = Rλs + Rαs (A1)

Rλs = 0,5δs
λsSs

(A2)

Rαs = 1
αsSs

(A3)

R1,2 = Rλs + Ras (A4)

Ras = 1
αasSas

(A5)

R2,3 = Rλa + Rα (A6)

Rλa = δa
λaSk

(A7)

Rα = 1
α Sk

(A8)

R2,o = Rλp + Rλiz + Rλd + Rαd (A9)

Rλp =
∑
δp

λpSa
(A10)

Rλiz = δiz
λizSa

(A11)

Rλd = δd
λdSd

(A12)

Rαd = 1
αdSd

(A13)

Rf = 1
2 cpQ

(A14)

(mc)1 = cs·ρs·Ss·σs (A15)

(mc)2 = ca·ρa·Sa·σa (A16)

(mc)3 = cp·Vl (A17)
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Table A3. Transfer function coefficients of the first segment G1(s) =
b′1s+b′0

s3+a′2s2+a′1s+a′0
where: pg—glass transmittance, aa—absorber absorptivity, ag—glass absorptivity.

Coefficient Description

b′1
pg·aa·

1
Sa
·R12·R10·mc1

R12·R10·R23·mc1·mc2·mc3

b′0

(
ag·

1
Sg

+pg·aa·
1

Sa

)
·R10+pg·aa·

1
Sa
·R12

R12·R10·R23·mc1·mc2·mc3

a′2
R10·R23·mc1·mc3+R12·R23·mc2·mc3+

(
R10 ·R12

R20

)
·R23·mc1·mc3+R10·R23·mc2·mc3+R10·R12·mc1·mc2·

(
R23
R f

)
+R10·R12·mc1·mc2

R12·R10·R23·mc1·mc2·mc3

a′1
R23∗

(
R12
R20

)
·mc3+R23·

(
R10
R20

)
∗mc3+R23·mc3+R10·mc1·

(
R23
R f

)
+R12·mc2·

(
R23
R f

)
+

(
R10∗R12

R20

)
·

(
R23
R f

)
·mc1+R10·mc2·

(
R23
R f

)
+R10·mc1+R12·mc2+

(
R10∗R12

R20

)
·mc1+R10·mc2

R12·R10·R23·mc1·mc2·mc3

a′0

(
R12
R20

)
·

(
R23
R f

)
+

(
R10
R20

)
·

(
R23
R f

)
+

R23
R f

+
R12
R20

+
R10
R20

+1

R12·R10·R23·mc1·mc2·mc3

Table A4. Transfer function coefficients of the second segment G2(s) =
b′′2 s2+b′′1 s+b′′0

s3+a′′2 s2+a′′1 s+a′′0
.

Coefficient Description

b”
R23·R12·R10·R20·mc1·mc2

R f ·R12·R10·R23·R20·mc1·mc2·mc3

b”1
R12·R10·R20·mc1+R23·R10·R20·mc2+R23·R12·R10·mc1+R23·R12·R20·mc2+R23·R20·R10·mc1

R f ·R12·R10·R23·R20·mc1·mc2·mc3

b”0
R10·R20+R12·R20+R23·R10+R23·R12·R23·R20

R f ·R12·R10·R23·R20·mc1·mc2·mc3

a”2
R23·R10·R20·mc1·mc2+R f ·R12·R10·R20·mc1·mc3+R f ·R23·R10·R20·mc2·mc3+R f ·R23·R12·R10·mc1·mc3+R f ·R23·R12·R20·mc2·mc3+R f ·R23·R20·R10·mc1·mc3+R f ·R12·R10·R20·mc1·mc2

R f ·R12·R10·R23·R20·mc1·mc2·mc3

a”1
R12·R10·R20·mc1+R23·R10·R20·mc2+R23·R12·R10·mc1+R23·R12·R20·mc2+R23·R20·R10·mc1+R f ·R10·R20·mc3+R f ·R12·R20·mc3+R f ·R23·R10·mc3+R f ·R23·R12·mc3+R f ·R23·R20·mc3+R f ·R10·R20·mc2+R f ·R12·R10·mc1+R f ·R12·R20·mc2+R f ·R20·R10·mc1

R f ·R12·R10·R23·R20·mc1·mc2·mc3

a”0
R10·R20+R12·R20+R23·R10+R23·R12+R23·R20+R f ·R12+R f ·R20+R f ·R10

R f ·R12·R10·R23·R20·mc1·mc2·mc3
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17. Obstawski, P.; Bakoń, T.; Czekalski, D. Comparison of Solar Collector Testing Methods—Theory and Practice.
Processes 2020, 8, 1340. [CrossRef]

18. Zhang, D.; Tao, H.; Wang, M.; Sun, Z.; Jiang, C. Numerical simulation investigation on thermal performance
of heat pipe flat-plate solar collector. Appl. Therm. Eng. 2017, 118, 113–126. [CrossRef]

19. Andemeskel, A.; Suriwong, T.; Wamae, W. Effects of aluminium in thickness coated with solar paint on the
thermal performance of evacuated tube collector. Energy Procedia 2017, 138, 429–434. [CrossRef]

20. Ferahta, F.Z.; Bougoul, S.; Ababsa, D.; Abid, C. Numerical Study of the Convection in the Air Gap of a Solar
Collector. Energy Procedia 2011, 6, 176–184. [CrossRef]

21. Pandey, M.K.; Chaurasiya, R. A review on analysis and development of solar flat plate collector. Renew. Sustain.
Energy Rev. 2017, 67, 641–650. [CrossRef]

