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Abstract: In this work, a Distributed Model Predictive Control (MPC) methodology with fuzzy
negotiation among subsystems has been developed and applied to a simulated sewer network.
The wastewater treatment plant (WWTP) receiving this wastewater has also been considered in the
methodology by means of an additional objective for the problem. In order to decompose the system
into interconnected local subsystems, sectorization techniques have been applied based on structural
analysis. In addition, a dynamic setpoint generation method has been added to improve system
performance. The results obtained with the proposed methodology are compared to those obtained
with standard centralized and decentralized model predictive controllers.

Keywords: Distributed Model Predictive Control (DMPC); fuzzy logic; sewer system

1. Introduction

Currently, it is a fact that urban wastewater treatment plants (WWTPs) have a high degree of
interconnection with other elements, such as sewers, conduction systems, and storage tanks, which are
part of the urban water system. Urban drainage systems (UDS) generally catch and carry both urban
wastewater and that which comes from rainfall to WWTPs for treatment before being discharged
into the environment, constituting a combined urban drainage system. During periods of heavy rain,
the wastewater resulting from the mix can overload the urban system and produce overflows that
can be harmful to the environment. Until now, UDS and WWTPs in general have been considered
separately to solve their control problems.

In the case of UDS, the research has essentially consisted of the development of detailed process
models that facilitate the design and simulation of different control strategies. The operational
objectives are basically avoiding wastewater leaks from the collection network before being treated
by the treatment plants, due to overflows in the storage tanks and at the entrance of the WWTP,
optimizing the degree of use of the station by maximizing the inlet flow, and reducing the economic
cost of operation [1,2]. Other problems that appear are the “first flush” problems, which occur after
a dry season when abundant precipitation occurs, causing a large increase in the concentration of
pollutants in the network water.

Some simulation models constitute benchmarks for the control systems of the sewer, such as [3].
On the one hand, the models try to describe with great precision the processes that take place in a
drainage network (hydraulic and chemical processes of degradation of discharged pollutants) and,
on the other, they have to be simple enough to be the target of simulations in the long term. In the
development of these models, the characteristics of the wastewater collected according to the area
(urban and industrial waters with different concentrations of pollutants), the rainwater reaching the
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network, and the time of year are taken into account, based on a large volume of collected data. As a
result, typical patterns that attempt to cover a large number of situations have been developed [4].
From these models, simpler ones can be obtained to be used in the elaboration of certain types of
control algorithms.

Regarding the control systems for UDS [5], they are usually classified into off-line controllers,
which apply static rules, and improved on-line controllers that apply real-time control actions [3,6–8].
Table 1 shows a summary of features for the real-time control systems:

Table 1. Some features of real-time control systems.

Type Based on Pros Cons

MPC Optimization, needs a model Predictive, Consider constraints and delays Computational cost
LQR Optimization, needs a model Simplicity Centralized, no constraints

RBC-FLC Rules, heuristic Model free Needs expert knowledge
EA-PD Optimization, model free Non-linear systems Computational cost

In particular, simple RBC (Rule-Based Control) strategies have been applied in [9,10], offering as
main disadvantage the increase of rules when the complexity of the system increases. Alternatively,
FLC (Fuzzy Logic Control) based control systems that combine simple rules with an expert system
and a flexible specification of the output parameters can be used [9,11–14]. An FLC is also used to
reduce the volume and number of overflows in the Wilhelmshaven (Germany) UDS achieving both
objectives [15]. The principles of FLC have been used to control the operation of the pumps in the
collection network od the city of Taipei, achieving a more efficient drainage of rainwater, and thus
preventing flooding [16]. Another type of algorithm, the LQR regulator, has been applied in [17]
to flow control in a collection network in Bavaria (Germany). In this case, the control objectives
were to minimize the overflows in the system by optimally using all the storage capacity of the UDS
and emptying the network as soon as possible. Evolutionary Strategies (EA) mimic evolutionary
principles to find optimal solutions [18]. For example, Genetic Algorithms have been applied to
water quality management systems in [19] and to the optimal multiobjective control of UDS [20].
In [10], EA combined with self-adaptive algorithms has achieved an improvement in the quality of
the water discharged into rivers, with reduced costs. In the control techniques based on Population
Dynamics (PD), the designed controller poses a problem of resource location, and its interpretation can
be related to biological evolutionary processes, without considering a system model, using game theory
concepts. These strategies have been applied in [21,22], achieving a better use of network volume and
avoiding overflows.

Regarding the architecture of the control systems used in UDS, one of the most common global
control configurations is centralized control. However, the local control scheme may be a suitable
solution if there are few actuators in the system [23]. In complex large-scale systems, it is common to
have both levels of control (global and local). In this case, there can be up to three levels of control
configuring a hierarchical control structure [24,25].

In the urban water systems, the interaction between the UDS and the WWTP is clear, since the
outflow from the UDS is the inlet of the treatment plants. Consequently, to improve performance,
the development and evaluation of control strategies for WWTPs should be addressed from a broader
perspective [26]. However, there are only few works in the literature that take both systems into account
in an integrated way and focus on the performance of the WWTP, using simplified models for the sewer
networks [27,28]. In particular, the consideration of the integrated system allows for a bidirectional
coupling of the conceptual models of the subsystems including WWTPs [29]. Regarding the applied
control strategies, in [30], a heuristic-type control system based on rules that covers both situations of
scarcity and abundance of water to be treated is described, also taking into account the operating costs
of the entire system. Others, like [31], present strategies that combine RBC algorithms with Model
Predictive Control (MPC).
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MPC is a control methodology that uses a process prediction model to calculate the manipulated
variables on a future horizon in order to optimize a certain cost function [32–36]. An MPC controller has
four basic elements: a control-oriented mathematical model of the system, a cost function that expresses
the control objective to be achieved, a set of system constraints, and a finite horizon optimization
problem that is solved in a receding-horizon way [33]. In a hierarchical control structure, the MPC
is normally used to generate optimal references for local controllers. The characteristics of MPC
controllers have certain advantages for their application to UDS, particularly the ability to anticipate
the system’s response to future rainfall events and the ability to consider delays and disturbances [32].
This controller has been applied to the UDS in [25], where a centralized predictive control has been
developed according to a proposed model in which the state variables considered are the volumes of
the network tanks, the control or manipulated variables are flow rates in the network pipes, and the
measurable disturbances are the flows of rainwater. The restrictions in this case are given by the
available volume of tanks and pipes, among others.

