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Abstract: Adipocyte-specific transcription factors and antioxidants are considered the best target of
obesity. Aruncus dioicus var. kamtschaticus (A. dioicus, Samnamul) is easily available owing to edible
and inexpensive. However, the anti-adipogenic effects of the underlying mechanism of A. dioicus
extract (ADE) have not yet been reported. In the present study, we evaluate anti-adipogenic pathway
in 3T3-L1 adipocytes, antioxidant activities and quantified phenolics using high-performance liquid
chromatography of ADE. The results revealed ADE had reduced adipocyte differentiation (0.72-fold
vs. MDI (media of differentiation) control), triglyceride (TG; 0.50-fold vs. MDI control, p < 0.001),
and total cholesterol contents (0.77-fold vs. MDI control) by regulating adipocyte-specific transcription
factors (C/EBPα, PPARγ, and SREBP1) and their downstream mRNA (AdipoQ, Ap2, SREBP1-c,
and FAS) levels. Furthermore, ADE has higher total phenol and flavonoid contents and scavenging
assay in the DPPH and ABTS+. In particularly, ADE contains chlorogenic acid (7.04 mg/kg),
caffeic acid (20.14 mg/kg), ferulic acid (1.74 mg/kg), veratric acid (29.31 mg/kg), cinnamic acid
(4.70 mg/kg), and quercetin (4.18 mg/kg). In conclusion, since these phenols, especially quercetin,
in the ADE appear to reduce differentiation, TG and cholesterol content by regulating adipocyte-specific
transcription factors in adipocytes, ADE has the potential to be developed into a new antioxidant and
anti-obesity therapeutics.
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1. Introduction

Obesity means an excessive accumulation of fat in the body by an increase in hypertrophy of
adipose cells with no effects on the number of cells and causes chronic diseases including diabetes
mellitus, cardiovascular disease, and some cancers [1,2]. In recent times, the prevalence rate of obesity
has increased to the extent that it can be considered as a global syndemic such as epidemics and
climate change [3]. These current trends in obesity carry a high personal cost and social costs for public
policy [4]. Thus, anti-obesity studies are conducted to reduce the burden on various diseases caused by
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obesity. However, due to the dependence and safety of appetite-suppressing drugs, the development
of anti-obesity drugs using natural products can be a good alternative strategy [5].

The CAAT/enhancer-binding protein (C/EBP) and peroxisome proliferator-activated receptor
(PPAR) family are known to play a role in the transcriptional activation of adipogenesis [6]. Among them,
C/EBPα and PPARγ are activated just before or concomitantly with the transcription of most
adipocyte-specific genes [6]. Another transcription factor, sterol regulatory element-binding proteins
(SREBPs) including SREBP-2, SREBP-1a and SREBP-1c, regulates gene expression associated with
lipogenesis [7]. Furthermore, these factors involved in adipocyte differentiation were significantly
regulated by oxidative stress [8]. Therefore, adipocyte-specific transcription factors and antioxidants
are a significant target of anti-obesity agents.

Samnamul is the aerial part of Aruncus dioicus, a plant that belongs to the family Rosaceae [9].
Samnamul has a unique flavor, is very nutritious, and widely grown in mountain areas of Japan,
China, and Korea, and is inexpensive [10,11]. Samnamul contains dietary fiber, minerals, vitamin A,
phenolic compounds, monoterpenoids, and saponins. Samnamul has beneficial antioxidant,
anti-wrinkling, and anti-inflammatory activities and inhibits type 2 diabetes cells and animal
models [9,11–14]. However, anti-adipogenic effect of A. dioicus and their mechanism have not
been reported. Therefore, this study examined the adipogenesis inhibitory activity of A. dioicus extract
(ADE) and the underlying molecular mechanism that regulates both adipogenesis and lipogenesis.
Furthermore, since the anti-obesity effects were closely related to its antioxidant effects and contents of
antioxidant compounds of the aerial parts of ADE were measured.