22. Martinez-Rodriguez, G.; Fuentes-Silva, A.; Picon-Nunez, M. Solar thermal networks operating with
evacuated-tube collectors. Energy 2018, 146, 26–33. [CrossRef]

23. Demou, A.D.; Grigoriadis, D.G.E. 1D model for the energy yield calculation of natural convection solar air
collectors. Renew. Energy 2018, 119, 649–661. [CrossRef]

24. Guo, S.; Liu, D.; Chu, Y.; Chen, X.; Xu, C.; Liu, Q.; Guo, T. Dynamic behavior and transfer function of collector
field in once- through DSG solar trough power plants. Energy 2017, 121, 513–523. [CrossRef]

25. O’Keeffe, G.; Mitchell, S.; Myers, T.; Cregan, V. Modelling the efficiency of a low-profile nanofluid-based
direct absorption parabolic trough solar collector. Int. J. Heat Mass Transf. 2018, 126, 613–624. [CrossRef]

26. Zou, B.; Yao, Y.; Jiang, Y.; Yang, H. A new algorithm for obtaining the critical tube diameter and intercept
factor of parabolic trough solar collectors. Energy 2018, 150, 451–467. [CrossRef]



Processes 2020, 8, 1607 15 of 15

27. Dorfling, C.; Hornung, C.K.; Hallmark, B.; Beaumont, R.J.J.; Fovargue, K.; Mackley, M.R. The experimental
response and modelling of a solar heat collector fabricated from plastic microcapillary films. Sol. Energy
Mater. Sol. Cells 2010, 94, 1207–1221. [CrossRef]

28. O’Hegarty, R.; Kinnane, O.; McCormack, S. Parametric analysis of concrete solar collectors. Energy Procedia
2016, 91, 954–962. [CrossRef]

29. Zou, Q.; Li, Z.; Wu, H. Modal analysis of trough solar collector. Sol. Energy 2017, 141, 81–90. [CrossRef]
30. Gertzos, K.P.; Caouris, Y.G. Optimal arrangement of structural and functional parts in a flat plate integrated

collector storage solar water heater (ICSSWH). Exp. Therm. Fluid Sci. 2008, 32, 1105–1117. [CrossRef]
31. Badescu, V. Optimal control of flow in solar collectors for maximum exergy extraction. Int. J. Heat Mass Transf.

2007, 50, 4311–4322. [CrossRef]
32. Khin Chaw Sint, N.; Choudhury, I.A.; Masjuki, H.H.; Aoyama, H. Theoretical analysis to determine the

efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system
in Myanmar. Sol. Energy 2017, 155, 608–619. [CrossRef]

33. Saito, A.; Utaka, Y.; Tsuchio, T.; Katayama, K. Transient response of flat plate solar collector for periodic solar
collector intensity variation. Sol. Energy 1984, 32, 17–23. [CrossRef]

34. Huang, B.J.; Ton, W.Z.; Wu, C.C.; Ko, H.W.; Chamg, H.S.; Yen, R.H.; Wang, J.C. Maximum-power-point
tracking control of solar heating system. Sol. Energy 2012, 86, 3278–3287. [CrossRef]

35. Azad, E. Theoretical and experimental investigation of heat pipe solar collector. Exp. Therm. Fluid Sci. 2008,
32, 1666–1672. [CrossRef]

36. Tian, Z.; Perers, B.; Furbo, S.; Fan, J. Thermo-economic optimization of a hybrid solar district heating plant
with flat plate collectors and parabolic trough collectors in series. Energy Convers. Manag. 2018, 165, 92–101.
[CrossRef]

37. Picon-Nunez, M.; Martinez-Rodriguez, G.; Fuentes-Silva, A.L. Design of solar collector networks for industrial
applications. Appl. Therm. Eng. 2014, 70, 1238–1245. [CrossRef]

38. Chochowski, A.; Czekalski, D.; Obstawski, P. Monitoring of renewable energy sources hybrid system
operations [in Polish]. Prz Elektrotech 2009, 85, 92–95.

39. Ampuno, G.; Roca, L.; Gil, J.; Berenguel, M.; Normey-Rico, J. Apparent delay analysis for a flat-plate solar
field model designed for control T purposes. Sol. Energy 2019, 177, 241–254. [CrossRef]

40. Huang, B.; Wang, S. Identification of solar collector dynamics using physical model-based approach. J. Dyn.
Syst. Meas. Control 1994, 116, 755–763. [CrossRef]

41. De Ron, A. Dynamic modelling and verification of a flat-plate solar collector. Sol. Energy 1979, 24, 117–128.
[CrossRef]

42. Czekalski, D.; Chochowski, A.; Obstawski, P. Parametrization of daily solar irradiance variation. Renew. Sustain.
Energy Rev. 2012, 16, 2461–2467. [CrossRef]

43. Weedy, B. The analogy between thermal and electrical quantities. Electron. Power Syst. Res. 1988, 15, 197–201.
[CrossRef]

44. Abdel-Hamid, B. Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite
integral transform. Appl. Math. Model. 1999, 23, 899–914. [CrossRef]

45. Chochowski, A.; Piotrowska, E. Representation of transient heat transfer as the equivalent thermal network (ETN).
Int. J. Heat Mass Transf. 2013, 63, 113–119.

46. Piotrowska, E.; Chochowski, A. Application of parametric identification methods for analysis of heat
exchanger dynamics. Int. J. Heat Mass Transf. 2012, 55, 7109–7118. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