A prioritization of multi-objective cost functions is applied by means of the lexicographic technique
in the control of a UDS in [37]. In [38], an MPC controller has been simulated in a part of Barcelona’s
drainage network, in Spain, achieving significant reductions in floods and overflows [25,38–40].
Other cases in which MPC control algorithms have been studied and/or applied to UDS are [23,41,42],
where both operation costs and overflows have been reduced using non-linear prediction models.

In large-scale systems, it may be advisable to divide the global process into simpler subsystems to
facilitate the application of MPC algorithms [7]. In this case, prediction models and local cost functions
are used, obtaining local solutions to the global control problem. If there is no exchange of information
between subsystems, Decentralized Model Predictive Control is a possible solution, but a more efficient
alternative is the Distributed Model Predictive Control (DMPC), where local controllers exchange
information to calculate their own local solution, as in the cooperative (or Coordinated) Distributed
Model Predictive Control [8,43–45]. Although there is a large amount of DMPC strategies applied
to different processes [46–48], only a few deal with water management, such as the level control in
tanks [49] and the coordination of drinking water supply networks [50–52]. To the knowledge of the
authors, no applications to sewer systems have been developed.

The main contribution of this work consists in the development and application of a practical
cooperative distributed model predictive control to a UDS, based on local linearized models of the
system and fuzzy negotiation among subsystems [53]. Another contribution is the inclusion of the
WWTP in the control strategy as an additional objective—more concretely, the optimization of the
WWTP inlet flow. The benchmark described in [3] has been considered, with different disturbances,
and the results have been compared with a centralized and decentralized MPC, to assess the suitability
of the proposed methodology and its application to this system.

The article is structured as follows. After an introduction, the description of the system under
study begins, along with the mathematical model used for the simulation and the model used by the
control algorithm. In the following section, its sectorization is detailed. The article continues with the
description of the centralized and distributed MPC control algorithms, showing the corresponding
results in each case in two representative scenarios. The conclusions are presented at the end.

2. System Description and Evaluation Criteria

2.1. System Description

The sewer system used as a benchmark [3] (Figure 1) is made up of six rainwater and wastewater
catchment areas (numbered from 1 to 6 in the figure), six wastewater storage tanks (ST1, . . . , ST6; one of
them, ST5, is off-line), wastewater pipes, five valves and a pump for flow control, and a wastewater
treatment plant (WWTP).
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Figure 1. Catchment and sewer system.

The objective of the sewer is to collect all the residual water and lead it to the WWTP, maintaining
a supply flow with the least possible variability and as close to its nominal value as possible. This is
achieved by retaining the volume collected in the tanks and releasing that volume when the collected
flow is small. In addition, efforts are made to reduce as much as possible the overflows in the reservoirs
in the face of extraordinarily intense precipitation, which can cause flooding and the dispersion of
polluting substances potentially harmful to the environment.

The simulator has algorithms to generate different scenarios that take into account both the
characteristics and the volume of urban wastewater discharged into the network and the runoff and
filtrations collected by the network, produced by rainfall of different intensity and duration, in relation
to the day of the week or season of the year considered.

To allow for the design and validation of the control algorithms, a simplified model has been
developed. Firstly, only the hydraulic part of the benchmark has been considered. The ST5 tank has
been removed, since, in the current configuration, it is not possible to exercise control over it. Thus,
the ST6 tank has been renamed as tank 5 in Figure 2. The ST4 tank is considered to be equal to the rest,
that is to say, the inlet valve is fixed so that all the water that enters the tank and the outlet flow is
produced by opening another valve, rather than activating the pump. The simplified mathematical
model of the process is made up of the following elements [54]:
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Figure 2. Simplified sewer block diagram.

- Water catchment areas: all the water collected in the area constitutes an inlet flow to the system
that is treated as a disturbance. The flows collected in each zone are denoted by qri, i = 1, . . . , 6.

- Link elements: gravity residual water pipes in open channels, which connect the flows collected
in each area with the tanks and the tanks with each other and with the treatment plant. They are
modeled as first-order systems with very slow dynamics, according to their length. Their discrete
mathematical model is the following:

qi(k + 1) =
(
1−

T
τi

)
qi(k) +

(
T
τi

)
qu,i(k), i = 1, 2, 3 . . . , 9, (1)

where:

qi(k) is the output flow of the element i
τi is the time constant of the element i
T is the sampling period
qu,i(k) is the sum of inflows to the link element i

- Storage tanks: reservoirs for storing wastewater. They are located in specific places throughout
the network, with the possibility of overflow if a maximum level is reached. Their discrete model
for the water level is:

hi(k + 1) = hi(k) + T
Ai

[
uin,i(k) − ui(k) − qov,i(k)

]
, qov,i(k) =

0 hi(k) ≤ hmax,i

Aid0i
T

[
hi(k) − hmax,i

] 3
2 hi(k) > hmax,i

ui(k) = vic0i
√

hi(k), Vi(k) = Aihi(k), Vmax,i(k) = Aihmax,i(k), i = 1, 2, 3, 4, 5,

(2)

where all parameters are referred to tank i and instant k:

Vi(k) is the volume in use with water
Vmax,i is the maximum volume of the tank
uin, i(k) is the input flow rate
qov, i(k) is the overflow flow rate
d0i is an experimental parameter related to overflow
ui(k) is the output flow rate
hi(k) is the water level
hmax,i is the tank height
Ai is the tank area
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vi(k) is the opening of the tank outlet valve (control variable: v ∈ [0, 1])
c0i is an empirically calculated discharge coefficient for each tank that depends on the section of the
outlet pipe

- Nodes: they represent places of confluence of various residual water pipes. The resulting flow is
considered the sum of the incoming flows.

In Figure 2, the complete system is shown by means of a block diagram built from the basic
elements, where the catchments are represented by ovals, the link elements by rectangles, and the
storage tanks by triangles. This system is analogous to the benchmark presented in Figure 1.