2. Materials and Methods

2.1. Preparation of Sample

Aerial parts of A. dioicus (AD) were collected from the Department of Herbal Crop Research
(Eumsung, Chungcheongbuk-do, Korea) in 2018. AD was freeze-dried after collection. For the
preparation of extracts, AD (10 g) was ground, sifted through a testing sieve (aperture 1.40 mm,
wire 0.71 mm). Dried AD was extracted with 70% ethanol (ADE) at a 1:10 (v:v) ratio for 24 h, three times
at room temperature. After filtration, extracts were concentrated in vacuo used by vacuum evaporator
(Rotavapor R-121, Buchi, Switzerland), freeze-dried (PVTFD50R, ilShinBioBase, Korea; 20 mTorr,
−40 ◦C, 1 week), and stored at −80 ◦C. This study was approved by the Cooperative Research Program
for Agriculture Science and Technology Development Program (PJ01361603), Rural Development
Administration, Republic of Korea.

2.2. Cell Culture and Differentiation

3T3-L1 adipocytes were obtained from ATCC (#CL-173; Manassas, VA, USA). Briefly, cells were
incubated in Dulbecco’s modified Eagle medium (DMEM; Gibco, Billings, MT, USA) supplemented
with 10% bovine calf serum (Gibco, Billings, MT, USA) and 1× penicillin/streptomycin/glutamate
(P/S/G; Gibco, Canada). Differentiation was induced in post confluent cells with growth media
containing 500 µM isobutylmethylxanthine (Sigma-Aldrich, St. Louis, MO, USA), 1 µM dexamethasone
(Sigma-Aldrich, St. Louis, MO, USA), and 10 µg/mL insulin (Gibco, Billings, MT, USA) for 2 days, and
cells were replenished by DMEM with 10% fetal bovine serum (Gibco, Billings, MT, USA), 1× P/S/G
and 2.5 µg/mL insulin (10 µg/mL) media every 2 days [15]. Experiments were performed in adipocytes
8 days post differentiation.

2.3. Cytotoxicity

Cell viability was measured with a CellTiter 96 Aqueous One Solution Cell Proliferation
Assay Kit (Promega Corporation, Madison, WI, USA) according to the manufacture’s instruction.
Briefly, cells (1 × 104 cell/mL) were seeded in 96 well plates and incubated at 37 ◦C in 5% CO2 with ADE
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(25–200 µg/mL). After 24 h, MTS solution was added to each well, incubated for 1 h, and absorbance at
490 nm was measured using a Synergy H1 microplate reader (Biotek, Winooski, VT, USA).

2.4. Oil Red O Staining

Lipid droplets were measured using Oil Red O (ORO; Sigma, St. Louis, MO, USA) stain as
described by Ramirez-Zacarias et al. [16]. The ORO working solution was prepared with dH2O and
ORO (6/4 = w/v). The 3T3-L1 cells were washed with phosphate-buffered saline (PBS) and were then
fixed in 10% formaldehyde for 1 h incubated at 37 ◦C. Fixed cells were washed with ddH2O and
then washed with 60% isopropanol for 3 min. The cells were stained with ORO solutions for 15 min.
The cells were washed with dH2O four times to remove the un-stained dye. The stained droplet
was observed with an inverted phase microscope (10×; Observer A1, Zeiss, Oberkochen, Germany).
In addition, isopropanol was added for quantification to elute stained reagents, and the absorbance
was measured at 520 nm using by Synergy H1 microplate reader.

2.5. Triglyceride (TG) Assay

3T3-L1 adipocytes in the 12 wells plates were rinsed with PBS. Cells were homogenized with 5%
NP-40/ddH2O. TG in adipocytes was measured by a Triglyceride Assay Kit from Abcam (Cambridge,
UK) according to the instruction of the manufacturer. The absorbance was evaluated at 570 nm by a
Synergy H1 microplate reader.

2.6. Measurement of Total Cholesterol

Cells were lysed with chloroform/isopropanol/NP-40 (v/v = 7/11/0.1). Cells were centrifuged for
5 min at 15,000× g, and then the supernatant was transferred to a new tube. The supernatant was dried
at 50 ◦C to remove chloroform. Dried supernatant was dissolved with assay buffer (included in Kit).
Cellular cholesterol levels were determined with a Cholesterol Assay Kit from Abcam (Cambridge,
UK) according to the instruction of the manufacturer. The absorbance was performed at 570 nm using
a Synergy H1 microplate reader.