Then, the mathematical model corresponding to the diagram in Figure 2 was obtained. The states
considered are the levels of the deposits 1, 2, 3, 4, and 5 (x1, . . . ,x5) and the flow rates of the link
elements 3, 7, 8, and 9, which correspond to the states (x6, . . . ,x9). The output flow of link element 9
(state x9) is in fact the inlet flow to the WWTP, provided that there is no overflow, that is, as long as it
does not exceed the nominal value of the inlet flow to the WWTP. The output flows of the link elements
of the catchments 1, 2, 4, 5, and 6, and the flow collected in zone 3, will be considered as measurable
disturbances on the process: (d1, . . . ,d6). The overflowed volume in tank 1 is collected again by the
network and led to tank 4 thanks to the arrangement of the tank itself and that of the sewage network.
The manipulated variables are the desired flows at the tank outputs, that in turn would constitute set
points of local PID flow regulators at a lower level: (u1, . . . ,u5). All states will be considered as outputs
of the system, with a special interest in the input flow to the treatment plant. Hence, the states vector,
the manipulated variables vector, and the disturbances vector are defined as follows in terms of the
benchmark variables:

x = (h1, h2, h3, h4, h5, q3, q7, q8, q9), u = (u1, u2, u3, u4, u5), d = (q1, q2, q4, q5, q6, qr3), (3)

The set of discrete differential equations of the non-linear mathematical model is:

x1(k + 1) = x1(k) + T
A1
[d1(k) − u1(k) − qov1(k)]

x2(k + 1) = x2(k) + T
A2
[d2(k) − u2(k) − qov2(k)]

x3(k + 1) = x3(k) + T
A3
[x6(k) − u3(k) − qov3(k)]

x4(k + 1) = x4(k) + T
A4
[d3(k) + u1(k) + qov1(k) + u3(k) − u4(k) − qov4(k)]

x5(k + 1) = x5(k) + T
A5
[x8(k) − u5(k) − qov5(k)]

where qov,i(k) =


0 xi(k) ≤ hmaxi
Aid0i

T [xi(k) − hmaxi]
3
2 xi(k) > hmaxi

, i = 1, . . . , 5

x6(k + 1) =
(
1− T

τ3

)
x6(k) +

(
T
τ3

)
[d6(k) + u2(k)]

x7(k + 1) =
(
1− T

τ7

)
x7(k) +

(
T
τ7

)
u4(k)

x8(k + 1) =
(
1− T

τ8

)
x8(k) +

(
T
τ8

)
[d4(k) + d5(k) + x7(k)]

x9(k + 1) =
(
1− T

τ9

)
x9(k) +

(
T
τ9

)
u5(k),

(4)
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From this model, a linear model of the system is obtained removing the overflow flow rate terms,
to be used as a prediction model in the linear MPC algorithm. The state space model equations are the
following:

x(k + 1) = Ax(k) + Bpu(k) + Bdd(k)⇒ x(k + 1) = Ax(k) + B
[

u(k)
d(k)

]
,

where : B = [ Bp Bd ], x = (x1,x2, . . . , x9), d = (d1,d2, . . . , d6), u = (u1,u2, . . . , u5),
(5)

And the matrices of the model are:

A =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 T

A3
0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 T

A5
0

0 0 0 0 0
(
1− T

τ3

)
0 0 0

0 0 0 0 0 0
(
1− T

τ7

)
0 0

0 0 0 0 0 0 T
τ8

(
1− T

τ8

)
0

0 0 0 0 0 0 0 0
(
1− T

τ9

)



Bp =



−
T

A1
0 0 0 0

0 −
T

A2
0 0 0

0 0 −
T

A3
0 0

T
A4

0 T
A4

−
T

A4
0

0 0 0 0 −
T

A5

0 T
τ3

0 0 0
0 0 0 T

τ7
0

0 0 0 0 0
0 0 0 0 T

τ9



,

(6)

Bd =



T
A1

0 0 0 0 0
0 T

A2
0 0 0 0

0 0 0 0 0 0
0 0 T

A4
0 0 0

0 0 0 0 0 0
0 0 0 0 0 T

τ3

0 0 0 0 0 0
0 0 0 T

τ8
T
τ8

0
0 0 0 0 0 0



C = I9,

2.2. Evaluation Criteria

The following evaluation criteria are used to analyze the behavior of the system and the effects of the
applied control strategies. The evaluation considers different points of overflow in the sewer network
and at the entrance of the treatment plant [3]. Some of them only consider hydraulic magnitudes,
while others also consider variables related to water quality. Among the indices corresponding to
the first group, the most used are shown below, where the subscript i represents the specific point in
the system:
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1. Number of overflows (Nov,i): this criterion represents the total number of overflow events that
have taken place at a certain point in the network. Two overflow events that are less than an hour
apart are considered a single event.

2. Duration of overflow (Tov,i): this criterion represents the cumulative sum of the duration of all
overflow events at a certain point in the system at simulation time Tsim (d). If each event j lasts tj
days and n events take place, the overflow duration is given by the expression:

Tov,i =
n∑

j=1

t j, (7)

3. Overflow volume (Vov,i) (m3): it is the total volume of wastewater discharged into the receiving
waters receivers from a certain overflow point i. Considering simulation time Tsim and overflow
qov,i(t):

Vov,i =

Tsim∫
0

qov,i(t)dt, (8)

and the total overflow volume is:

Vov =
n∑

i=1

Vov,i, (9)

4. Degree of usage of WWTP (Gu,i) (%): the ratio of the average flow rate in the simulation time and
the nominal flow rate qWWTPnom,i of the plant i, in percent:

Gu,i =
100

qWWTPnom,i · Tsim

Tsim∫
0

qWWTP,i(t)dt, (10)

5. Smoothness in the application of control signals (flows) on the system (m6/d2): it can be measured
from variations in control actions u(k) between the instant k and k − 1 in the simulation time, by
means of the following expression:

S =
N∑

k=1

(u(k) − u(k− 1))T(u(k) − u(k− 1)), N =
Tsim

T
, (11)

3. System Sectorization

Applying control techniques to large-scale systems usually involves dividing the global system
into simpler subsystems. To this end, a structural analysis of the system has been carried out to
determine the best way to sectorize the system, so that the subsystems obtained have a minimum
degree of coupling and are controllable [55]. With this end, the reachability from the entrance of the
system has been checked, and the direct graph of the system has been obtained.

Definition: A system S with a direct graph D = (U∪X∪Y, E) is input-reachable if X⊆<n is a
reachable set of U⊆<m, that is, for each node x∈X there is at least one node u∈U with a direct path to it.

Definition: A system S with a direct graph D = (U∪X∪Y, E) is output-reachable if X⊆<n is an
antecedent set of Y⊆<r, that is, for each node x∈X there is at least one node y∈Y with a direct path to it.

Then, a system S is reachable if it is input- and output-reachable. The study of the reachability of
the system allows us to determine the possibilities of sectoring while maintaining the reachability of
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the subsystems obtained. It begins with obtaining the interconnection matrix E, which is defined from
the matrices that determine the dynamic model of the system, A, Bp, and C, as:

E =


A Bp 0
0 0 0
-
C 0 0

, where A, Bp, and Care given by :

ai j =

{
1, ai j , 0
0, ai j = 0

, bi j =

{
1, bi j , 0
0, bi j = 0

and ci j =

{
1, ci j , 0
0, ci j = 0

,

(12)

Reachability matrix R can be computed as R = E∨ E2
∨ . . .∨ Es, with s = dimE, and it has the

following form:

R =


F G 0
0 0 0
H θ 0

, (13)

where F, G, H, and θ are binary matrices whose dimensions are consistent with E.
The system will be input- and output-reachable if and only if the binary matrix θ has neither zero

rows nor zero columns [55].
For the sewer system considered here, the following matrix θ has been obtained, resulting in a

system that is reachable from the input and the output:

θ =



1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


, (14)

Moreover, obtaining the direct graph of the system (Figure 3) will allow us to know the interactions
between the different variables that are involved in the process and determine the best way to divide
the global system into subsystems with minimal interaction [36], maintaining the reachability of the
subsystems obtained.

The graph shows a system coupled by the inputs. The sectoring has been carried out avoiding
interactions between states of different subsystems and at the same time ensuring their reachability
(Figure 4). The controllability of each subsystem can be verified. Accordingly, this work considers two
subsystems, the first one englobing the tanks 1 to 4 together with link element 3, and the second one
tank 5 and link elements 7, 8, and 9.

To apply the distributed MPC developed in Section 7, the state space local models of each subsystem
are expressed as follows, where the coupling input u4 is considered to belong to subsystem 1.

x1(k + 1) = A1x1(k) + Bp11u1(k) + Bp12u2(k) + Bd11d1(k) + Bd12d2(k), y1(k) = C1x1(k),

where : x1 = (x1, x2, x3, x4, x6), u1 = (u1, u2, u3, u4), d1 = (d1, d2, d3, d6),

x2(k + 1) = A2x2(k) + Bp21u1(k) + Bp22u2(k) + Bd21d1(k) + Bd22d2(k), y2(k) = C2x2(k),

where : x2 = (x5, x7, x8, x9), u2 = (u5), d2 = (d4, d5),

(15)
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Matrices A1, Bp11, Bp12, A2, Bp21, and Bp22 are formed by suitably selecting the rows and columns
of A and B from the matrices (6). Note that Bp12 and Bd12 are null; Bp21 only has non-zero in the last
column, and Bd21 is null, due to the plant’s configuration.

Figure 3. Direct graph of the sewer.

Figure 4. System sectorization.

4. Control Problem

4.1. Control Objectives

The following evaluation criteria are used to analyze the behavior of the system, and the effect of
the main control objective is to ensure an input flow to the WWTP as close as possible to its nominal
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value, making the most of its capacity, avoiding as much as possible overflows in the tanks and at the
wastewater plant itself, and also minimizing operating costs. To achieve the proposed control objective,
the outlet flow rates of the tanks (manipulated variables) are calculated to minimize the difference
between the flow rate of the inlet to the treatment plant and its nominal value. Moreover, the volume
of water at each instant is evenly distributed among all the tanks in the network, which is achieved by
minimizing the difference between the water level of each tank and a dynamically calculated reference
level to achieve that goal [54]. The uniform distribution of the water stored in the tanks will reduce
the effects of the disturbances (collected flows at the catchment areas), minimizing the overflows.
Mathematically, the control objective can be formulated by means of a cost function that includes the
partial objectives previously exposed [54,56]:

J =
M∑

j=1

N∑
k=0

w jφ j(x(k), u(k)), (16)

where N is the prediction horizon, ϕj is a partial objective, and wj is the weight corresponding to each
partial objective ϕj, with j = 1, ..., M.

In the problem considered, the following partial objectives are taken into account:

• Minimization of overflows and uniform distribution of the stored volume of water:

φ1(x(k)) =
5∑

i=1
qi(k)(Vi(k) − viVG(k))

2, vi =
Vimax

5∑
j=1

V jmax

, VG(k) =
5∑

j=1
V j(k),

with qi(k) =

 fi xi(k) ≤ hmaxi

fi
(
1 + αi(xi(k) − hmaxi)

2
)

xi(k) > hmaxi
,

(17)

where VG is the total occupied volume in the sewer at instant k and vi is a factor that represents
the weight of the tank capacity i in the total available storage volume in the sewer. The variable
weight qi(k) allows for the overflows’ penalization, increasing its value proportionally to the
corresponding overflow. Parameters fi and αi are used to prioritize overflows in some tanks.

• Maximum usage of the treatment plant and minimum overflow at the WWTP influent:

φ2(x(k)) = (QWWTP(k) −QWWTPmax)
2, (18)

where QWWTP is the inlet flow to the WWTP at instant k and QWWTPmax its nominal value.
• Control efforts minimization:

φ3(u(k)) =
5∑

i=1

ri
(
ui(k) − uire f (k)

)2
, (19)

where uiref are the output flows needed to keep the desired level in a tank, obtained by Bernoulli’s
law. Weights ri are tuning parameters.

4.2. Hierarchical Control System

The control system presents a hierarchical structure as shown in Figure 5 [23,25]. At the upper
level, the level set point signals are generated for each tank to achieve the indicated control objectives.
This will be done following the strategy of uniform distribution of the total volume occupied among
all the deposits, called EFD (Equal Filling Degree) [57], which has been shown to be among the most
effective dealing with overflow problems. Subsequently, the MPC controller calculates the set points to
be applied to local controllers by solving a constrained optimization problem, maximizing the use of
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WWTP and reducing operating costs. Finally, the local controllers are in charge of the effective control
of the process variables [58].

Figure 5. Hierarchical control system.

5. Centralized Predictive Control

5.1. Optimization Problem

The Centralized Predictive Control considered in this work includes a linear state space model for
prediction, considering the effect of perturbations. The cost function (objective function) of the MPC is
a quadratic form that takes into account both the tracking errors in the states and the deviations in
the control sequence from the flow reference (therefore penalizing control efforts), assuming that the
prediction and control horizons coincide and their value is N:

J(k, U) =
N−1∑
i=0

[∥∥∥∥∥^
x(k + i) − xre f

∥∥∥∥∥2

Q(k)
+

∥∥∥u(k + i) − ure f
∥∥∥2

R

]
+ xT(k + N)Px(k + N), (20)

where xre f (k) = (x1re f , x2re f , . . . , x9re f ) and ure f (k) = (u1re f , u2re f , . . . , u5re f ) are the states and inputs

references, respectively, and U(k) =
[

u(k) u(k + 1) . . . u(k + N − 1)
]T

.
The optimization problem for the centralized MPC is:

U∗(k) = arg min J(k)
U(k+i)

, U∗(k) =

 u∗(k) u∗(k + 1) . . . u∗(k + N − 1)
T

subject to :
^
x(k + i + 1) = A

^
x(k + i) + Bpu(k + i) + Bdd(k + i), d(k + i) = d(k)

^
x(k) = x(k)

0 ≤ x̂ j(k + i) ≤ qmax j, i = 0, . . . , N − 1, j = 6, . . . , 9

0 ≤ u j(k + i) ≤ umax j, i = 0, . . . , N − 1, j = 1, . . . , 5,

(21)

where qmax j and umax j are the upper bounds for flow in the linking elements and the tank
outputs, respectively.