2.7. Western Blot

Whole adipocyte for protein extraction was lysed in a RIPA buffer containing protease and
phosphatase inhibitor cocktail (GenDEPOT, Katy, TX, USA). Cell lysates containing equal amounts
of proteins were determined using the Bradford assay (BioRad, Hercules, CA, USA). Western blot
was performed as described previously reported [17]. The PVDF-membranes were incubated with
primary antibody (1:500–1000 dilution) at 4 ◦C, overnight, and secondary antibody (1:2000 dilution)
were treated for 2 h. All primary and secondary antibodies were prepared by cell signaling (Beverly,
MA, USA). The blots were visualized using the enhanced chemiluminescence (ECL) reagent (BioRad,
Hercules, CA USA). Quantitative analysis was measured with free ImageJ (version 1.52a for windows;
NIH, Rockville, MD, USA).

2.8. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Total RNA of adipocytes was extracted by TRIzol reagent (Ambion, Austin, TX, USA) referring
to the manufacturer’s instructions. cDNA was synthesized using a reverse transcriptase premix kit
(Elpis Biotech, Daejeon, Korea). The qPCR was performed using the QuantiTect SYBR Green PCR Kit
(Qiagen, Valencia, CA, USA). Primers were designed using Primer-BLAST shown in Table 1 (NCBI,
Bethesda, MD, USA). The threshold cycle (Ct) value for each gene was normalized by β-actin.
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Table 1. Primer sequence of lipogenic-related genes for RT–PCR.

Gene 1 Sequence (5′→3′)

adipoq Forward AATTCCCAGGAAGATGAAGG
Reverse GAAGAACAAGCCAAAGACCA

ap2 Forward GGAAGCTTGTCTCCAGTGAA
Reverse CGCCTTTCATAACACATTCC

srebp-1c Forward TTGAGGATAGCCAGGTCAAA
Reverse ACAAAGAGAAGAGCCAAGCA

fas Forward AAGCAAGAAGGTGTGTTTGC
Reverse CTTCATCAAGGGAATGATGG

β-actin Forward ACAGGCATTGTGATGGACTC
Reverse AGAAGGAAGGCTGGAAAAGA

1 adipoq, adiponectin; ap2, adipocyte protein 2; srebp-1c, sterol regulatory element-binding protein-1c;
fas, fatty acid synthesis.

2.9. Measurement of Antioxidant Activity

DPPH (Sigma-Aldrich, MO, USA) scavenging assay was followed by Mishra et al. with some
modifications [18]. The DPPH solutions were prepared by DPPH (300 µM) in 99.9% ethanol was
prepared. The working solution was diluted with 99.9% ethanol. The ADE (40 µL) were allowed to
react with the DPPH solution (160 µL) for 1 h in the dark. Then, the absorbance was taken at 515 nm
and was expressed as the half-maximal inhibitory concentration (IC50, µg/mL).

The ABTS (Sigma-Aldrich, MO, USA) assay was slightly modified by Miller and Rice-Evans [19].
Briefly, the stock of ABTS solutions included ABTS+ solution (7.4 mM) and potassium persulfate
(2.6 mM) for 4 h at 4 ◦C. The ABTS+ solution was diluted with dH2O until an absorbance of 0.7 ± 0.02 at
734 nm. Then, ADE (20 µL) was mixed with ABTS+ solution (180 µL) for 1 h in the dark. The absorbance
was performed at 734 nm and was expressed as the half-maximal inhibitory concentration (IC50, µg/mL).

2.10. Total Phenol and Flavonoid Contents

Total phenol contents (TPC) were measured using Folin–Ciocâlteu [20]. Briefly, ADE (100 µL)
was mixed with 1 N Folin–Ciocâlteu (50 µL) and dH2O (400 µL). The absorbance was read at 725 nm
using a Synergy H1 microplate reader. The standard calibration curve of gallic acid (10–50 µg/mL) was
plotted. Total flavonoid contents (TFC) were measured using the modified Pękal et al. method [21].
Briefly, ADE (100 µL) was mixed with 5% NaNO2 (75 µL; w/v) for 6 min and, 10% AlCl3 (150 µL;
w/v) was added. A mixture was neutralized with 1 M NaOH solution (750 µL). The absorbance was
read at 510 nm using Synergy H1 microplate reader. The standard calibration curve of (+)-catechin
(10–50 µg/mL) was plotted.

2.11. HPLC Analysis for Phenolics

The modified method for HPLC from Agilent 1200 series, Agilent Technologies (Santa Clara,
CA, USA) analysis of Kim et al. was applied [22]. Preparations of a phenol-rich fraction of AD (5 g)
were redissolved in dH2O and then fractionated by ether/ethyl acetate (1:1 = v/v). HPLC was analyzed
by a reversed-phase using a synergy fusion RP column (250 × 4.6 mm, 4 µm; Phenomenex, Torrance,
CA, USA) at 35 ◦C. The mobile phase (solvent A, 0.5% acetic acid in water; solvent B, 0.5% acetic acid
in acetonitrile), gradient, injection volume and flow rate were performed as described previously [23].
Homogentisic acid, protocatechuic acid, gentisic acid, chlorogenic acid, caffeic acid, phloretic acid,
p-coumaric acid, ferulic acid, veratric acid, cinnamic acid, quercetin, naringenin (Sigma-Aldrich,
St. Louis, MO, USA) were used as phenolic standards. Phenolics were detected at 280 nm using diode
array detection (DAD). All solutions with HPLC grade methanol and were prepared filtered by a
0.22 µM polyvinylidene difluoride (PVDF; Pall Co., Port Washington, NY, USA) membrane.
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2.12. Statistics

All experimental results are presented as the means ± standard deviation (SD). The statistical
significance of differences in this study was determined by a one-way analysis of variance (ANOVA)
using Tukey’s multiple comparison test (Prism 5.02 GraphPad Software, San Diego, CA, USA).

3. Results

3.1. ADE Has Anti-Adipogenesis Effect on 3T3-L1 Adipocyte

The viability of 3T3-L1 adipocytes did not change 25–100 µg/mL ADE (≥100%), while 200 µg/mL
ADE (85.97%, p < 0.001) was cytotoxic (Figure 1a). Therefore, ADE concentrations up to 100 µg/mL
were used for subsequent experiments. The anti-adipogenic effect of ADE was determined using ORO
during the differentiation. Microscopically, the MDI control group had more stained lipid droplets
than the undifferentiated controls, and the stained lipid droplets of the ADE groups were decreased
with 50 and 100 µg/mL (Figure 1b). The amount was also significantly increased in the differentiated
controls compared to the undifferentiated controls (3.46-fold vs. control, p < 0.001) and the 50 and
100 µg/mL ADE groups had lower fat accumulation rates (0.90- and 0.72-fold vs. MDI control, p < 0.05
and p < 0.001). In particular, the level was lower in the 100 µg/mL ADE group than the positive controls
(conjugated linoleic acids, CLA; 0.86-fold vs. MDI control, p < 0.001), shown in Figure 1c.
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Exposure to MDI to cause the differentiation led to increases in the TG content compared to the 
control (16.91-fold vs. control, p < 0.001; Figure 2a). All ADE concentrations from 25 μg/mL inhibited 

Figure 1. Cell viability (a) and inhibition of lipid droplet accumulation by ADE on microscopy (b) and
quantifications (c) of 3T3-L1 adipocytes. Differentiating cells were treated every 2 days with extracts
(25–100 µg/mL) for 8 days in adipocyte-induction media. Conjugated linoleic acid (CLA) (50 µM) was a
positive control. All values are means ± SD (n = 3). ### p < 0.001 vs. non-MDI treated control; * p < 0.05
and *** p <0.001 vs. MDI control. MDI, media of differentiation; ADE, A. dioicus extract.