Matrices Q(k) and R and the horizon N are tuning parameters for the controller, and matrix P is a
terminal penalty for MPC stability obtained by means of the Riccati equation [59]. Note that a variable
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diagonal matrix Q(k) has been considered to somehow prevent overflows in the tanks, excepting tank
1, because the overflow returns to the sewer. If an overflow is produced in a tank, the corresponding
weight is increased to further penalize the deviation from the reference for that tank. The non-zero
elements of Q(k) are q1, . . . , q5, and q9, and are obtained by (17), where f i and αi are tuning parameters.
The rest of the elements are zero because they correspond to state variables of link elements that are
not necessary to follow any set point. Matrix R is a diagonal matrix that penalizes the variations in the
flow set points with respect to their reference value, which is related to the cost of operation.

This optimization problem corresponds to a quadratic optimization problem (QP) with
constraints [32]. The implemented algorithm keeps the last applied solution, so that if the optimization
problem is not feasible, the last feasible solution is applied.

5.2. Set Point Calculations

To achieve optimal operation, we designed a hierarchical controller that modifies, in a higher layer,
the tanks’ level set points according to the strategy of distributing the current volume of water among
all the tanks in the most uniform way possible considering their capacity [57]. This is achieved by
calculating for each one its reference level, based on the total capacity of the network and the capacity
of that deposit at each sampling instant:

xire f (k) =
(

VG(k)
Ai

)
vi, (22)

where xire f (k) is the reference level for tank i at instant k. The references for the states x6re f ,x7re f ,
and x8re f would be zero because they are outflows of link elements that are not considered. Moreover,
x9re f = 60.000m3/d, which is the nominal influent flow to the WWTP.

The flow setpoints are calculated taking into account the desired level for each tank, according to
expression:

uire f (k) = c0i

√
xire f (k), i = 1, . . . , 5, (23)

The references are updated every two sampling periods, which is sufficient considering the
dynamics of the system and the disturbances.

6. Distributed Model Predictive Control (DMPC)

The DMPC algorithm considered in this work is based on [60], consisting of the minimization
of local cost functions that depend on the future evolution of the inputs of each subsystem and the
neighbor, using prediction models and local constraints. At each sampling period, agents get an
optimal control sequence for their subsystem, keeping the neighbor control sequence constant, and then
each agent solves another optimization problem that provides the control sequence for the neighbor,
keeping theirs constant.

Due to the particular characteristics of this system, since there is no interaction of the inputs of
subsystem 2 in subsystem 1, the procedure is simplified, and some of the optimization problems of the
general method are not solved. Figure 6 gives an overview of the algorithm.

And it consists of several steps:
STEP 1: The state measurements x1(k) and x2(k) corresponding to each subsystem are obtained

at instant k. Two local predictive control problems (MPC1 and MPC2) are solved, obtaining local
solutions U∗1 and U∗2 for each subsystem:



Processes 2020, 8, 1595 14 of 26

MPC1 objective function:

J1(k, U1, U2) =
N−1∑
i=0

[∥∥∥∥∥^
x1(k + i) − x1re f (k)

∥∥∥∥∥2

Q1(k)
+

∥∥∥u1(k + i) − u1re f (k)
∥∥∥2

R1

]
+ xT

1 (k + N)P1x1(k + N),

where x1re f (k) = (x1re f , x2re f , x3re f , x4re f , x6re f ),

u1re f (k) = (u1re f , u2re f , u3re f , u4re f ),Ui(k) =
[

ui(k) ui(k + 1) . . . ui(k + N − 1)
]T

, i = 1, 2,

(24)

Figure 6. Distributed Model Predictive Control (DMPC) algorithm.

The optimization problem is:

U∗1(k) = arg min J1(k, U1, U2)
U1(k+i)

, U∗1(k) =
[

u∗1(k) u∗1(k + 1) . . . u∗1(k + N − 1)
]T

subject to :
^
x1(k + i + 1) = A1

^
x1(k + i) + Bp11u1(k + i) + Bp12u2(k + i) + Bd11d1(k) + Bd12d2(k)

^
x1(k) = x1(k)

0 ≤ x̂6(k + i) ≤ qmax6, i = 0, . . . , N − 1

0 ≤ u j(k + i) ≤ umax j, i = 0, . . . , N − 1, j = 1, . . . , 4,

(25)

U2 = US
2 , where US

2 is the previous optimal control sequence extended to the current instant,
keeping constant the last value in the prediction horizon.

MPC2 objective function:

J2(k, U1, U2) =
N−1∑
i=0

[∥∥∥∥∥^
x2(k + i) − x2re f (k)

∥∥∥∥∥2

Q2(k)
+

∥∥∥u2(k + i) − u2re f (k)
∥∥∥2

R2

]
+ xT

2 (k + N)P2x2(k + N),

where x2re f (k) = (x5re f , x7re f , x8re f , x9re f ),

u2re f (k) = (u5re f ),Ui(k) =
[

ui(k) ui(k + 1) . . . ui(k + N − 1)
]T

, i = 1, 2,

(26)
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The optimization problem is:

U∗2(k) = arg min J2(k, U1, U2)
U2(k+i)

, U∗2(k) =
[

u∗2(k) u∗2(k + 1) . . . u∗2(k + N − 1)
]T

subject to :
^
x2(k + i + 1) = A2

^
x2(k + i) + Bp21u1(k + i) + Bp22u2(k + i) + Bd21d1(k) + Bd22d2(k)

^
x2(k) = x2(k)

0 ≤ x̂ j(k + i) ≤ qmax j

, i = 0, . . . , N − 1, j = 7, 8, 90 ≤ u j(k + i) ≤ umax j, i = 0, . . . , N − 1, j = 5,

(27)

U1 = US
1 , where US

1 is the previous optimal control sequence extended to the current instant,
as in (25).

STEP 2:

• Agent 1 (MPC 1) does not solve any optimization problem because U2 does not affect this
subsystem (there is no coupling).

• Agent 2 (MPC 2) minimizes J2 with respect to U1, keeping constant U∗2, obtained in step 1. Note
that u4 is the only variable optimized, because the rest of the inputs do not affect the state in the
prediction model, due to the zero columns in B21.