3.2. ADE Reduces the TG and Total Cholesterol Levels in 3T3-L1 Adipocytes

Exposure to MDI to cause the differentiation led to increases in the TG content compared to
the control (16.91-fold vs. control, p < 0.001; Figure 2a). All ADE concentrations from 25 µg/mL
inhibited TG accumulation. The TG levels were markedly lower in the 50 and 100 µg/mL ADE groups
(0.79- and 0.50-fold vs. MDI control, p < 0.001). The level in the positive control (CLA, 50 µM) was
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0.83-fold vs. MDI control (p < 0.01), which was similar to 50 µg/mL, but higher than 100 µg/mL ADE.
The cholesterol level was significantly increased in the MDI control (2.05-fold vs. control, p < 0.001;
Figure 2b). Treatment with 100 µg/mL ADE reduced cholesterol by 0.77-fold (p < 0.001) compared
with MDI control and was lower than in the positive control (CLA, 50 µM; 1.03-fold vs. MDI control).
Therefore, 50 and 100 µg/mL ADE were used to examine adipogenic- and lipogenic-related protein
expression on 3T3-L1 adipocytes.
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Figure 2. Effect on triglyceride (a) and cholesterol contents (b) of ADE. Differentiating 3T3-L1 adipocytes
were treated with every 2 days with extracts (25–100 µg/mL) for 8 days in adipocyte-induction media.
CLA (50 µM) was a positive control. All values are means± SD (n = 3). ### p < 0.001 vs. non-MDI treated
control; ** p < 0.01, *** p < 0.001 vs. MDI control. MDI, media of differentiation; ADE, A. dioicus extract.

3.3. ADE Induced Anti-Adipogenesis by Controlling Adipogenesis Marker Proteins and mRNA Expression on
3T3-L1 Adipocytes

To elucidate whether 50 and 100 µg/mL ADE were linked to their anti-adipogenic effects on 3T3-L1
adipocytes, the expression of the adipogenic-related proteins C/EBPα and PPARγ [6] was measured by
Western blotting. The addition of 50 or 100 µg/mL ADE dramatically decreased the levels of C/EBPα
(0.43- and 0.22-fold vs. MDI control, p < 0.001) and PPARγ (0.62- and 0.45-fold vs. MDI control,
p < 0.001) proteins in 3T3-L1 adipocytes (Figure 3a). Since the expressions of adipogenic-related
adipoq and ap2 mRNA are changed by regulating C/EBPα and PPARγ, the mRNA expression was
measured [24]. The expression of adipoq was markedly decreased (0.45-fold vs. control, p < 0.01)
and the ap2 expression was increased (3.71-fold vs. control, p < 0.001; Figure 3b) in the MDI control.
Treatment with 100 µg/mL ADE increased adipoq mRNA by 3.45-fold and reduced ap2 mRNA by
0.38-fold (vs. MDI control, p < 0.001).

3.4. ADE Downregulates Lipogenesis Protein and mRNA Expression on 3T3-L1 Adipocytes

We explored whether ADE alters the expression of lipogenic-related protein and mRNA on 3T3-L1
adipocytes. SREBP-1 is a key transcription factor in the induction of lipogenesis [25]. As shown in
Figure 4a, marked SREBP-1 protein expression was induced by 3.66-fold (vs. control, p < 0.001) in
MDI control. After treatment with 100 µg/mL ADE, it declined rapidly by about 0.68-fold (vs. MDI
control, p < 0.001). In the SREPB-1 family, srebp1c is a lipogenic gene and fas is activated by SREBPs [26].
The srebp-1c and fas mRNA levels in 3T3-L1 adipocytes were upregulated in the MDI control (3.52- and
1.68-fold vs. control, p < 0.001 and p < 0.01; Figure 4b). Conversely, 100 µg/mL ADE downregulated
the srebp-1c and fas mRNA levels by 0.45- and 0.53-fold, respectively (vs. MDI control, p < 0.001 and
p < 0.05).
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Figure 3. Effect of ADE on levels of adipogenic-related proteins and mRNA in 3T3-L1 adipocytes.
Differentiating 3T3-L1 cells were treated every 2 days with extracts (50 and 100 µg/mL) for 8 days
in adipocyte-induction media. Protein expressions C/EBPα and PPARγ were performed by Western
blotting (a). The mRNA expressions of adipoq and ap2 were evaluated by the quantitative real-time
PCR (b). Relative levels were normalized to their β-actin (n = 3). ## p < 0.01 and ### p < 0.001 vs.
non-MDI treated control; * p < 0.05, ** p < 0.01 and *** p < 0.001 vs. MDI treated control. MDI, media of
differentiation; ADE, A. dioicus extract.Processes 2020, 8, 1576 8 of 12 
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Figure 4. The expressions of lipogenesis-related protein and mRNA in 3T3-L1 adipocytes with
ADE. Differentiating 3T3-L1 cells were treated with extracts (50 and 100 µg/mL) for 8 days in
adipocyte-induction media. Protein expressions SREBP1 was performed by Western blotting (a).
The mRNA expressions of srebp-1c and fas were measured by the qPCR (b). Relative levels were
normalized to their β-actin (n = 3). ## p < 0.01 and ### p < 0.001 vs. non-MDI treated control;
* p < 0.05, ** p < 0.01 and *** p < 0.001 vs. MDI treated control. MDI, media of differentiation; ADE,
A. dioicus extract.
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3.5. Antioxidant Activities of ADE