J2
(
k, U1, U∗2

)
=

N−1∑
i=0

[∥∥∥∥∥^
x2(k + i) − x2re f (k)

∥∥∥∥∥2

Q2(k)
+

∥∥∥u2(k + i) − u2re f (k)
∥∥∥2

R2

]
+ xT

2 (k + N)P2x2(k + N),

where x2re f (k) = (x5re f , x7re f , x8re f , x9re f ), u2re f (k) = (u5re f ),
(28)

The optimization problem is:

Uw
1 (k) = arg min J2

(
k, U1, U∗2

)
U2(k+i)

, UW
1 (k) =

[
uW

1 (k) uW
1 (k + 1) . . . uW

1 (k + N − 1)
]T

subject to :
^
x2(k + i + 1) = A2

^
x2(k + i) + Bp21u1(k + i) + Bp22u2(k + i) + Bd21d1(k) + Bd22d2(k)

^
x2(k) = x2(k)

0 ≤ x̂ j(k + i) ≤ qmax j, i = 0, . . . , N − 1, j = 7, 8, 9

0 ≤ u j(k + i) ≤ umax j, i = 0, . . . , N − 1, j = 1, 2, 3, 4,

(29)

STEP 3: Information exchange: agent 2 sends Uw
1 to agent 1.

STEP 4: Feasibility test: It is necessary to check if the states of subsystem 1 satisfy the constraints
of this subsystem, provided that Uw

1 is obtained by the other agent. If the constraints are not fulfilled,
this control action will not be considered for negotiation in the following step.

STEP 5: Agent 1 applies a fuzzy negotiation between the two available control signals, which
takes into account the average input flow rate to the wastewater treatment plant, qWWTP, and the
average overflow, qov.

7. Fuzzy Negotiation

The fuzzy negotiation generates the final control actions for the first subsystem U f
1 , because U f

2 = U∗2
has already mentioned. The starting point for the negotiation are two solutions obtained in Steps 1
and 2 of the algorithm, U∗1 and Uw

1 . In order to apply the fuzzy criteria, the average input flow to the
WWTP, qWWTP, j and the volume of water that has overflowed on average in the prediction horizon
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qov, j are calculated for each of the negotiating control actions. For this, local prediction models are used
and local solutions are taken into account, as well as disturbances:

qWWTP, j(k) =
1
N

N∑
i=1

x̂9 j(k + i), qov, j(k) =
1
N

5∑
m=2

N∑
i=1

q̂ov, jm(k + i), j = 1, 2, (30)

7.1. Fuzzification

Fuzzification consists of the transformation of imprecise knowledge into fuzzy sets. Specific
numerical values of a property are transformed into fuzzy values for each linguistic variable (degrees
of membership) to make decisions as humans do [61,62]. In this case, the fuzzy sets proposed for each
variable have been obtained in a heuristic way, in order to get the best performance of the system.
Therefore, the values for the flow rates a, b, and c that determine the precise shape of the fuzzy sets are
the following (in m3/d):

µlow
(
qWWTP

)
=


1, qWWTP < a
b−qWWTP

b−a , a ≤ qWWTP < b
0, qWWTP ≥ b

µideal
(
qWWTP

)
=


0, qWWTP < b ó qWWTP ≥ c
qWWTP−a

b−a , a ≤ qWWTP < b
c−qWWTP

c−b , b ≤ qWWTP < c

µhigh
(
qWWTP

)
=


0, qWWTP < b
qWWTP−b

c−b , b ≤ qWWTP < c
1, qWWTP ≥ c

,

(31)

µnegligible
(
qov

)
=


1, qov < a
b−qov
b−a , a ≤ qov < b

0, qov ≥ b

µnoticeable
(
qov

)
=


0, qov < a
qov−a
b−a , a ≤ qov < b

1, qov ≥ b
,

(32)

The graphic representation of these sets is shown in Figures 7 and 8.

1 
 

 

 

 Figure 7. Fuzzy sets for qWWTP.
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Figure 8. Fuzzy sets for qov.

The numerical values considered in each case appear in Table 2.

Table 2. Fuzzy sets definition.

a b c

µ
(
qWWTP

)
56,000 58,000 60,000

µ
(
qov

)
1000 2000 -

7.2. Fuzzy Rules

The evaluation of the rules provides the fitness of a possible control action based on the imprecise
knowledge defined by the values of the specific membership functions defined before. The set of rules
represents all the possibilities of combinations of linguistic labels in the two antecedents, to provide
results for all the universe of discourse:

1. IF qWWTP is ideal AND qov is negligible, THEN the solution is excellent.
2. IF qWWTP is ideal AND qov is noticeable, THEN the solution is good.
3. IF qWWTP is low AND qov is negligible, THEN the solution is good.
4. IF qWWTP is low AND qov is noticeable, THEN the solution is poor.
5. IF qWWTP is high AND qov is negligible, THEN the solution is good.
6. IF qWWTP is high AND qov is noticeable, THEN the solution is fair.

These rules are applied to the two possible solutions available in agent 1 for negotiation.
The aggregated antecedent (logical AND) is obtained by using function min. Then, an example of an
equation is:

µi j = min
(
µi

(
qWWTPj

)
,µi

(
qovj

))
, (33)

where i = 1, . . . 6 is the number of rule, and j = 1, 2 is the solution considered for negotiation (U∗1 or Uw
1 ).

7.3. Defuzzification

Defuzzification consists of obtaining a characterization of each control action by means of a
precise numerical value from the fuzzy values obtained in the evaluation of the rules. There are
numerous procedures for this, and in this work it was done by applying the centroid method to the
membership sets of Figure 9 where the values of Up and Um are selected taking into account which
solution, U∗1 or Uw

1 , provides a smaller value of the global cost function:

Up = U∗1 if J
(
k, U∗1, U∗2

)
≤ J

(
k, Uw

1 , U∗2
)
Um = Uw

1 if J
(
k, U∗1, U∗2

)
≤ J

(
k, Uw

1 , U∗2
)

(34)
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and vice versa if J
(
k, U∗1, U∗2

)
> J

(
k, Uw

1 , U∗2
)
.

Figure 9. Fuzzy sets for defuzzification.