Oxidative stress promotes adipogenesis, which is the conversion of pre-adipocytes-to-
adipocytes [27]. Thus, the antioxidant activity and phenol, flavonoid, and phenolic contents
were measured to examine functional compounds that account for the antioxidant activity and
anti-adipogenic and anti-lipogenic effects. The DPPH and ABTS+ scavenging assay, indicative of
antioxidant activity, was assessed with a simple colorimetric method [23]. The antioxidant activity
of ADE was examined using ascorbic acid. The IC50 values of ADE were 66.96 and 30.56 µg/mL for
the ABTS+ and DPPH scavenging effects, respectively (Table 2). The phenols and flavonoids have
beneficial antioxidant effects [28], so TPC and TFC were measured. The ADE contained 127.39 mg/g
TPC and 104.17 mg/g TFC.

Table 2. Antioxidant activities and compound contents in A. dioicus extract.

Sample DPPH (IC50, µg/mL) ABTS (IC50, µg/mL)
Contents

Total Phenol (mg GA/g Extract) Total Flavonoid (mg CE/g Extract)

A. dioicus 66.96 ± 3.17 b 30.56 ± 0.20 b 127.39 ± 1.04 104.17 ± 3.31
Ascorbic acid 4.36 ± 0.32 c 5.91 ± 0.11 c - -

All values are means ± SD. Means with different letters on the same column are significantly different at p < 0.05 by
Duncan’s test.

Phenolic compounds responsible for the beneficial effects of ADE were analyzed by HPLC (Figure 5).
To determine the phenolic compounds, ADE was re-extracted in phenol-rich fractions. The phenolic
compounds are shown in Table 3. Only chlorogenic (7.04 ± 1.10 mg/kg), caffeic (20.14 ± 0.52 mg/kg),
ferulic (1.74 ± 0.87 mg/kg), veratric (29.31 ± 4.26 mg/kg), and cinnamic (4.70 ± 0.86 mg/kg) acids and
quercetin (418.41 ± 7.26 mg/kg) were detected in the ADE. Therefore, these compounds likely play a
crucial role in the anti-adipogenic effects of ADE.
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Figure 5. The chromatograms of phenolic compounds from ADE based on HPLC analysis.
Peak identification: 1: homogentisic acid, 2: protocatechuic acid, 3: gentisic acid, 4: chlorogenic acid, 5:
caffeic acid, 6: phloretic acid, 7: p-coumaric acid, 8: ferulic acid, 9: veratric acid, 10: cinnamic acid,
11: quercetin, 12: naringenin, and 13: hesperidin. Chromatogram of (a) standard solution used for
phenolic compound analysis (100 µg/mL each), (b) ADE (20 mg/mL). ADE, A. dioicus extract.
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Table 3. HPLC analysis of phenolics extracted from A. dioicus.