Then, the degree of membership for the consequents of the rules is calculated using the RSS
method (Root Sum Squared [61]), considering that the rules are applied to both control actions to
negotiate. The degree of membership for the excellent, good, fair, and poor membership sets, are denoted
as µe, µb, µr, and µm, respectively:

µe =
√
µ2

11 + µ2
12µb =

√
µ2

21 + µ2
31 + µ2

51 + µ2
22 + µ2

32 + µ2
52µr =

√
µ2

61 + µ2
62µm =

√
µ2

41 + µ2
42, (35)

Finally, UF
1 is obtained as follows (centroid method [61]):

UF
1 =

Up · µm + Upm1 · µr + Upm2 · µb + Um · µe

µm + µr + µb + µe
, where :Upm1 =

Um −Up

3
and Upm2 = 2

Um −Up

3
, (36)

8. Results

In this section, some simulation results considering two different scenarios obtained from the
sewer benchmark are presented. In order to reduce the computational time, two periods of 10 days have
been taken out from a series that extends to two years, choosing periods where the flows variations are
more relevant.

Both scenarios represent specific periods of a humid season with rainfall (Figure 10), the second
one with more rainfall collected (Figure 11).

Figure 10. Scenario 1.
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Figure 11. Scenario 2.

For each scenario, to validate the results of the methodology proposed in the paper, four cases
have been developed. The first case (without control, CASE 1) is equivalent to keeping all the valves at
their maximum opening. The second case (Decentralized MPC, CASE 2) considers two local MPCs
according to the models obtained in (15). The third case (DMPC with fuzzy negotiation, CASE 3) is the
methodology proposed in the paper, and CASE 4 is a centralized MPC. The received water comes from
the normal discharge of urban wastewater and more or less intense rains, depending on the season,
which are the ones that mainly cause the overflow in the tanks and at the entrance of the WWTP. For all
simulations, the prediction horizon selected is N = 5, and the weights in the cost function are shown
in Table 3.

Table 3. Tuning parameters.

Weights for (12) Weights for (13) Weights for (15)

wi = 1, i = 1, 2, 3 fi = 10, i = 1, 2, 3, 4, 5 ri = 10−8, i = 1, . . . , 11
αi = 10, i = 2, 3, 4, 5

q9 = 10−5

The system parameters have been taken from [3] and are shown in Table 4.

Table 4. System parameters.

Parameter Units Values

A1, . . . , A5 tank areas m2 1188, 252, 348, 852, 2988
c01, . . . , c05 discharge coefficients m5/2/d 1.89, 0.40, 0.55, 1.36, 6.12 (×104)

hmax1, . . . , hmax5 tank heights m 5 (for all)
hmin1, . . . , hmin5 minimum levels m 0 (for all)

qmax1, . . . , qmax9 maximum flow rates at
the link elements outlet m3/d

5.99, 1.27, 3.02, 4.29, 4.29, 15.06, 4.29, 23.64,
6 (×104)

T sampling time d 0.0021

τ1, . . . , τ9 link elements time constants d 0.0313, 0.0104, 0.0104, 0.0208, 0.0208, 0.073,
0.0208, 0.0104, 0.0104

umax1, . . . , umax5 maximum flow rates at
the tanks outlet m3/d 5.98, 1.27, 1.75, 4.29, 19.34 (×104)

d01, . . . , d05 weir factors - 0.9091, 2.1429, 1.5517, 1.2676, 0.5422

Some simulation graphic results are shown below for scenario 1. As can be seen in Figure 12,
the inflow to WWTP is very similar (b), as well as the overflow flow rate (a), except in the case without
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control. The differences between the cases considered are better revealed in the numerical results of
Table 5. For brevity, only tank 4 level (a) and outflow set point (b) in each case are shown in Figure 13.

Figure 12. Wastewater treatment plant (WWTP) input (a) and overflow flow rates (b).

Table 5. Numeric results for scenario 1.

Data No Control Decentralized MPC DMPC with Fuzzy Negoc. Centralized MPC

Nov,1
1 0 1 1 1

Nov,2 1 1 1 1
Nov,3 1 1 1 1
Nov,4 1 1 1 1
Nov,5 0 1 1 1

Nov,WWTP 5 4 4 4
Nov 8 9 9 9

Tov,1
1 0 0.0583 0.0583 0.0604

Tov,2 0.0375 0.0396 0.0396 0.0396
Tov,3 0.0875 0.0813 0.0813 0.0813
Tov,4 0.2625 0.1375 0.1708 0.1604
Tov,5 0 0.1167 0.0958 0.1000

Tov,WWTP 0.8146 1.2688 1.2708 1.2563
Vov,1

1 0 1438.5 1440.0 1155.8
Vov,2 168.3654 175.2992 175.2992 174.8339
Vov,3 527.9974 545.3469 544.9625 542.2737
Vov,4 6224.4 4250.2 4637.8 4240.2
Vov,5 0 1722.2 1147.0 1363.9

Vov,WWTP 14376 65.3614 64.6751 66.2179
Vov 21297 6758.3 6569.7 6387.5

QWWTP 30124 31537 31556 31583
Gu 50.2067 52.5620 52.5933 52.6386
S - 1.0983 × 1011 6.0324 × 1010 6.2001 × 1010

1 The overflow volume in tank 1 returns to the network due to the sewer configuration. Therefore, it is not
added to Vov.

The evolution of the water level in tank 4 can be seen together with the reference proposed by the
upper layer of the hierarchical controller. The reference tracking is considerably better for cases 2, 3,
and 4 than for case 1 (without control). Therefore, if no control is applied, more overflow is produced
at the inlet of the WWTP, because not enough water is maintained in the sewer tanks. The controlled
cases also improve the total number of overflows at the inlet of the WWTP and the total volume of
overflow water (Table 4). Regarding the inlet flow to the WWTP, it is difficult to keep the nominal
value qWWTPnom, because the water received in the catchments has large variations and most of the
time is not enough to reach that value. However, when control is applied, more water is stored in tank
5, allowing for a better regulation of the nominal value of the WWTP inlet flow (Figure 12a).

In Figure 14, level (a) and output flow rate set point (b) can be observed for every tank in case 3,
corresponding to a Distributed MPC with fuzzy negotiation. Levels are represented together with the
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reference level calculated at each instant according to (22). Some of them are closer than others to the
reference value to minimize the volume of overflowed water and optimize the inflow to the WWTP.

Figure 13. Tank 4 level (a) and output flow rate set point (b).

Figure 14. Case 3 levels (a) and output flow rate set points (DMPC) (b).

For scenario 2, some graphic results are shown in Figures 15 and 16.

Figure 15. WWTP input (a) and overflow flow rates (b).

The results for scenario 2 present a larger number of overflow events (Nov) and a larger overflow
(Vov) due to the increase of the water received (disturbances). On the other hand, the usage of the
WWTP (Gu) and the QWWTP average are due to the larger availability of water to keep the WWTP
working close to the nominal operation point.

In Table 5 (for scenario 1) and Table 6 (for scenario 2), the performance indices presented in
Section 2.2 are presented for the four cases. Case 1 (without control) is the worst for all indices,
as expected, and the centralized MPC presents the best performance for indices such as the average
flow entering the WWTP (QWWTP), the degree of usage of WWTP (Gu), and the total volume overflow
(Vov). However, the DMPC with fuzzy negotiation does not show an important decrease of those
indices, with the advantage of using local simpler models and optimization problems. Moreover,
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the use of DMPC provides the smallest S, due to the smoothing effect of the fuzzy sets considered for
negotiation. The case of Decentralized MPC provides the worst performance indices because the local
controllers do not exchange information and the existing coupling in the network is not considered.

Figure 16. Tank 4 level (a) and output flow rate set point (b).

Table 6. Numeric results for scenario 2.

Data No Control Decentralized MPC DMPC with Fuzzy Negoc. Centralized MPC

Nov,1
1 3 3 3 3

Nov,2 3 3 3 3
Nov,3 4 4 4 4
Nov,4 4 4 4 4
Nov,5 2 2 2 2

Nov,WWTP 6 6 6 6
Nov 22 22 22 22

Tov,1
1 0.1750 0.3958 0.4021 0.4333

Tov,2 0.1750 0.3750 0.3833 0.5000
Tov,3 0.5958 0.4958 0.5292 0.6188
Tov,4 1.5521 0.9063 0.9938 0.9562
Tov,5 0.2687 0.8583 0.8042 0.8146

Tov,WWTP 2.2729 3.5333 3.5646 3.5583
Vov,1

1 3457.7 19,497 19,585 17,682
Vov,2 1299.1 2777.8 2770.4 3403.4
Vov,3 5996.7 5891.4 5837.9 5876.5
Vov,4 54707 42,133 48,679 42,387
Vov,5 8826.6 57,569 50,456 55,440

Vov,WWTP 89,632 260.8809 237.2997 241.2602
Vov 160,460 108,630 107,980 107,350

QWWTP 35,830 39694 39725 39,774
Gu 59.7160 66.1573 66.2077 66.2894
S - 2.0269 × 1011 6.9150 × 1010 7.1428 × 1010

1 The overflow volume in tank 1 returns to the network due to the sewer configuration. Therefore, it is not
added to Vov.

Finally, to analyze the influence of the fuzzy set design on the performance of the distributed
control algorithm, the location of the fuzzy sets has been changed according to Table 7, but their shape
was preserved. Results are presented in Table 8. The DMPC1 and DMPC2 cases present practically
identical results. Therefore, it follows that the influence of the position variation of the fuzzy sets is
negligible. By comparing DMPC2 and DMPC3, it can be seen that the degree of usage of the WWTP
is slightly smaller in the case of DMPC3 because the center of the fuzzy set has been moved to the
WWTP constraint of 60,000 m3/d. By comparing DMPC3 and DMPC4, the overflow (Vov) is larger for
DMPC4 because the fuzzy set considers as negligible overflows of larger amount. Anyway, the results
are very similar because the limits of the fuzzy sets are very next to each other.
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Table 7. Fuzzy sets definition for different DMPC cases.

µ
(
qWWTP

)
µ
(
qov

)
Case a b c a b

DMPC 1 56,000 58,000 60,000 1000 2000
DMPC 2 54,000 56,000 58,000 1000 2000
DMPC 3 58,000 60,000 62,000 1000 2000
DMPC 4 56,000 58,000 60,000 0000 1000
DMPC 5 56,000 58,000 60,000 2000 3000

Table 8. Numeric results for scenario 1 varying DMPC fuzzy sets.

Data DMPC1 DMPC2 DMPC3 DMPC4 DMPC5

Tov,1
1 0.0583 0.0583 0.0583 0.0583 0.0583

Tov,2 0.0396 0.0396 0.0396 0.0396 0.0396
Tov,3 0.0813 0.0813 0.0813 0.0813 0.0813
Tov,4 0.1708 0.1708 0.1583 0.1708 0.1708
Tov,5 0.0958 0.0958 0.1042 0.0958 0.0958

Tov,WWTP 1.2708 1.2708 1.2646 1.2708 1.2708
Vov,1

1 1440.0 1440.0 1461.0 1440.0 1440.0
Vov,2 175.2992 175.2992 175.3114 175.2992 175.2992
Vov,3 544.9625 544.9625 545.1972 544.9625 544.9625
Vov,4 4637.8 4637.8 4417.7 4637.8 4637.8
Vov,5 1147.0 1147.0 1392.6 1147.0 1147.0

Vov,WWTP 64.6751 64.6751 65.2556 64.5500 64.6878
Vov 6569.7 6569.7 6596.1 6569.5 6569.7

QWWTP 31,556 31,556 31,553 31,556 31,556
Gu 52.5933 52.5933 52.5889 52.5933 52.5933
S 6.0324 × 1010 6.0144 × 1010 6.0583 × 1010 6.0322 × 1010 6.0325 × 1010

1 The overflow volume in tank 1 returns to the network due to the sewer’s configuration. Therefore, it is not added
to Vov.

9. Conclusions

In this document, a DMPC with fuzzy negotiation has been developed and applied to a sewer
network, with good results in comparison with centralized and decentralized MPC. As expected,
centralized MPC provides the best performance because the controller makes use of the full linearized
model of the process. However, the DMPC performance is similar, dealing with simpler local
optimization problems and other common advantages of distributed strategies, such as fault tolerance.
As for the comparison with a decentralized MPC, where there is no communication among agents, the
negotiation improves the results significantly. The methodology developed is based on linearized local
models, which further simplifies the MPC optimization problems solved by each subsystem. Moreover,
the fuzzy negotiation allows for the inclusion of expert process knowledge by means of fuzzy sets
whose precise shape is defined by flows and intuitive fuzzy rules that can be adjusted depending on
the specific needs of the network. In this way, no other cumbersome tuning parameters have been
added to the negotiation procedure.

The methodology proposed here is currently valid only for two subsystems, but it can easily be
extended to a larger number of local systems due to the use of standard sectorization techniques and
introducing, for example, the concept of neighborhood, where the coupling among subsystems is high.
Due to the use of the benchmark [3], it would also be possible to include the concentration of the most
relevant pollutants in the procedure. Although UDS control is mainly commanded by flow and level
dynamics, due to the irrelevant biological degradation of pollutants in the sewer, future works will
consider some of them, e.g., the Total Suspended Solids concentration, with the aim of improving the
industrial applicability of the controller.
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