Phenolics (mg/kg)
Chlorogenic Acid Caffeic Acid Ferulic Acid Veratric Acid Cinnamic Acid Quercetin

7.04 ± 1.10 c 20.14 ± 0.52 b 1.74 ± 0.87 d 29.31 ± 4.26 b 4.70 ± 0.86 c 418.41 ± 7.26 a

All values are means ± SD. Means with different letters on the same column are significantly different at p < 0.05 by
Duncan’s test.

4. Discussion

This study explored the anti-obesity potential of ADE by regulating the expression of adipogenic
proteins and mRNA, such as C/EBPα, PPARγ, AdipoQ, and Ap2, and the lipogenic proteins and
mRNA, including SREBP1c and FAS in 3T3-L1 adipocytes. The ADE extract had antioxidant activity,
as shown with the ABTS and DPPH scavenging assays, and antioxidants were detected in the TPC,
TFC, and HPLC analyses.

Obesity is associated with adipocyte differentiation and lipid accumulation [29]. Adipogenesis is
the differentiation of pre-adipocytes into mature adipocytes, which have a large internal lipid droplet and
store TG [30]. When ADE was treated in the process of differentiation of 3T3L1 adipocytes, lipid droplets
and TG were effectively decreased (Figures 1 and 2). This result is seen as a result of reducing
adipogenesis. To evaluate the protein expression of adipogenic-related factors, adipocyte-specific
transcription factors such as C/EBPα, PPARγ, and SREBP-1 were identified [31]. The activation
of adipogenesis involves the cooperative interplay of members of the C/EBP and PPAR families,
especially C/EBPα and PPARγ. They promote adipocyte differentiation by activating the transcription
of the other synergistically [6]. C/EBPα and PPARγ activate downstream genes like adipoq and ap2 at the
terminal stage of differentiation to cause fat accumulation in cells [24]. SREBP-1 controls lipogenesis and
lipid homeostasis [30] by mediating the induction of lipid synthesis, cholesterol synthesis, and lipogenic
enzyme genes such as srebp-1c and fas [7]. ADE reduced the total cholesterol content by inhibiting
the expressions of the SREBP-1, srebp-1c, and fas factors involved in cholesterol synthesis (Figure 4)
in adipocytes.

One study reported a correlation between antioxidants and obesity prevalence and found that
free radicals promote the conversion of pre-adipocytes into mature adipocytes [31]. DPPH and ABTS
free radical scavenging is a simple, convenient method for assessing antioxidant activity in food and
complex samples [32]. As shown in Table 1, the free radical scavenging capacity (IC50) of ADE was
66.96 µg/mL in DPPH and 30.56 µg/mL in ABTS, which are better than the values of other medicinal
plants [33]. Some phenols and flavonoids exert antioxidant activity and anti-obesity effects by lowering
TG and cholesterol levels, reducing adipogenic transcription factors, and increasing fat oxidation [34].
As mentioned above, ADE contained 127.39 mg/g total phenols and 104.17 mg/g total flavonoids (Table 2).
Using HPLC, ADE was found to contain the compounds shown in Figure 5. Of these, the quercetin
levels were highest (418.41 mg/kg) in ADE (Table 3). Quercetin reduces lipid accumulation in obese mice
by increasing heme oxygenase-1, an antioxidant enzyme, and downregulating the adipocyte-specific
transcription factors C/EBPα and PPARγ [35,36]. Quercetin in ADE likely plays a critical role in
downregulating adipocyte-specific transcription factors and generating antioxidant activity.

5. Conclusions

ADE prevents adipogenesis and lipogenesis processes in 3T3-L1 adipocytes by suppressing lipid
droplets, TG, and cholesterol levels. ADE acts by regulating transcription factors, C/EBPα, PPARγ,
SREBP-1, and their target mRNAs, such as SREBP-1c, FAS, AdipoQ, and Ap2. ADE affects ABTS and
DPPH scavenging and contains phenols and flavonoids such as caffeic, ferulic, veratric, and cinnamic
acids and quercetin, which have critical roles in its anti-adipogenic and -lipogenic effects. Therefore,
ADE may be a useful functional food for treating and obesity and a source of new antioxidants and
anti-obesity therapeutics.
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